仪器信息网APP
选仪器、听讲座、看资讯

【分享】Spin Dynamics-Basics of NMR Second ed.(2008) 有下载地址

核磁共振技术(NMR)

    +关注 私聊
  • 社区=冬季=

    第1楼2009/02/04

    可以用中文简单介绍下此刊物吗?

0
    +关注 私聊
  • celan

    第2楼2009/02/04

    Contents
    Part 1 Nuclear Magnetism 3
    1 Matter 5
    1.1 Atoms and Nuclei 5
    1.2 Spin 5
    1.2.1 Classical angular momentum 6
    1.2.2 Quantum angular momentum 6
    1.2.3 Spin angular momentum 7
    1.2.4 Combining angular momenta 8
    1.2.5 The Pauli Principle 9
    1.3 Nuclei 9
    1.3.1 The fundamental particles 9
    1.3.2 Neutrons and protons 10
    1.3.3 Isotopes 11
    1.4 Nuclear Spin 12
    1.4.1 Nuclear spin states 12
    1.4.2 Nuclear Zeeman splitting 14
    1.4.3 Zero-spin nuclei 14
    1.4.4 Spin-1/2 nuclei 15
    1.4.5 Quadrupolar nuclei with integer spin 15
    1.4.6 Quadrupolar nuclei with half-integer spin 15
    1.5 Atomic and Molecular Structure 15
    1.5.1 Atoms 15
    1.5.2 Molecules 16
    1.6 States of Matter 17
    1.6.1 Gases 17
    1.6.2 Liquids 17
    1.6.3 Solids 19
    Magnetism 23
    2.1 The Electromagnetic Field 23
    2.2 Macroscopic Magnetism 23
    2.3 Microscopic Magnetism 25
    2.4 Spin Precession 26
    2.5 Larmor Frequency 29
    2.6 Spin–Lattice Relaxation: Nuclear Paramagnetism 30
    2.7 Transverse Magnetization and Transverse Relaxation 33
    2.8 NMR Signal 36
    2.9 Electronic Magnetism 36
    3 NMR Spectroscopy 39
    3.1 A Simple Pulse Sequence 39
    3.2 A Simple Spectrum 39
    3.3 Isotopomeric Spectra 42
    3.4 Relative Spectral Frequencies: Case of Positive Gyromagnetic Ratio 44
    3.5 Relative Spectral Frequencies: Case of Negative Gyromagnetic Ratio 46
    3.6 Inhomogeneous Broadening 48
    3.7 Chemical Shifts 50
    3.8 J-Coupling Multiplets 56
    3.9 Heteronuclear Decoupling 59

    lylsg555 发表:可以用中文简单介绍下此刊物吗?

0
    +关注 私聊
  • celan

    第3楼2009/02/04

    Part 2 The NMR Experiment 63
    4 The NMR Spectrometer 65
    4.1 The Magnet 65
    4.2 The Transmitter Section 66
    4.2.1 The synthesizer: radio-frequency phase shifts 67
    4.2.2 The pulse gate: radio-frequency pulses 68
    4.2.3 Radio-frequency amplifier 69
    4.3 The Duplexer 69
    4.4 The Probe 70
    4.5 The Receiver Section 72
    4.5.1 Signal preamplifier 73
    4.5.2 The quadrature receiver 73
    4.5.3 Analogue–digital conversion 74
    4.5.4 Signal phase shifting 76
    4.6 Overview of the Radio-Frequency Section 76
    4.7 Pulsed Field Gradients 77
    4.7.1 Magnetic field gradients 78
    4.7.2 Field gradient coils 79
    4.7.3 Field gradient control
    Fourier Transform NMR 85
    5.1 A Single-Pulse Experiment 85
    5.2 Signal Averaging 86
    5.3 Multiple-Pulse Experiments: Phase Cycling 89
    5.4 Heteronuclear Experiments 90
    5.5 Pulsed Field Gradient Sequences 91
    5.6 Arrayed Experiments 91
    5.7 NMR Signal 93
    5.8 NMR Spectrum 96
    5.8.1 Fourier transformation 96
    5.8.2 Lorentzians 96
    5.8.3 Explanation of Fourier transformation 100
    5.8.4 Spectral phase shifts 102
    5.8.5 Frequency-dependent phase correction 103
    5.9 Two-Dimensional Spectroscopy 105
    5.9.1 Two-dimensional signal surface 105
    5.9.2 Two-dimensional Fourier transformation 105
    5.9.3 Phase twist peaks 107
    5.9.4 Pure absorption two-dimensional spectra 109
    5.10 Three-Dimensional Spectroscopy

