基于激光的火焰壁面相互作用的实验研究诊断

2019/07/18   下载量: 1

方案摘要

方案下载
应用领域 能源/新能源
检测样本 其他
检测项目
参考标准 暂无

双路染料激光构成的多参量激光诊断系统。进行了CARS/CO-LIF/磷光测温/OH-PLIF组合测量,CH2O-PLIF 和 OH-PLIF同时测量,以及拉曼测量尝试。研究了火焰壁面相互作用

方案下载
配置单
方案详情

Flame quenching resulting from flame-wall interactions (FWIs) is important in several
thermochemical processes of practical relevance, such as internal combustion engines. Even though FWIs are restricted to regions close to walls of a combustion chamber, they are crucial for wall heat fluxes and unburned hydrocarbon emissions. This experimental work is intended to investigate parametric sensitivities that influence flame quenching at walls and to better understand the influence of non-adiabaticity upon the flame structure. This work uses quantitative and semi-quantitative laser-based diagnostics with high temporal and spatial resolution simultaneously. Experiments are performed on a generic burner with side-wall
quenching configurations, where a branch of a V-flame interacts with a laterally oriented wall. Laminar and turbulent boundary conditions are generated for various wall temperatures and two different fuels (methane and dimethyl ether). To investigate the influence of wall heat flux on flame quenching, coherent anti-Stokes Raman spectroscopy (CARS) and phosphor thermometry are combined. From the measurements, gas and wall temperature profiles, wall heat fluxes and quenching distances are deduced and correlated. A further measurement of thermochemical states that provide the opportunity to look at the flame dynamics with flame
chemistry. The simultaneous measurement of CARS (for the gas temperature) and laser-induced fluorescence (LIF) of carbon monoxide (CO) (for the CO concentration) are applied. Above all, an influence of the time scales of heat transfer on CO chemistry is shown. Furthermore, simultaneous planar LIF of the formaldehyde molecule and the hydroxyl radical are used to image local heat release rate (HRR) distributions. In the turbulent case, flame fluctuations prevail in the FWI zone and are analyzed statistically regarding flame curvature. The correlation of heat release rate, flame curvature and wall-normal distance is investigated using the instantaneous HRR images for different wall temperatures and equivalence ratios. Finally, the feasibility study of the near-wall Raman spectroscopy is carried out. Raman
spectroscopy is a promising technique to quantify combustion-related species simultaneously.
However, especially near the wall, scattering and reflections from the wall are even higher than that of the other measurement techniques. The purpose of this feasibility study is to characterize the Raman signal quality near the wall. The resulting signal-to-noise ratio is found to be suitable for further measurements.

上一篇 在一个双稳湍流涡旋火焰中,对间歇性动态的时间-频率定位
下一篇 旋转稳定的贫预混合火焰燃烧动力学:火焰稳定化,火焰动力学和燃烧不稳定控制策略的实验研究

文献贡献者

相关仪器 更多
相关方案
更多

相关产品

当前位置: 欧兰科技 方案 基于激光的火焰壁面相互作用的实验研究诊断

关注

拨打电话

留言咨询