外泌体

仪器信息网外泌体专题为您整合外泌体相关的最新文章,在外泌体专题,您不仅可以免费浏览外泌体的资讯, 同时您还可以浏览外泌体的相关资料、解决方案,参与社区外泌体话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

外泌体相关的资讯

  • 【聚焦外泌体】之从细胞培养上清液中分离外泌体的准备
    对于外泌体研究的新手来说,细胞培养上清液是非常好的实验材料,外泌体相对容易收集。我们可以首先从细胞上清开始来熟悉整个外泌体的研究流程,充分了解整个流程需要使用的仪器、试剂以及准备时间,对我们后续的实验安排有很大帮助。其中比较重要的一点是要确定有足够的初始细胞上清液来收集外泌体,以保证我们能够拿到足够多的蛋白、核酸来进行后续分析。我们可以逆向思维,通过后续检测所需蛋白/核酸量——外泌体量——细胞上清量,来确定初始细胞上清体积。先从细胞上清开始,熟悉了整个过程后,我们再进行其他相对较难的实验材料进行研究。01细胞系选择无论贴壁细胞或是悬浮细胞,能分泌更多外泌体的细胞系肯定是优先选择的。一般说来,肿瘤细胞的外泌体分泌水平要高一些,但并不是所有肿瘤细胞系都能分泌足够多的外泌体,我们可以借鉴文献中的细胞系推荐1。以常用基因转染的HEK293为例,是比较公认的分泌外泌体水平较高的细胞系。或者,以每100ml的细胞上清收集到的外泌体蛋白可达到5~20μg范围作为标准2,例如我们可以从100ml的细胞上清中获得10μg的外泌体蛋白,如果后续要做蛋白质组学分析(需50μg蛋白),那么初始细胞上清就需要扩大到之前的5倍,500ml,500ml上清差不多是通过离心方法可处理的大样品量了。如果后面收集到的外泌体蛋白都不够进行一次WB,那就要考虑一下是不是要换个细胞系了。如果外泌体蛋白小于3μg,那么考虑到扩大体系的实验难度和后续实验的顺利进行,那证明我们用的细胞系不太合适做外泌体研究。*虽然很多生物样品或是细胞系在文献中没有出现过,许多外泌体相关的数据库(ExoCarta, Vesiclepedia, Evpedia等)可以提供帮助,在上面我们可以查到有哪些细胞系已经有人成功进行外泌体提取了。或者也可以咨询一些做外泌体的生物公司,看看他们是用哪些细胞系来制备商业化的标准外泌体样品的。02优化细胞培养条件及细胞系选择影响外泌体质量和回收率的另外一个重要因素是在收集之前细胞的培养状态。好的收集时间段是细胞状态好、生长旺盛,即处于对数期的细胞3,并且在细胞传代之前收集细胞上清,这个时候细胞所分泌的外泌体量达到高4。准备好的细胞上清液,细胞密度也要适合,贴壁细胞如果细胞密度过高会出现接触抑制,对所分泌的外泌体也会有影响。所以,理想的条件是在细胞融合达到70%~80%后的40~48h后收集外泌体(此时约融合至90%)。要注意,为了避免FBS外泌体的污染5,收集外泌体的40~48h之前需换成无血清培养基,注意此时40~48h仅作为推荐参考。像有些细胞在无血清培养基培养24h后没有发生存活率和细胞形态改变,那么可以进行上清收集。如果出现死细胞增加、细胞形状改变、状态变差等情况时,使用EV-delepted FBS培养基来代替无血清培养基,EV-delepted FBS可以直接购买也可以自己制备(使用SW 41Ti转头在4℃,35,000rpm(Rmax 210,000 ×g)离心16h后小心收集上清)。但是这样仍无法完全避免血清外泌体的污染,需要清楚样品中血清外泌体的含量,增加一组没有培养细胞的培养基的平行样品作为阴性对照是必要的。03外泌体的提取方法目前被大家认可的方法就是超速离心,因为超离的方法可以收集到完整的细胞外囊泡群,并且几乎所有的实验材料(细胞上清、血液、体液等)都可以通过超离的方法来进行外泌体提取。当然超离的方法也有需要改善的地方,比如样品量很小的情况下,超离对外泌体的回收率不高,但是超离作为一种物理分离的方法,可以在不破坏外泌体群体特性的情况下进行分离的。当前,除了超离外还有许多外泌体分离方法,每种方法都有它的优势和劣势,首先我们需要理解各种分离方法的原理和特点,再根据我们的实验需求才能找到合适的外泌体提取方法。超离方法是可以获得整个外泌体群体,适合于研究整个外泌体群体特性。Yoshioka博士:众多外泌体分离方法中,我们使用超离沉降的方法作为实验室提取外泌体的标准方法5(见下图)。这个Protocol主要包括三个步骤:1.小心收集细胞上清并低速(4℃,2,000xg,10分钟)去除悬浮细胞(死细胞)。2.用0.22μm孔径过滤器过滤上步中收集到的包含外泌体的上清液,去除大颗粒和细胞碎片。3.将上步中的滤液进行超离处理,使用贝克曼库尔特SW 41Ti水平转头、13.2ml超净离心管(Product Number:344059,Beckman Coulter),4℃下35,000rpm(Rmax 210,000xg)离心70分钟。离心过后外泌体在离心管底聚集成沉淀,通常是肉眼不可见的。