仪器信息网APP
选仪器、听讲座、看资讯

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

导读:本文利用扭曲的多硼基框架与线性扩展的π骨架相结合的策略,突破了以往发射器的光谱限制,实现了超窄发射带(FWHM为12 nm)和接近100%的量子产率。

科学背景

随着超高清显示技术的快速发展,对有机发光二极管(OLEDs)中高效深蓝光发射器的需求引起了广泛关注。深蓝光发射器不仅在色彩饱和度和显示质量方面起着至关重要的作用,还直接影响着OLEDs未来的发展前景。在此背景下,开发具有高效率和超纯发光的深蓝色发射器成为当前OLED技术面临的核心挑战。

深蓝光发射器的设计面临诸多问题,尽管蓝色磷光和供体-受体型热激活延迟荧光(TADF)发射器可以实现接近100%的内部量子效率,但由于结构弛豫和第一单线态激发态(S1)与基态(S0)之间的振动耦合,难以保持发光颜色的纯度。此外,为了满足最新的BT.2020蓝色标准,发射器不仅需要优化发射峰,还需减少半高宽(FWHM)并限制光谱拖尾。然而,现有的深蓝色发射器在实现这些目标时,常面临光谱展宽和颜色纯度不达标的问题,且装置效率常出现严重滚降。

为了解决这些问题,深圳大学杨楚罗教授提出了一种基于高度扭曲的双硼MR-TADF核心的分子设计策略,通过引入线性扩展的π骨架,实现了大自旋轨道耦合和小ΔEST值,从而显著加快了RISC速率(达到2.29 × 106 s−1)。此外,通过合理选择元素组合,成功地将发射波长精确控制在458 nm,FWHM低至12 nm。

这种设计不仅解决了传统深蓝光发射器在颜色纯度和效率上的矛盾,还通过优先的水平发光偶极取向(Θ∥达到97%),进一步提高了装置的光输出效率。最终,在OLED器件中实现了接近BT.2020标准的深蓝色光发射,并达到了世界领先的外量子效率(EQE),为超高清显示应用提供了新的技术路径和理论依据。

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

科学亮点

1. 实验首次设计了扭曲的多硼基MR-TADF框架,并将其集成到线性扩展的π骨架中,从而实现了深蓝色发光体在光谱特性上的突破。此设计策略使得发射器具备了极其狭窄的发射带(FWHM为12 nm)和接近100%的量子产率(ФPL),主要归因于扩展核心的高结构刚性、非键合特性以及合理的元素组合。


2. 实验通过优化三重态上转换过程(RISC),实现了kRISC值达到106 s–1的快速上转换,这得益于扭曲结构引起的大自旋轨道耦合(SOC)矩阵元,以及由线性扩展MR-TADF骨架带来的小ΔEST。通过这一优化,发光体在OLED器件中的性能显著提升。


3. 采用双元发光层的OLED器件达到了BT.2020蓝色标准,并展现了优异的性能,最高外量子效率(EQEmax/1,000)分别为39.2%/28.7%,且FWHM仅为14 nm。进一步整合TADF敏化剂后,器件性能进一步提升,EQEmax/1,000分别达到44.6%/38.8%,并保持了窄的发射光谱。


4. 在串联器件架构下,实现了深蓝区域内的最高效率,EQEmax/1,000分别为74.5%/65.3%。这些结果表明,该设计策略在深蓝色MR-TADF分子的色纯度和自旋翻转过程方面取得了显著进展,为超高清显示应用的高效OLED提供了有力的解决方案。

科学图文

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

图1:  分子设计。

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

图2:DPA-B2 、 DPA-B3 、 DPA-B4和Cz-B4的光物理性质。

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

图3:基于DPA-B2 、 DPA-B3 、 DPA-B4和Cz-B4的非敏化OLED的EL性能。

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

图4: 基于 DPA-B4 的 HF 器件和两单元串联 HF 器件的 EL 性能。

科学启迪

本文利用扭曲的多硼基框架与线性扩展的π骨架相结合的策略,突破了以往发射器的光谱限制,实现了超窄发射带(FWHM为12 nm)和接近100%的量子产率。这一创新设计展示了如何通过调节分子结构来优化光学性能,从而满足高色纯度的需求。其次,优化的三重态上转换过程(kRISC值达106 s1)显示了大自旋轨道耦合(SOC)矩阵元对提高发射效率的关键作用。这一发现表明,结构设计对于加速三重态到单重态的转换至关重要,有助于提升器件的整体效率。进一步的应用研究表明,该策略在OLED器件中不仅达到了BT.2020蓝色标准,还实现了高外量子效率(EQEmax/1,000达74.5%/65.3%)。这些成果表明,通过系统的分子设计和结构优化,可以显著提升深蓝色OLED的性能,为未来高解析度显示技术的发展奠定了坚实基础。

参考文献:Hua, T., Cao, X., Miao, J. et al. Deep-blue organic light-emitting diodes for ultrahigh-definition displays. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01508-w