0
    +关注 私聊
  • celan

    第4楼2009/02/04

    Part 3 Quantum Mechanics 119
    6 Mathematical Techniques 121
    6.1 Functions 121
    6.1.1 Continuous functions 121
    6.1.2 Normalization 122
    6.1.3 Orthogonal and orthonormal functions 122
    6.1.4 Dirac notation 122
    6.1.5 Vector representation of functions 123
    6.2 Operators 125
    6.2.1 Commutation 126
    6.2.2 Matrix representations 126
    6.2.3 Diagonal matrices 129
    6.2.4 Block diagonal matrices 129
    6.2.5 Inverse 130
    6.2.6 Adjoint 130
    6.2.7 Hermitian operators 131
    6.2.8 Unitary operators 131
    6.3 Eigenfunctions, Eigenvalues and Eigenvectors 131
    6.3.1 Eigenequations 131
    6.3.2 Degeneracy 131
    6.3.3 Eigenfunctions and eigenvalues of Hermitian operators 132
    6.3.4 Eigenfunctions of commuting operators: non-degenerate case 132
    6.3.5 Eigenfunctions of commuting operators: degenerate case 132
    6.3.6 Eigenfunctions of commuting operators: summary 133
    6.3.7 Eigenvectors 134
    6.4 Diagonalization 134
    6.4.1 Diagonalization of Hermitian or unitary matrices 135
    6.5 Exponential Operators 135
    6.5.1 Powers of operators 135
    6.5.2 Exponentials of operators 136
    6.5.3 Exponentials of unity and null operators 136
    6.5.4 Products of exponential operators 137
    6.5.5 Inverses of exponential operators 137
    6.5.6 Complex exponentials of operators 137
    6.5.7 Exponentials of small operators 137
    6.5.8 Matrix representations of exponential operators 138
    6.6 Cyclic Commutation 138
    6.6.1 Definition of cyclic commutation 138
    6.6.2 Sandwich formula

0
    +关注 私聊
  • celan

    第5楼2009/02/04

    Review of Quantum Mechanics 143
    7.1 Spinless Quantum Mechanics 143
    7.1.1 The state of the particle 143
    7.1.2 The equation of motion 144
    7.1.3 Experimental observations 144
    7.2 Energy Levels 145
    7.3 Natural Units 146
    7.4 Superposition States and Stationary States 147
    7.5 Conservation Laws 148
    7.6 Angular Momentum 148
    7.6.1 Angular momentum operators 149
    7.6.2 Rotation operators 149
    7.6.3 Rotation sandwiches 151
    7.6.4 Angular momentum eigenstates and eigenvalues 152
    7.6.5 The angular momentum eigenstates 154
    7.6.6 Shift operators 154
    7.6.7 Matrix representations of the angular momentum operators 156
    7.7 Spin 157
    7.7.1 Spin angular momentum operators 157
    7.7.2 Spin rotation operators 158
    7.7.3 Spin Zeeman basis 158
    7.7.4 Trace 159
    7.8 Spin-1/2 160
    7.8.1 Zeeman eigenstates 160
    7.8.2 Angular momentum operators 160
    7.8.3 Spin-1/2 rotation operators 160
    7.8.4 Unity operator 161
    7.8.5 Shift operators 161
    7.8.6 Projection operators 161
    7.8.7 Ket-bra notation 162
    7.9 Higher Spin 162
    7.9.1 Spin I = 1 163
    7.9.2 Spin I = 3/2 164
    7.9.3 Higher spins 165