然后用预先过了0.22μm孔径过滤器的PBS进行清洗,洗掉与外泌体一起沉降的成分,例如微颗粒和蛋白。小心倾倒掉第3步超离后的上清,残留少量液体进行2~3s的涡旋振荡重悬沉淀,然后加入PBS,重悬后的样品同样的条件再进行一次超离。再次超离过后的外泌体仍然需要重悬,倾倒掉上清后,再进行2~3s的涡旋振荡重悬,这时的外泌体样品就可以进行下步分析了。从离心管中转移外泌体样品到储存管(比如1.5ml微量离心管)时,在吸取时我们可以用移液枪先大概测量一下样品体积,后面在储存管中补充PBS到我们之前预估的样品体积,比如,我们想收集到100μl的外泌体样品,但是从离心管中转移到微量管中只有80μl(注意:使用13.2ml超净离心管,平均下来每次收集到的外泌体样品大概80μl),我们加20μl PBS到微量管中再混匀一下就可以保存了。外泌体样品可以在4℃保存,并且要尽量早的用于分析。另外,外泌体样品是不能反复冻融的,与细胞类似,反复冻融过程会破坏外泌体。现在大家普遍认为外泌体是具有异质性的,整个外泌体群还可以细分为亚群(例如尺寸、蛋白表达等),不同的亚群也具备不同的特性,正如前文所说,通过超离的方法可以收集完整的外泌体群体。也有些文献也报道过使用不同的离心条件,可以将尺寸大小不同的外泌体亚群分开。目前,还没有特别统一的外泌体超离提取步骤,像转头类型、离心管类型、离心力以及离心时间等离心条件在不同的文献上都会有些许的差异。04参考文献1. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]2. Valadi H et al. Nat Cell Biol. 2007 9(6): 654–6593. Beckman Coulter. Interview article: Basics and Vision of Exosome Research. 20154. Urabe F et al. Clin Transl Med. 2017 6(1): 455. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]
  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • 技术线上论坛丨3月11日《全自动外泌体荧光检测分析系统助力外泌体研究》
    [报告简介] 外泌体是一类直径约30-150 nm的细胞外囊泡,可携带RNA,DNA,蛋白质、等多种信号分子,是一种新型的细胞间信号传递的媒介。在疾病的发生、诊断和治疗中发挥着重要的作用。但是对于外泌体进行分析的手段却非常有限,尤其是在单个外泌体的表征的分析以外泌体内容物分析方面更加缺乏。美国NanoView Biosciences推出的全自动外泌体荧光检测分析系统—Exoview R200,采用了全新的SP-IRIS技术,实现了对单个外泌体的全面表征,包括了外泌体的荧光成像、亚群粒径检测、计数、内容物分析、蛋白共定位等。短短三年,在范围内已有多家实验室采用该设备,包括了著名的哈佛大学、约翰霍普金斯大学、康奈尔大学、洛杉矶儿童医院、麻省总医院、东京工业大学、尔大学、新加坡国立大学、大阪大学等,发表文献近百篇,其中不乏期刊如Cell、Nature、Journal of Extracellular Vesicles、Cancer Research、Nanoscale、ACS Nano、BMJ journal、Brain, Behavior, and Immunity、Trends in Cancer等。 2021年,Quantum Design中国子将Exoview R200引入中国,为国内科研工作者提供了多层次和全面的外泌体表征解决方案,同时也被生物通评为“2021生命科学十大创新产品”。 本次报告内容丰富,包括了目前外泌体研究过程中遇到的困难及挑战,常规的检测方法及其限制,外泌体前沿的进展及Exoview R200如何助力科研工作者取得更加突出的研究成果。Exoview R200能够帮助您实现:☛ 可对单个外泌体进行无标记和荧光成像☛ 无需纯化,避免对外泌体损伤造成检测误差☛ 一次性输出外泌体相关的亚群粒径、亚群计数、蛋白共定位、蛋白荧光强度与粒径对比分析等数据☛ 高通量检测☛ 同时对外泌体表面蛋白和内容物进行分析[直播二维码]扫描上方二维码即刻预约此次报告,无需注册![主讲人介绍]胡西,都医科大学博士,加州大学洛杉矶分校博士后,研究期间主要从事干细胞诱导和神经细胞分化及ALS相关病变研究。2018年加入Quantum Design中国子公司,任生物部应用科学家,主要负责光学成像类设备的应用技术支持工作,具有丰富的电镜、高显微镜操作和成像经验。[报告时间]开始: 2022年3月11日 10:00结束: 2022年3月11日 10:30[精选案例]▪ 研究脑脊液中的外泌体 ▪ 检测脊髓受伤后的小鼠血液中的外泌体▪ 研究肾癌细胞的乏氧检测▪ 研究改造的外泌体