来源于:仪器信息网

打开APP,掌握第一手行业动态
打赏
点赞

近期会议

更多

热门评论

写评论…
0

科学背景

随着超高清显示技术的快速发展,对有机发光二极管(OLEDs)中高效深蓝光发射器的需求引起了广泛关注。深蓝光发射器不仅在色彩饱和度和显示质量方面起着至关重要的作用,还直接影响着OLEDs未来的发展前景。在此背景下,开发具有高效率和超纯发光的深蓝色发射器成为当前OLED技术面临的核心挑战。

深蓝光发射器的设计面临诸多问题,尽管蓝色磷光和供体-受体型热激活延迟荧光(TADF)发射器可以实现接近100%的内部量子效率,但由于结构弛豫和第一单线态激发态(S1)与基态(S0)之间的振动耦合,难以保持发光颜色的纯度。此外,为了满足最新的BT.2020蓝色标准,发射器不仅需要优化发射峰,还需减少半高宽(FWHM)并限制光谱拖尾。然而,现有的深蓝色发射器在实现这些目标时,常面临光谱展宽和颜色纯度不达标的问题,且装置效率常出现严重滚降。

为了解决这些问题,深圳大学杨楚罗教授提出了一种基于高度扭曲的双硼MR-TADF核心的分子设计策略,通过引入线性扩展的π骨架,实现了大自旋轨道耦合和小ΔEST值,从而显著加快了RISC速率(达到2.29 × 106 s−1)。此外,通过合理选择元素组合,成功地将发射波长精确控制在458 nm,FWHM低至12 nm。

这种设计不仅解决了传统深蓝光发射器在颜色纯度和效率上的矛盾,还通过优先的水平发光偶极取向(Θ∥达到97%),进一步提高了装置的光输出效率。最终,在OLED器件中实现了接近BT.2020标准的深蓝色光发射,并达到了世界领先的外量子效率(EQE),为超高清显示应用提供了新的技术路径和理论依据。

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

科学亮点

1. 实验首次设计了扭曲的多硼基MR-TADF框架,并将其集成到线性扩展的π骨架中,从而实现了深蓝色发光体在光谱特性上的突破。此设计策略使得发射器具备了极其狭窄的发射带(FWHM为12 nm)和接近100%的量子产率(ФPL),主要归因于扩展核心的高结构刚性、非键合特性以及合理的元素组合。


2. 实验通过优化三重态上转换过程(RISC),实现了kRISC值达到106 s–1的快速上转换,这得益于扭曲结构引起的大自旋轨道耦合(SOC)矩阵元,以及由线性扩展MR-TADF骨架带来的小ΔEST。通过这一优化,发光体在OLED器件中的性能显著提升。


3. 采用双元发光层的OLED器件达到了BT.2020蓝色标准,并展现了优异的性能,最高外量子效率(EQEmax/1,000)分别为39.2%/28.7%,且FWHM仅为14 nm。进一步整合TADF敏化剂后,器件性能进一步提升,EQEmax/1,000分别达到44.6%/38.8%,并保持了窄的发射光谱。


4. 在串联器件架构下,实现了深蓝区域内的最高效率,EQEmax/1,000分别为74.5%/65.3%。这些结果表明,该设计策略在深蓝色MR-TADF分子的色纯度和自旋翻转过程方面取得了显著进展,为超高清显示应用的高效OLED提供了有力的解决方案。

科学图文

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

图1:  分子设计。

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

图2:DPA-B2 、 DPA-B3 、 DPA-B4和Cz-B4的光物理性质。

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

图3:基于DPA-B2 、 DPA-B3 、 DPA-B4和Cz-B4的非敏化OLED的EL性能。

突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!

图4: 基于 DPA-B4 的 HF 器件和两单元串联 HF 器件的 EL 性能。

科学启迪

本文利用扭曲的多硼基框架与线性扩展的π骨架相结合的策略,突破了以往发射器的光谱限制,实现了超窄发射带(FWHM为12 nm)和接近100%的量子产率。这一创新设计展示了如何通过调节分子结构来优化光学性能,从而满足高色纯度的需求。其次,优化的三重态上转换过程(kRISC值达106 s1)显示了大自旋轨道耦合(SOC)矩阵元对提高发射效率的关键作用。这一发现表明,结构设计对于加速三重态到单重态的转换至关重要,有助于提升器件的整体效率。进一步的应用研究表明,该策略在OLED器件中不仅达到了BT.2020蓝色标准,还实现了高外量子效率(EQEmax/1,000达74.5%/65.3%)。这些成果表明,通过系统的分子设计和结构优化,可以显著提升深蓝色OLED的性能,为未来高解析度显示技术的发展奠定了坚实基础。

参考文献:Hua, T., Cao, X., Miao, J. et al. Deep-blue organic light-emitting diodes for ultrahigh-definition displays. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01508-w