方案详情文
智能文字提取功能测试中
1. 引言双嘧达莫(DPM)为磷酸二酯酶可逆性抑制剂,具有扩张冠脉及抗血栓形成作用,临床主治中风术后并发症以及心脏手术或瓣膜置换术等。 DPM 为生物药剂学分类系统(BCS)Ⅱ类药物,解离常数pKa为6.4,属于弱碱性药物,药物溶解性具有pH 依赖性,在酸性(pH 值1~4)环境中药物溶解度较高,在pH7.0介质中溶解度仅为5μg·mL-1,这会导致已经溶解在胃液中的 DPM 随着胃排空进入小肠时会析出沉淀,个体间生物利用度差异性较大(18%~43%),临床疗效不确切。 纳米混悬剂(NPs)以少量高分子聚合物和/或表面活性剂作为稳定剂,通过机械性超微粉碎技术或控制结晶析出条件将药物制备成粒径小于1000nm 且具有良好物理稳定性的胶体分散体,NPs粒径较小,将药物制备成 NPs后能显著增加药物的溶解度和生物利用度。本研究将 DPM 制备成 DPM-NPs,并通过模拟体内药物溶出实验,为 DPM 的体内药动学研究奠定实验基础。2. 仪器设备高压微射流均质机 品牌:意大利PSI,PSI-20(实验、小试型),PSI-40系列(小试、中试型);Infinity系列(生产型) 原理:高压微射流均质机通过电液传动的增压器使物料在高压作用下以极大的速度流经固定几何结构均质腔中的微管通道,物料流在此过程中受到超高剪切力、高碰撞力、空穴效应等物理作用,使得平均粒径降低、体系分散更加均一,由此获得理想的均质或乳化结果。 检测关键点:均质腔孔径和类型、均质压力、均质次数图1 原理图图2 仪器外观3. 样品制备DPM-NPs 的制备采用高压微射流均质法制备DPM-NPs。① 称取经气流粉碎机处理过的DPM 原料药[颗粒累积分布为90%的粒径(D90)为10.2μm,颗粒累积分布为50%的粒径(D50)为4.1μm,颗粒累积分布为10%的粒径(D10)为1.6μm]1.0g加入到含有稳定剂的纯化水中,介质体积为100 mL,搅拌分散均匀 ② 通过高剪切分散乳化机高速剪切10 min,转速为 20000r· min-1,初步减小DPM 粒径,再将 DPM 分散液通过高压微射流均质机高压均质处理,在一定的均质压力和均质次数下均质,即得 DPM-NPs。 ③ 取 DPM-NPs 2.5mL,置于10mL西林瓶中,加入甘露醇溶解,使甘露醇质量浓度为50mg·mL-1,将样品置于冷冻干燥机中冻干处理,干燥结束后加塞密封保存,备用。根据单因素实验考察结果确定 DPM-NPs的处方组成,并以均质压力(X1)和均质次数(X2)作为变量因素,以 DPM-NPs粒径分布(Y)作为评价指标,采用“中心复合实验设计”优化得到 DPM-NPs的最佳工艺参数。因素与水平见表1,实验设计与结果见表2。4. 实验设计与结果采用“中心复合实验设计”实验软件对表4中的实验数据进行统计分析,以评估均质压力和均质次数对 DPM-NPs粒径分布的影响程度,结果见表3。由表3可知,模型 P 值为0.0006,小于0.05,说明模型显著,可用该模型进行分析和预测;失拟项P 值为0.2502,大于0.05,说明实测值和预测值比较差异无统计学意义,模型预测准确度较高。建立的二元多次拟合方程模型为:其中 X1、X2、X1X2和 X12 的P 值均小于0.05,对粒径具有显著影响。通过绘制效应面图可直观分析均质压力和均质次数及其相互作用对 DPM-NPs粒径分布的影响,见图1。由图1可知,当均质压力恒定时,随着均质次数的增加,DPM-NPs的粒径呈减小趋势;当均质次数恒定时,随着均质压力的增加,DPM-NPs的粒径呈减小趋势。本研究要求制备的 DPM-NPs粒径分布趋于最小化,经软件优化得到的最佳制备工艺参数为:均质压力为18000psi,均质8次,预测得到 DPM-NPs的粒径大小为449.5nm。根据最佳均质工艺参数制备DPM-NPs,测得粒径分布为(438.6±24.7)nm,误差均在5%以内,实验测定值与预测值接近。5. 结论高压微射流均质机PSI在使用同种型号金刚石交互容腔中,使用相同均质工艺参数(均质压力和均质次数),能保证批次间产品的粒径稳定性,有利于放大生产。搭配美国PSS粒度仪和德国LUM稳定性分析仪,可为纳米混悬剂的研发、生产和质量控制提供整套解决方案。参考资料[1] 刘磊.双嘧达莫纳米混悬剂的制备与药物溶出研究[J].西北药学杂志,2021,36(03):439-443.04 1.引言 双嘧达莫(DPM)为磷酸 二 酯酶可逆性抑制剂,具有扩张冠脉及抗血栓形成作用,临 床主治中风术后并发症以及心脏手术或瓣膜置换术等。 