外泌体相关的方案

外泌体相关的论坛

  • 外泌体综述

    [align=center][size=16px]外泌体综述[/size][/align] 外泌体是直径30-150纳米之间的细胞外囊泡,在疾病发生和进展中起着重要作用。因此,外泌体在早期诊断、靶向治疗等方面均具有很大的潜力。 外泌体生物发生及作用 外泌体的生物发生 1967年,Wolf在人血浆中首次发现一种来源于血小板膜泡的物质,并将其称之为“血小板尘埃”。之后,所有的生物体液以及体外培养的细胞上清中都被检测到含有囊泡。外泌体的生物发生涉及多种机制,这些机制有助于蛋白质和RNA等在细胞间的传递,从而生成具有源细胞特定成分的外泌体。多囊泡体(MVBs)的极限膜向内萌芽形成腔内囊泡(ILVs),等到晚期内体成熟后,MVBs可以与质膜融合,在细胞外空间中释放封闭的ILVs,被释放出去的ILVs称为外泌体。外泌体主要通过两种不同的机制释放,即跨反式高尔基网络释放和诱导释放。Rab家族蛋白,如Rab27a和Rab27b,是外泌体分泌的关键调节剂。除了Rab27a和27b外,其他Rab家族成员Rab35和Rab11也已被证明通过与GTPase激活蛋白TBC1结构域家族成员10A-C(TBC1D10A-C)相互作用来调节外泌体的分泌。研究还表明,癌症抑制蛋白p53能通过调节各种基因的转录(如TSAP6和CHMP4C)来刺激和增加外泌体分泌的速率。 外泌体的作用 外泌体是由细胞释放的纳米级囊泡,存在于不同的生物体液中,如血液、唾液和尿液。这些囊泡携带丰富的“货物”,包括蛋白质、信使RNA(mRNA)和microRNA(miRNA)。1983年,Pan在大鼠网织红细胞中首次观察到内吞囊泡的分泌。1987年,科学家Johnstone将这类囊泡定义为“外泌体”。最初,科学家认为外泌体是由细胞产生的代谢废物。然而,随着对外泌体的研究更加深入,人们逐渐抛弃这一误解。越来越多的研究表明,外泌体参与细胞间通信,是细胞微环境和旁分泌信号的重要组成部分。1998年,L.Zitvogel等人发表了一项关于树突细胞(DCcell)能产生有抗原提呈能力的外泌体的研究,阐明了外泌体含有功能性的MHC-I类II类分子和共刺激因子。2007年,H.Valadi等人的研究证实,细胞之间可以利用外泌体RNA交换遗传物质。这说明了细胞之间可以通过外泌体互相影响,甚至可以将一个细胞的基因强加到另外一个细胞上。2013年,美国科学家JamesE.Rothman、RandyW.Schekman及德国科学家ThomasC.Südhof共同获得当年诺贝尔生理医学奖,以表彰他们发现并阐明了细胞囊泡运输系统及其调控机制。来自癌细胞的外泌体已被证实可以调节癌症细胞生长、增殖、迁移过程,还能影响癌症的化疗耐药。因此,外泌体是理想的可作为非侵入性诊断和预后的生物标志物。 外泌体的分离分析方法 基于对外泌体研究的需要,科学界对外泌体的高效分离、定量和分析方法也在不断尝试和深入。由于样品基质和外泌体理化性质的复杂性,从体液中准确分离外泌体仍存在重大挑战。在过去的几十年里,研究主要使用差分和密度梯度离心、超滤和免疫分离等方法。目前,已有商业外泌体分离试剂盒投入使用。商业试剂盒通过用聚乙二醇或类似成分沉淀囊泡来减少耗时,但是存在非囊泡与外泌体一起共沉淀的弊端,外泌体的常规检测方法仍需向快速、高效、可重复和低成本的方向改进。近年来,基于研究和临床需要,越来越多的分析方法已经被用来分析外泌体。例如,酶联免疫吸附测定(ELISA)、纳米颗粒跟踪分析技术(NTA)、流式细胞术和荧光活化细胞分选(FACS)已成功开发用于外泌体定量。 蛋白质谱分析在外泌体中的应用 外泌体蛋白质组学是对外泌体中的蛋白质进行全面分析,以了解其生物学功能和疾病相关性。外泌体蛋白质组学分析涉及到外泌体的分离纯化、鉴定、数据分析等过程。蛋白质谱是外泌体蛋白质组学研究的手段之一,通过质谱可以获得蛋白质的名称、组成、表达量等信息,进而找到与疾病相关的蛋白质,探索可以用于疾病早期诊断和预后评估的生物标志物。质谱分析具有灵敏度高、通用性强、准确性高等优点,在研究中发挥了重要作用。