0
    +关注 私聊
  • celan

    第6楼2009/02/04

    Part 4 Nuclear Spin Interactions 169
    8 Nuclear Spin Hamiltonian 171
    8.1 Spin Hamiltonian Hypothesis 171
    8.2 Electromagnetic Interactions 172
    8.2.1 Electric spin Hamiltonian 173
    8.2.2 Magnetic spin interactions 176
    8.3 External and Internal Spin Interactions 177
    8.3.1 Spin interactions: summary 177
    8.4 External Magnetic Fields 177
    8.4.1 Static field 179
    8.4.2 Radio-frequency field 179
    8.4.3 Gradient field 181
    8.4.4 External spin interactions: summary 181
    8.5 Internal Spin Hamiltonian 182
    8.5.1 The internal spin interactions 182
    8.5.2 Simplification of the internal Hamiltonian 185
    8.6 Motional Averaging 186
    8.6.1 Modes of molecular motion 186
    8.6.2 Molecular rotations 186
    8.6.3 Molecular translations 187
    8.6.4 Intramolecular and intermolecular spin interactions 189
    8.6.5 Summary of motional averaging
    9 Internal Spin Interactions 195
    9.1 Chemical Shift 195
    9.1.1 Chemical shift tensor 196
    9.1.2 Principal axes 197
    9.1.3 Principal values 198
    9.1.4 Isotropic chemical shift 198
    9.1.5 Chemical shift anisotropy (CSA) 198
    9.1.6 Chemical shift for an arbitrary molecular orientation 200
    9.1.7 Chemical shift frequency 201
    9.1.8 Chemical shift interaction in isotropic liquids 201
    9.1.9 Chemical shift interaction in anisotropic liquids 203
    9.1.10 Chemical shift interaction in solids 204
    9.1.11 Chemical shift interaction: summary 206
    9.2 Electric Quadrupole Coupling 206
    9.2.1 Electric field gradient tensor 207
    9.2.2 Nuclear quadrupole Hamiltonian 208
    9.2.3 Isotropic liquids 209
    9.2.4 Anisotropic liquids 209
    9.2.5 Solids 210
    9.2.6 Quadrupole interaction: summary 210
    9.3 Direct Dipole–Dipole Coupling 211
    9.3.1 Secular dipole–dipole coupling 213
    9.3.2 Dipole–dipole coupling in isotropic liquids

0
    +关注 私聊
  • celan

    第7楼2009/02/04

    9.3.3 Dipole–dipole coupling in liquid crystals 216
    9.3.4 Dipole–dipole coupling in solids 216
    9.3.5 Dipole–dipole interaction: summary 217
    9.4 J-Coupling 217
    9.4.1 Isotropic J-coupling 219
    9.4.2 Liquid crystals and solids 221
    9.4.3 Mechanism of the J-coupling 222
    9.4.4 J-coupling: summary 223
    9.5 Spin–Rotation Interaction 223
    9.6 Summary of the Spin Hamiltonian Terms 224
    Part 5 Uncoupled Spins 229
    10 Single Spin-1/2 231
    10.1 Zeeman Eigenstates 231
    10.2 Measurement of Angular Momentum: Quantum Indeterminacy 232
    10.3 Energy Levels 233
    10.4 Superposition States 234
    10.4.1 General spin states 234
    10.4.2 Vector notation 234
    10.4.3 Some particular states 235
    10.4.4 Phase factors 237
    10.5 Spin Precession 238
    10.5.1 Dynamics of the eigenstates 239
    10.5.2 Dynamics of the superposition states 240
    10.6 Rotating Frame 241
    10.7 Precession in the Rotating Frame 245
    10.8 Radio-frequency Pulse 247
    10.8.1 Rotating-frame Hamiltonian 247
    10.8.2 x-pulse 248
    10.8.3 Nutation 251
    10.8.4 Pulse of general phase 252
    10.8.5 Off-resonance effects 253

