导读:作者成功地通过简便的化学还原合成方法开发了MnCoOx催化剂,其在乙烷燃烧中表现出超过所有报道的非贵金属催化剂的最高比表面反应速率,以及在潮湿条件下长达1000小时的优异长期稳定性。
【科学背景】
乙烷是一种代表性的非甲烷挥发性有机化合物(NMVOCs),因其对烟气排放的严格标准而成为监管审查的焦点。因此,为了减少这些有害物质的排放,迫切需要开发高效的催化剂。然而,由于低温下烷烃分子固有的强C-H键,以及天然气中含有的乙烷(1-9 mol%),使得对于催化天然气燃烧的催化剂设计提出了更高的要求。
传统上,贵金属基催化剂(如Pt或Pd)在低温下对低碳链烷烃的催化活性非常高。然而,其高成本和有限的可用性限制了其广泛应用。因此,针对这一问题,非贵金属基催化剂的研究备受关注。尤其是,过渡金属尖晶石型氧化物(AB2O4)因其在氧化反应中的出色活性和耐久性而备受关注。
然而,尽管尖晶石型氧化物具有潜在的优势,但其合成过程中常常会出现一定程度的不完整性,导致所得产物并不总是符合理想的结构。特别是在合成过程中,某些金属离子可能会与其母尖晶石颗粒分离,形成多相氧化物,其性质更为复杂。此外,多组分氧化物之间的界面也被认为是影响催化性能的重要因素,但其作用机制和影响尚未得到深入研究。
为了解决这一问题,中石化(大连)石油化工研究院有限公司研究员侯栓弟、副研究员刘世达,大连理工大学化工学院教授郭新闻教授、副教授聂小娃携手通过化学还原的方法设计了一种独特的MnCoOx催化剂结构,用于乙烷氧化反应。通过控制Mn/Co比例,形成了MnO2-MnxCo3-xO4界面的结构,从而优化了催化剂的性能。通过表征和催化性能测试,揭示了界面构造对乙烷氧化反应的重要作用机制。同时,本研究还通过原位X射线光电子能谱(XPS)分析和密度泛函理论(DFT)计算等手段,深入探讨了界面构造对催化性能的影响机制。
【科学亮点】
本文通过多种表征手段,如透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS),发现了MnCoOx催化剂中MnO2-MnxCo3-xO4界面的独特结构,从而揭示了该界面在乙烷氧化中的重要作用。针对催化活性与稳定性之间的关系,通过原位红外光谱(in situ IR)技术探究了C2H6在催化剂表面吸附的微观机制,得到了吸附位点和反应路径的清晰图像,进而挖掘了界面协同效应的本质。
在此基础上,结合气相色谱(GC)分析与催化性能测试,结果表明,Mn/Co比为0.5的催化剂展现出最佳的催化活性与长时间稳定性,着重研究了MnO2与MnxCo3-xO4之间的相互作用。这些表征手段揭示了反应过程中C-H键的活化机制,并证明了界面钴位点的关键作用。
总之,经过透射电子显微镜、X射线衍射等多种表征,深入分析了MnCoOx催化剂的微观结构和反应机制,进而制备出高效的新型催化材料,最终推动了异相催化领域的发展,为烷烃燃烧催化剂的设计提供了新的思路。
【科学图文】
图1:合成的MnCoOx催化剂的结构分析。
图2. MnCoOx-0.5催化剂对乙烷氧化的催化性能。
图3. MnCoOx催化剂的微观结构表征。
图4. MnO2-MnCO2O4界面在乙烷氧化中的作用。
图5:MnO2-MnCO2O4界面对乙烷氧化的性质。
图6: MnCoOx-0.5催化剂上乙烷氧化的机理研究。
【科学结论】
总结起来,作者成功地通过简便的化学还原合成方法开发了MnCoOx催化剂,其在乙烷燃烧中表现出超过所有报道的非贵金属催化剂的最高比表面反应速率,以及在潮湿条件下长达1000小时的优异长期稳定性。具有强氧亲和力的Mn在富氧环境中倾向于扩散到尖晶石表面形成MnO2领域。MnO2和MnxCo3-xO4之间的相互作用促使了界面位点的构建。令人惊讶的是,在建立的MnO2-MnxCo3-xO4分层界面上,Co位点表现出对乙烷的优先吸附作用;而MnO2层则显示出对其活性晶格氧的强力H抽取能力,并通过界面区域的氧化还原途径进一步进行乙烷氧化。揭示界面的重要作用提供了一种有效的策略,用于调节涉及组分的配位环境以及它们的电子转移能力。
原文详情:Wang, H., Wang, S., Liu, S. et al. RedOx-induced controllable engineering of MnO2-MnxCo3-xO4 interface to boost catalytic Oxidation of ethane. Nat Commun 15, 4118 (2024). https://doi.org/10.1038/s41467-024-48120-8
来源于:仪器信息网
热门评论
最新资讯
新闻专题
更多推荐