  • SEC分离提取外泌体

    大家好,新手科研小白,想求助大家SEC分离外泌体需要采购的仪器有哪些,暂定是用血清外泌体

  • 【原创大赛】新型外泌体分离方法

    【原创大赛】新型外泌体分离方法

    [align=center][font='times new roman'][size=18px][color=#000000]新型[/color][/size][/font][font='times new roman'][size=18px][color=#000000]外泌体分离方法[/color][/size][/font][/align][align=left][font='times new roman'][size=16px]肿瘤细胞来源的外泌体在分子水平上促进肿瘤的进展、侵袭和转移。因此,在探索细胞间信号传导,分析功能分子成分(蛋白质、[/size][/font][font='times new roman'][size=16px]mRNA[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]microRNA[/size][/font][font='times new roman'][size=16px])前需要有效的检测和分离肿瘤源性外泌体的能力,这可能为癌症诊断和预后提供关键信息。[/size][/font][/align][align=left][font='times new roman'][color=#000000]1[/color][/font][font='times new roman'][color=#000000]基于尺寸排阻的外泌体分离技术[/color][/font][/align][align=left][font='times new roman'][size=16px]外泌体是直径在[/size][/font][font='times new roman'][size=16px]30-200 nm[/size][/font][font='times new roman'][size=16px]的囊泡,其尺寸小于绝大部分的细胞外囊泡,因此,基于这一特性,可利用具有限制相对分子量或大小的过滤器来分离外泌体。目前,最常用的基于尺寸的外泌体分离技术就是超滤离心法。该方法是一种基于悬浮颗粒或聚合物大小的外泌体分离技术,小于膜孔径的物质会通过过滤膜,大于膜孔径的物质被截留在膜上。超滤法比[/size][/font][font='times new roman'][size=16px]UC[/size][/font][font='times new roman'][size=16px]速度更快,且不需要特殊的设备,已有研究表明该方法可以成功从[/size][/font][font='times new roman'][size=16px]0.5 mL[/size][/font][font='times new roman'][size=16px]尿液中分离外泌体。[/size][/font][/align][font='times new roman'][size=16px]目前已经开发了一种适合无细胞样品的商用外泌体分离试剂盒,兼具外泌体分离和[/size][/font][font='times new roman'][size=16px]RNA[/size][/font][font='times new roman'][size=16px]提取的功能。如图所示,该试剂盒利用注射过滤器双层膜结构,当样品通过两层膜时,较大的细胞外囊泡(如凋亡小体和微囊泡)被保留在上层膜上,而外泌体捕获在下层膜上。与[/size][/font][font='times new roman'][size=16px]UC[/size][/font][font='times new roman'][size=16px]和外泌体沉淀法相比,超滤法从尿液中获得的外泌体[/size][/font][font='times new roman'][size=16px]RNA[/size][/font][font='times new roman'][size=16px]产量最高。该方法的主要缺点在于分离的外泌体容易堵塞过滤膜,导致分离效率下降。此外,该方法可能会导致囊泡的变形和破裂,影响下游分析的结果。[/size][/font][font='times new roman'][size=16px]另一种基于尺寸的外泌体分离方法是尺寸排除色谱法[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]SEC[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]。该方法利用多孔固定相将悬浮颗粒和聚合物按照大小进行分类[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]流体动力半径小的物质能够通过孔隙,而流体动力半径较大的物质会被截留在孔隙上。[/size][/font][font='times new roman'][size=16px]此外,[/size][/font][font='times new roman'][size=16px]该方法结合其他方法使用可取得更好的效果[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]例如,与单纯的超滤法或[/size][/font][font='times new roman'][size=16px]UC[/size][/font][font='times new roman'][size=16px]相比,该方法分离的外泌体[/size][/font][font='times new roman'][size=16px]结合[/size][/font][font='times new roman'][size=16px]后续超速离心可以[/size][/font][font='times new roman'][size=16px]提高[/size][/font][font='times new roman'][size=16px]尿外泌体[/size][/font][font='times new roman'][size=16px]的捕获效率[/size][/font][font='times new roman'][size=16px],从而有利于寻找肾脏疾病生物标志物。