DPM 为生物药剂学分类系统(BCS)Ⅱ类药物,解离常数pKa为6.4,属于弱碱性药 物,药物溶解性具有 pH 依赖性,在酸性(pH值1~4)环境中药物溶解度较高,在 pH7.0介质中溶解度仅为 5pg·mL-1,这会导致已经溶解在胃液中的 DPM 随着 胃排空进入小肠时会析出沉淀,个体间生物利用度差异性较大(18%~43%),临床 疗效不确切。 纳米混悬剂(NPs)以少量高分子聚合物和/或表面活性剂作为稳定剂,通过机械性 超微粉碎技术或控制结晶析出条件将药物制备成粒径小于1000nm 且具有良好 物理稳定性的胶体分散体,NPs粒径较小,将药物制备成 NPs 后能显著增加药物 的溶解度和生物利用度。本研究将 DPM制备成 DPM-NPs,并通过模拟体内药 物溶出实验,为 DPM 的体内药动学研究奠定实验基础。 2..仪器设备 高压微射流均质机 品牌:意大利PSI, PSI-20 (实验、小试型),PSI-40系列(小试、中试型);Infinity 系列(生产型) 原理:高压微射流均质机通过电液传动的增压器使物料在高压作用下以极大的速 度流经固定几何结构均质腔中的微管通道,物料流在此过程中受到超高剪切力、高碰撞力、空穴效应等物理作用,使得平均粒径降低、体系分散更加均一,由此 获得理想的均质或乳化结果。 检测关键点:均质腔孔径和类型、均质压力、均质次数 图1原理图 图2仪器外观 3..样品制备 DPM-NPs 的制备采用高压微射流均质法制备DPM-NPs。 ①称取经气流粉碎机处理过的 DPM 原料药[颗粒累积分布为90%的粒径(D90)为 10.2um,颗粒累积分布为50%的粒径(D50)为 4.1um,颗粒累积分布为10%的 粒径(D10)为 1.6pm]1.0g加入到含有稳定剂的纯化水中,介质体积为 100 mL,搅 拌分散均匀 ②通过高剪切分散乳化机高速剪切10 min,转速为 20000r· min-1,初步减小 DPM 粒径,再将 DPM 分散液通过高压微射流均质机高压均质处理,在 一 定的均 质压力和均质次数下均质,即得 DPM-NPs。 ③取 DPM-NPs 2.5mL,置于 10mL西林瓶中,加入甘露醇溶解,使甘露醇质量浓 度为 50mg·mL-1,将样品置于冷冻干燥机中冻干处理,干燥结束后加塞密封保存,备用。 根据单因素实验考察结果确定 DPM-NPs的处方组成,并以均质压力(X1)和均质 次数(X2)作为变量因素,以 DPM-NPs粒径分布(Y)作为评价指标,采用“中心复合 实验设计”优化得到 DPM-NPs 的最佳工艺参数。因素与水平见表1,实验设计与 结果见表2。 表1 中心复合实验设计因素与水平 T a b.1 The f ac t o rs and l eve l s o f ce ntr a l co m po s i te e x pe r imen-t al d e s ig n 因素 水平 低(一1) 中(0) 高(十1) X,均质压力/psi 10 000 15 000 20 000 X忆,均质次数 4 一7 券信息,儿上 10 4.实验设计与结果 表 2实验设计与结果(n=3,x±s) Tab . 2 The e xp erime n tal des i gn and resul t s (n=3,x±s ) 编号 X1, 均质压力/psi X2, 均质次数 Y, 粒径分布/nm 1 10 000 10 667.3±42.9 2 10 000 7 743.2±31.8 3 15 000 7 501.6±19.8 4 15 000 4 560.6±24.7 5 20 000 4 526.5±30.8 6 15 000 7 506.8±25.9 7 20 000 7 498.3±19.0 8 20 000 10 437.9±21.4 9 15 000 10 457.4±19.6 10 15 000 7 543.7±32.7 11 10000 4 947.0±29.6 采用“中心复合实验设计”实验软件对表4中的实验数据进行统计分析,以评估均 质压力和均质次数对 DPM-NPs粒径分布的影响程度,结果见表3。由表3可知,模型 P 值为0.0006,小于 0.05,说明模型显著,可用该模型进行分析和预测;失拟 项P 值为0.2502,大于 0.05,说明实测值和预测值比较差异无统计学意义,模型预 测准确度较高。建立的二元多次拟合方程模型为: Y=510.57-149.13X1-78.58X2+47.78XX2+120.38X-+8.63X(R?=0.9734) 其中 X1、X2、X1X2和 x²的P值均小于0.05,对粒径具有显著影响。 