0
    +关注 私聊
  • celan

    第8楼2009/02/04

    11 Ensemble of Spins-1/2 259
    11.1 Spin Density Operator 259
    11.2 Populations and Coherences 261
    11.2.1 Density matrix 261
    11.2.2 Box notation 261
    11.2.3 Balls and arrows 262
    11.2.4 Orders of coherence 263
    11.2.5 Relationships between populations and coherences 263
    11.2.6 Physical interpretation of the populations 264
    11.2.7 Physical interpretation of the coherences 265
    11.3 Thermal Equilibrium 266
    11.4 Rotating-Frame Density Operator 268
    Contents •xiii
    11.5 Magnetization Vector 269
    11.6 Strong Radio-Frequency Pulse 270
    11.6.1 Excitation of coherence 271
    11.6.2 Population inversion 273
    11.6.3 Cycle of states 274
    11.6.4 Stimulated absorption and emission 275
    11.7 Free PrecessionWithout Relaxation 276
    11.8 Operator Transformations 279
    11.8.1 Pulse of phase φp = 0 279
    11.8.2 Pulse of phase φp = π/2 279
    11.8.3 Pulse of phase φp = π 279
    11.8.4 Pulse of phase φp = 3π/2 279
    11.8.5 Pulse of general phase φp 280
    11.8.6 Free precession for an interval τ 280
    11.9 Free Evolution with Relaxation 281
    11.9.1 Transverse relaxation 281
    11.9.2 Longitudinal relaxation 283
    11.10 Magnetization Vector Trajectories 285
    11.11 NMR Signal and NMR Spectrum 287
    11.12 Single-Pulse Spectra 289
    12

0
    +关注 私聊
  • celan

    第9楼2009/02/04

    Experiments on Non-Interacting Spins-1/2 295
    12.1 Inversion Recovery: Measurement of T1 295
    12.2 Spin Echoes: Measurement of T2 298
    12.2.1 Homogenous and inhomogenenous broadening 298
    12.2.2 Inhomogenenous broadening in the time domain 299
    12.2.3 Spin echo pulse sequence 299
    12.2.4 Refocusing 302
    12.2.5 Coherence interpretation 303
    12.2.6 Coherence transfer pathway 305
    12.3 Spin Locking: Measurement of T1ρ 305
    12.4 Gradient Echoes 306
    12.5 Slice Selection 307
    12.6 NMR Imaging 309
    13 Quadrupolar Nuclei 319
    13.1 Spin I = 1 319
    13.1.1 Spin-1 states 319
    13.1.2 Spin-1 energy levels 320
    13.1.3 Spin-1 density matrix 321
    13.1.4 Coherence evolution 323
    13.1.5 Observable coherences and NMR spectrum 325
    13.1.6 Thermal equilibrium 326
    13.1.7 Strong radio-frequency pulse 326
    13.1.8 Excitation of coherence 328
    13.1.9 NMR spectrum 328
    13.1.10 Quadrupolar echo 331

0
    +关注 私聊
  • celan

    第10楼2009/02/04

    13.2 Spin I = 3/2 334
    13.2.1 Spin-3/2 energy levels 335
    13.2.2 Populations and coherences 336
    13.2.3 NMR signal 338
    13.2.4 Single pulse spectrum 339
    13.2.5 Spin-3/2 spectra for small quadrupole couplings 341
    13.2.6 Second-order quadrupole couplings 342
    13.2.7 Central transition excitation 343
    13.2.8 Central transition echo 345
    13.3 Spin I = 5/2 345
    13.4 Spins I = 7/2 349
    13.5 Spins I = 9/2 350
    Part 6 Coupled Spins 353
    14 Spin-1/2 Pairs 355
    14.1 Coupling Regimes 355
    14.2 Zeeman Product States and Superposition States 356
    14.3 Spin-Pair Hamiltonian 357
    14.4 Pairs of Magnetically Equivalent Spins 359
    14.4.1 Singlets and triplets 359
    14.4.2 Energy levels 360
    14.4.3 NMR spectra 362
    14.4.4 Dipolar echo 363
    14.5 Weakly Coupled Spin Pairs 363
    14.5.1 Weak coupling 363
    14.5.2 AX spin systems 364
    14.5.3 Energy levels 364
    14.5.4 AX spectrum 365
    14.5.5 Heteronuclear spin pairs
    15 Homonuclear AX System 369
    15.1 Eigenstates and Energy Levels 369
    15.2 Density Operator 370
    15.3 Rotating Frame 375
    15.4 Free Evolution 376
    15.4.1 Evolution of a spin pair 376
    15.4.2 Evolution of the coherences 377
    15.5 Spectrum of the AX System: Spin–Spin Splitting 378
    15.6 Product Operators 381
    15.6.1 Construction of product operators 382
    15.6.2 Populations and coherences 383
    15.6.3 Spin orientations 386
    15.7 Thermal Equilibrium 389
    15.8 Radio-Frequency Pulses 391
    15.8.1 Rotations of a single spin pair 392
    15.8.2 Rotations of the spin density operator

0
查看更多
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...