该方法分离外泌体[/size][/font][font='times new roman'][size=16px]主要[/size][/font][font='times new roman'][size=16px]缺点在于干扰物多[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]孔隙极易堵塞,导致色谱柱重复率低,分离效率较低。[/size][/font][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108012209419773_3887_5111497_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']1-3[/font][font='times new roman'] [/font][font='times new roman']连续过滤原理图[/font][font='times new roman'][size=13px][68][/size][/font][/align][align=center][font='times new roman']Figure [/font][font='times new roman']1-[/font][font='times new roman']3[/font][font='times new roman'] [/font][font='times new roman']Schematic illustration of sequential filtration[/font][font='times new roman'][size=13px][68][/size][/font][/align][align=center][/align][font='times new roman'][color=#000000]2[/color][/font][font='times new roman'][color=#000000]基于聚合物沉淀的分离技术[/color][/font][font='times new roman'][size=16px]聚合物沉淀[/size][/font][font='times new roman'][size=16px]技术是通过添加水性聚合物使外泌体溶解度或分散性改变,减少外泌体的水合作用,使外泌体沉淀以达到分离的技术。通常使用分子量为[/size][/font][font='times new roman'][size=16px]8000 Da[/size][/font][font='times new roman'][size=16px]的聚乙二醇([/size][/font][font='times new roman'][size=16px]PEG[/size][/font][font='times new roman'][size=16px])与样品共孵育,[/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px]℃过夜后,用低速离心或过滤法分离含有外泌体的沉淀物。目前,已开发了一系列聚合物沉淀试剂盒可用于体液和培养基中外泌体的分离。聚合物沉淀分离外泌体的方法易于使用、回收率高,且不需要专门的设备。该方法的主要缺点在于容易引入蛋白质和聚合物材料等其他污染物,使得提取的外泌体纯度较低。[/size][/font][font='times new roman'][size=14px][color=#000000]3[/color][/size][/font][font='times new roman'][size=14px][color=#000000] [/color][/size][/font][font='times new roman'][size=14px][color=#000000]基于免疫亲和的分离技术[/color][/size][/font][font='times new roman'][size=16px]外泌体磷脂双层膜中含有丰富的蛋白质和受体,如[/size][/font][font='times new roman'][size=16px]CD81[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]CD63[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]TSG101[/size][/font][font='times new roman'][size=16px]、上皮细胞粘附分子等,利用这些受体与配体之间的相互作用,使外泌体与特殊设计的磁性颗粒之间建立免疫亲和作用,可用于外泌体的分离富集。例如,[/size][/font][font='times new roman'][size=16px]Zarovni[/size][/font][font='times new roman'][size=16px]等报道了一种基于微孔板的酶联免疫吸附试验([/size][/font][font='times new roman'][size=16px]ELISA[/size][/font][font='times new roman'][size=16px])用于捕获和定量检测外泌体。尽管与[/size][/font][font='times new roman'][size=16px]UC[/size][/font][font='times new roman'][size=16px]产量相当,但是该方法具有快速、易于使用和与常规设备兼容的优势。该报道继续开发了一种基于磁免疫捕获的外泌体分离试剂盒用于从细胞培养基和生物液中分离外泌体,其质量和纯度均优于其他技术。此外,这种方法对样品的初始体积没有要求,可以很容易地缩小或增大样品容量。而该技术主要缺点在于缺乏最佳的外泌体标志物。此外,随着肿瘤的进展,肿瘤抗原表达和调节的异质性可能导致低估和假阴性,并且有些抗原表位可能被阻断或掩蔽。[/size][/font]