表 3 方差分析结果 Ta b .3 R esults of A N OVA 来源 平方和 自由度 平均值 F P 模型 220900.00 5 44 172.30 36.611( 0.000 6 X 133 400.00 133 400.00 110.60 0.0001 X2 37 052.04 37 052.04 30.71 0.002 6 XX2 9 129.80 9 129.80 7.57 0.040 3 X 36 710.76 36 710.76 30.43 0.002 7 X 188.63 188.63 0.16 0.708 9 残差 6 032.57 5 1206.51 失拟项 4978.88 3 1659.63 0.2502 纯误差 1053.69 2 526.84 总和 226900.00 10 R2 0.973 4 通过绘制效应面图可直观分析均质压力和均质次数及其相互作用对 DPM-NPs 粒 径分布的影响,见图1。 图 1 均质压力 (X )和 均 质次 数 (X :)对 DPM-NPs 粒径 分布 (Y )的效 应 面 图 Fig. 1 Effect surf a ce di ag r am o f h o n io g eni z a ti o n pre ss u r e (X )and homogenizatio n t im es (X:) on the parti c le size dis-t r i bution (Y) of DPM-NPs 由图1可知,当均质压力恒定时,随着均质次数的增加,DPM-NPs的粒径呈减小趋势;当均质次数恒定时,随着均质压力的增加,DPM-NPs 的粒径呈减小趋势。 本研究要求制备的 DPM-NPs粒径分布趋于最小化,经软件优化得到的最佳制备 工 艺参数为:均质压力为 18000psi,均质 8次,预测得到 DPM-NPs 的粒径大小为 449.5nm。 根据最佳均质工艺参数制备 DPM-NPs,测得粒径分布为(438.6±;24.7)nm,误 差均在5%以内,实验测定值与预测值接近。 5. 结论 高压微射流均质机 PSI 在使用同种型号金刚石交互容腔中,使用相同均质工艺 参数(均质压力和均质次数),能保证批次间产品的粒径稳定性,有利于放大生 产。搭配美国 PSS粒度仪和德国 LUM 稳定性分析仪,可为纳米混悬剂的研发、生产和质量控制提供整套解决方案。 01 PSI 微射流高压均质机 02Ni c omp 3000 纳米粒度仪 PSI-20高压微射流均质机(小试兼 中试型)采用固定结构的均质腔,通过电液传动的增压器使物料在 高 压作用下以极大的速度流经交互容 腔的微管通道,物料流在此过程中 受到高剪切力、高碰撞力、空穴效 应等物理作用,使得平均粒径降 低、体系均一稳定,由此获得理想 的均质、分散或乳化结果。 用于分析浆料整体粒径分布情况 (包括平均粒径、PI值、D90、D10等等),判断配方及工艺制备 后粒径大小是否符合要求,陶瓷浆 料由不同尺寸的颗粒组成,浆料并 不均一, Nicomp系列对体系不均 一的样品可以提供多峰分布图对样 品进行进一步分析。 号 3 V LUM 03 AccuSi z er A7000系 列 Lum稳定性分析仪 定量分析0.5pm以上颗粒浓度,弥 补粒度分布仪器针对尾端少量颗粒 不敏感性,从而判断研磨工艺是否 有效将尾端大颗粒进行控制。针对 MLCC陶瓷浆料在制备过程中,颗 粒计数设备的作用:1)优化研磨 工艺,用于确认不同研磨工艺条件 下尾端颗粒的去除情况,及颗粒浓 度分布的变化(由大颗粒转变成小 颗粒 )。 息 网 用于分析整体稳定性(包括不稳定 性指数、指纹图谱、迁移速率、界 面追踪,预估有效期等等),判断 配方及工艺制备后体系稳定性是否 符合预期要求。在研发阶段,快速 分析不同配方稳定性,可加速筛选 及优化配方体系,加快研发进度。此外 ,物理加速及温控可有效预估 长期稳定性。 参考资料 [1]刘磊.双嘧达莫纳米混悬剂的制备与药物溶出研究[J].西北药学杂 志,2021,36(03):439-443.
关闭还剩6页未读,是否继续阅读?
继续免费阅读全文产品配置单
上海奥法美嘉生物科技有限公司为您提供《使用PSI-20高压微射流均质机制备双嘧达莫纳米混悬剂如何优化工艺参数》,该方案主要用于其他中理化性质检测,参考标准《暂无》,《使用PSI-20高压微射流均质机制备双嘧达莫纳米混悬剂如何优化工艺参数》用到的仪器有意大利PSI-40高压微射流均质机。
我要纠错相关方案