外泌体相关的资料

外泌体相关的仪器

  • I、外泌体提取样本:全血,血浆;细胞上清液;体液:尿液、心包积液、唾液、脑脊液、腹水等。用于分离外泌体类型及所需量:血清样本: 5ml (全血10ml);血浆样本: 5ml (全血 8-10ml);无血清培养细胞上清:50ml;体液: 20ml;运输条件:客户邮寄标本要用干冰运输,提前跟公司销售联系并告知快递单号。分离方法试剂盒法超高速离心法 II、外泌体透射电镜检测实物数据信息实验周期客户提供样本及提取试剂盒6周我们提供分离后的外泌体外泌体鉴定或测序结果注:透射电镜结果与外泌体样品、提取方法,来源等密切相关,有一定失败风险 III、外泌体纳米流式浓度粒径检测 粒径技术原理: 当待测样品的折射率与二氧化硅颗粒的折射率相同或相似时适用。利用二氧化硅标准球建立散射光强度与颗粒粒径的标准工作曲线,即可将相同条件下待测样品的散射强度转化为粒径,获得待测样品的粒径分布。浓度检测原理: 通过检测已标定浓度的荧光微球的个数快速得到特定进样压力(Sampling 压力为1.5kPa)的样品流体积流量,在相同进样压力条件下检测待测样品,即可获得待测样品的颗粒浓度。技术优势:精确检测外泌体颗粒浓度及粒径分布范围;检测消耗样本量低;快速。实物数据信息实验周期 客户提供外泌体PBS重悬液原液或稀释液6周 我们提供所需试剂中文实验流程与结果报告(每个样本提供不少于5张电镜原始照片)送样要求 1. 可测量粒径范围10~1000 nm(不同细胞分泌的外泌体粒径不同);所需外泌体悬液送样量为1~2 mL 体积(至少1 mL 体积,可以采用经过滤后的PBS 进行稀释)2. 送样时,样品须一直处于低温环境中(干冰条件下运输,避免反复冻融)3. 送样前须告知溶剂的具体情况;默认溶剂为水,也可使用其他非腐蚀性液体作为溶剂,但折射率需与水接近(1.3~1.5),如油不可作为溶剂结果展示 实物数据信息 实验周期客户提供外泌体PBS重悬液原液或稀释液6周 我们提供所需试剂 中文实验流程与结果、报告原始数据(.txt 及.eps)
    留言咨询
  • 什么是外泌体 外泌体 (3 0-1 5 0 nm) 是由活细胞经“内吞-融合-外排”等过程形成的细胞外囊泡;外泌体具有脂质双层膜结构,携带与细胞来源相关的蛋白质、酯类、核酸等多种生物信息;外泌体在药物输送、疾病治疗和诊断方面已展现出重要的临床价值和广泛的应用潜力; 自动化且高效稳定的外泌体富集纯化,是外泌体在科研与临床转化中的关键环节。 EXODUS 纯化原理 全自动外泌体提取系统(EXODUS),基本原理为负压振荡系统(NPO)结合双耦合谐波振荡系统(HO)作用于纳米超滤芯片,将样本中的游离核酸与蛋白等杂质通过芯片快速分离,从而纯化富集外泌体。 经简单离心过滤预处理后,将样本和芯片放入机器,程序运行完成即可得到高纯度外泌体,最快可在10分钟内完成,杂蛋白去除率99%,外泌体回收率90%。 EXODUS解决了外泌体应用于肿瘤早筛与治疗过程中的提纯富集难题,具有操作简便、自动化、耗时短、无需添加有机试剂等特点;同时纯化产物纯度高、产率高、重现性高、成本低,保证了外泌体纯化性能要求和实用性。 EXODUS 技术优势 纯产兼得 纯度高、产量高,杂蛋白去除率99%,回收率90% 高速泌集 最快纯化时间10min,最高纯化速度100 mL/h ,无需浓缩和孵育 以少见大 更少样本更高产量,可支持微量、低浓度、稀有样本 智能便捷智能匹配各类样本纯化程序,操作简单、轻易上手,产出稳定 完泌归赵不引入外源杂质,外泌体形态完整、生物活性高,下游应用广 应用范围尿液外泌体遗传物质溯源及肿瘤标记物筛选EXODUS 分离血浆样本及蛋白代谢组学研究EXODUS 分离脑脊液样本及蛋白组学研究EXODUS 分离食管癌血浆样本及代谢标志物筛选EXODUS 分离泪液样本及蛋白和基因组学研究
    留言咨询
  • 产品介绍EXODUS 是一款自动化、非标记且高效的外泌体提取系统。可以快速的从各种生物样本中分离出高纯度、高产量、高生物活性的外泌体,能够解决外泌体应用于疾病早筛与治疗过程中的富集、纯化难题;并且操作步骤简单、轻易上手、产出稳定。EXODUS分离纯化后的外泌体可广泛用于蛋白组学、基因组学、代谢组学、体内体外功能试验、载药与治疗等领域。纯化原理EXODUS 是一种基于超声纳滤的新型外泌体分离技术。其基本的原理就是,负压振荡系统(NPO)结合双耦合谐波振荡系统(HO)作用于纳米超滤芯片 样本中的游离核酸与蛋白等杂质通过纳米孔快速去除并截留外泌体,从而纯化富集外泌体。技术优势丰富的样本类型EXODUS 文献报道
    留言咨询

外泌体相关的耗材

  • 华龛生物 细胞外泌体
    外泌体(Exosomes)是细胞外囊泡的一种,粒径大小在 30-150nm。目前主要应用于疾病治疗、药物载体、疾病诊断等。• 华龛生物生产的3D ExoTrix细胞外泌体产品在3D仿生培养环境中获得,质量高,产量大• 采用自动化、规模化、标准化的3D FloTrix® 干细胞大规模扩增培养工艺实现封闭式培养、自动化收集,单批次可实现1013个外泌体收获,同时避免了人工操作增加染菌风险• 外泌体高表达TSG101、CD81和CD63,电镜结果显示外泌体结构完整,为经典外泌体结构
  • 华龛生物 细胞外泌体
    外泌体(Exosomes)是细胞外囊泡的一种,粒径大小在 30-150nm。目前主要应用于疾病治疗、药物载体、疾病诊断等。• 华龛生物生产的3D ExoTrix细胞外泌体产品在3D仿生培养环境中获得,质量高,产量大• 采用自动化、规模化、标准化的3D FloTrix® 干细胞大规模扩增培养工艺实现封闭式培养、自动化收集,单批次可实现1013个外泌体收获,同时避免了人工操作增加染菌风险• 外泌体高表达TSG101、CD81和CD63,电镜结果显示外泌体结构完整,为经典外泌体结构
  • ExoView外泌体全面表征试剂盒—外泌体检测服务
    ExoView外泌体全面表征试剂盒外泌体计数、粒径、蛋白表达、蛋白共定位一次完成 检测样本类型对细胞培养上清、血浆、血清、尿液、脑脊液、唾液等生物样本中的外泌体直接进行分析捕获抗体种类anti-CD81, anti-CD9, anti-CD63, 同型IgG对照;可自定义单次上样体积35 μl稀释样本重复检测数目3复孔荧光抗体种类CD9(Blue)/ CD81(Green)/ CD63(Red) 实验原理① 35 μL外泌体样品滴加在芯片上孵育;② 预先包被的抗体特异结合外泌体表面蛋白以捕获外泌体;③ 再使用荧光抗体特异性标记需要表征的标记物; ④ 后用ExoView R100检测外泌体粒径、计数、蛋白表达(CD9,CD81,CD63等)及共定位。检测流程产品类别产品货号产品名称EV-TETRA-C人外泌体检测试剂盒EV-TETRA-P人血浆外泌体检测试剂盒EV-TETRA-M2鼠外泌体检测试剂盒EV-TETRA-C-CAR人外泌体内容物检测试剂盒EV-TETRA-P-CAR人血浆外泌体内容物检测试剂盒EV-TC-FLEX自由捕获人外泌体检测试剂盒EV-TP-FLEX自由捕获人血浆外泌体检测试剂盒EV-TC-FLEX-CAR自由捕获人外泌体内容物检测试剂盒EV-TP-FLEX-CAR自由捕获人血浆外泌体内容物检测试剂盒EV-TM-FLEX自由捕获鼠外泌体检测试剂盒EV-TM-FLEX-CAR自由捕获鼠外泌体内容物检测试剂盒EV-FLEX-2自由捕获外泌体检测试剂盒EV-FLEX-2 -CAR自由捕获外泌体内容物检测试剂盒EV-CTETRA-1/2/3人外泌体检测试剂盒+1/2/3个自定义捕获抗体EV-CTETRA-1/2/3-CAR人外泌体内容物检测试剂盒+1/2/3个自定义捕获抗体EV-CUST-1/2/3/4/5/6自定义1/2/3/4/5/6抗体捕获外泌体检测试剂盒EV-CUST-1/2/3/4/5/6-CAR自定义1/2/3/4/5/6抗体捕获外泌体内容物检测试剂盒试剂盒特点特异性捕获芯片上可包被多达6种捕获抗体,特异性捕获含特定蛋白标记物的外泌体。阳性外泌体计数芯片捕获外泌体后,可通过SP-IRIS技术直接检测样品中外泌体的数量。 单个外泌体蛋白共定位分析检测每个外泌体的荧光信号并进行统计,可获得荧光共定位信息,用于分析样品中不同表型外泌体的比例(如右图所示)。 无需纯化使用抗体捕获模式,防止样品中杂质影响结果,可直接检测血液、尿液和细胞培养液中的外泌体,未纯化样品的测量结果与纯化后基本一致(如右图所示)。粒径分辨率高 高精度SP-IRIS技术,可检测≥50 nm的外泌体,测量结果与电子显微镜检测结果基本一致,并统计生成外泌体的粒径分布结果(如右图所示)。可检测外泌体内容物 试剂盒配套相应的穿膜剂,可穿透外泌体并对外泌体内容物进行染色并检测,未穿膜时只能检测到跨膜蛋白CD9的荧光信号,穿膜后即可检测到外泌体内容物Syntenin的表达(如右图所示)。测试数据外泌体荧光数量统计 外泌体粒径检测荧光强度与粒径关系 荧光共定位分析 发表文章• Andras Saftics.(2021) Data evaluation for surface-sensitive label-free methods to obtain real-time kinetic and structural information of thin films: A practical review with related software packages. Advances in Colloid and Interface Science. • Kyoung-Won Ko.(2021) Integrated Bioactive Scaffold with Polydeoxyribonucleotide and Stem-Cell-Derived Extracellular Vesicles for Kidney Regeneration. ACS Nano. • Tanina Arab. (2021) Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single‐particle analysis platforms. Journal of Extracellular Vesicles. • Niaz Z.Khan.(2021) Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. Brain, Behavior, and Immunity. • Dario Brambilla. (2021) EV Separation: Release of Intact Extracellular Vesicles Immunocaptured on Magnetic Particles. Analytical Chemistry. • Enkhtuya Radna. (2021) Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. Lab on a Chip. • Li, M., Soder. (2021) WJMSC‐derived small extracellular vesicle enhance T cell suppression through PD‐L1. Journal of Extracellular Vesicles. • Crescitelli, R. (2021) Isolation and characterization of extracellular vesicle subpopulations from tissues. Nature protocols. • Berger, A. (2021). Local administration of stem cell-derived extracellular vesicles in a thermoresponsivehydrogel promotes a pro-healing effect in a rat model of colo-cutaneous post-surgical fistula. Nanoscale. • Vidal, M. (2020) Exosomes and GPI-anchored proteins: Judicious pairs for investigating biomarkers from body fluids. Advanced drug delivery reviews. • K Cho, H Kook.(2020)Study of immune-tolerized cell lines and extracellular vesicles inductive environment promoting continuous expression and secretion of HLA-G from semiallograft immune tolerance during pregnancy. Journal of Extracellular Vesicles. • Maximillian A. Rogers.(2020)Annexin A1–dependent tethering promotes extracellular vesicle aggregation revealed with single–extracellular vesicle analysis. Cell Biology. • Annette M. Marleau.(2020)Targeting tumor-derived exosomes using a lectin affinity hemofiltration device. Cancer Research. • Alessandro Gori.(2020)Membrane-Binding Peptides for Extracellular Vesicles On-Chip Analysis. Journal of Extracellular Vesicles. • Rossella Crescitelli.(2020)Subpopulations of extracellular vesicles from humanmetastatic melanoma tissue identified by quantitative proteomics after optimized isolation. Journal of Extracellular Vesicles. • Maria S. Panagopoulou.(2020) Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. Journal of Extracellular Vesicles.• WeiYan.(2020) Immune Cell-Derived Exosomes in the Cancer-Immunity Cycle. Trends in Cancer. • Daniel Bachurski. (2019) Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell.用户单位 外泌体检测流程:仅需7步实现外泌体快速检测

外泌体相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制