单自旋

仪器信息网单自旋专题为您整合单自旋相关的最新文章,在单自旋专题,您不仅可以免费浏览单自旋的资讯, 同时您还可以浏览单自旋的相关资料、解决方案,参与社区单自旋话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

单自旋相关的资讯

  • 国仪量子发布钻石单自旋量子精密测量谱仪新品
    量子钻石单自旋谱仪是一台以NV色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。带有负电的NV色心具有优良的量子特性。当施加532nm的绿色激光,电子从基态跃迁到激发态,从激发态衰减到基态的过程中,会发出红色荧光。ms=0态的荧光强度比较强,而ms=±1态发出的荧光比较弱,可以通过荧光强度区分自旋状态。量子钻石单自旋谱仪具有超高灵敏度与纳米级超高分辨率,能在室温大气条件下运行,可以完成单分子、单细胞的微观磁共振谱学和成像。该谱仪具备高保真度量子自旋态调控技术,通过自主研发的50ps时间精度脉冲发生器以及宽带高功率微波调制器件,能够实现对自旋低噪声、高效、快速的量子相干操控。与谱仪配套的高智能化控制与信号采集软件,能够实现自动光路调节、自动磁场调节以及长时间的无人值守自动测样实验,是科研实验的好搭档。公司同时具有完善的高品质金刚石探针制备工艺,可以自主制备长相干时间、高稳定度的金刚石探针。产品参数:产品特点:实现单自旋灵敏度,纳米级分辨率的磁共振谱学方法;50皮秒时间精度,超高谱线分辨率,高保真度量子自旋态操控;智能化仪器控制和信号采集;完善的金刚石探针制备技术;可进行长时间无人值守实验。欢迎下载样本了解更多产品详情。 创新点:量子钻石单自旋谱仪是一台以NV色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV色心)发光缺陷的自旋进行量子操控与读出,其具有超高灵敏度与纳米级超高分辨率,可以完成单分子、单细胞的微观磁共振谱学和成像,可在室温大气条件运行,对于生物样品具有良好的兼容性。与传统顺磁共振、核磁共振相比,具有初态是量子纯态,自旋量子相干时间长,量子操控能力强大,量子塌缩测量实验结果直观等独特优势。 带有负电的NV色心具有优良的量子特性。当施加532nm的绿色激光,电子从基态跃迁到激发态。从激发态衰减到基态的过程中,会发出红色荧光。ms=0态的荧光强度比较强,而ms=± 1态发出的荧光比较弱,可以通过荧光强度区分自旋状态。 钻石单自旋量子精密测量谱仪
  • 量子钻石单自旋谱仪技术及应用综述
    p style=" text-align: justify " span style=" text-align: center "   单量子态的探测 /span span style=" text-align: center " 与 /span span style=" text-align: center " 调控 /span span style=" text-align: center " 及分子尺度的成像技术是精密谱学仪器发展的重要方向。随着对磁探测技术的深入探索,国仪量子公司生产研发的量子钻石单自旋谱仪,基于掺杂金刚石中的氮-空位体系的谱学技术,具有超高的磁探测本领,在物理、化学、生物、材料、医学等不同的学科具有广泛而重要的应用前景 /span sup style=" text-align: center " [1-11] /sup span style=" text-align: center " 。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 355px " src=" https://img1.17img.cn/17img/images/201911/uepic/725600d0-5eee-420d-a2d4-fb3d0cc6a79e.jpg" title=" 微信图片_20191128151302.png" alt=" 微信图片_20191128151302.png" width=" 500" height=" 355" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 各种测磁技术的指标对比 /strong /p p style=" text-align: justify "   自旋磁共振技术是目前为止发展最为成熟、应用最广泛的传统技术之一。磁探测相关谱仪具有悠久的发展历史,而实现磁共振探测也具有不同的方法,并且有各自的优缺点。图1直观的展示了霍尔传感器、SQUID探测器和自旋磁共振等几种通用技术手段在灵敏度和分辨率上的分布 sup [12] /sup ,相较传统的测磁技术,基于金刚石的磁共振方法在这两个核心指标上都有较大的提升,这为我们研发量子钻石单自旋谱仪提供了有力参考。 /p p style=" text-align: justify "   20世纪50年代,霍尔传感器已经在实验室磁场测量中普遍使用,这类探测器是基于霍尔效应对外界磁场直接测量 sup [13] /sup 。当磁场方向与回路中电流方向不同时,由于洛伦兹力的作用,导体内的电子发生偏转而产生电势差,通过电势差来直接测量磁场大小。磁场探头主要有由半导体晶体组成,能够被制成单片集成电路,抗震性好,易于使用,但是精度不够。 /p p style=" text-align: justify "   超导量子干涉仪(SQUID)是基于约瑟夫森结的磁通传感器 sup [14] /sup ,利用约瑟夫森结两端的电压随闭合环路中外界磁通量的变化,可以测量微弱的磁信号。20世纪60年代,Robert 等人研制成功了SQUID。此类测磁技术磁探测灵敏度较高,但是仪器需要在低温环境下工作,且价格昂贵。 /p p style=" text-align: justify "   基于钻石体系的微观磁探测是新兴的磁共振探测方法。该技术结合了光探测磁共振技术(ODMR)和金刚石中氮-空位(NV)色心的点缺陷,其工作原理是将NV色心制备成量子干涉仪,利用双共振技术实现高灵敏高空间分辨的磁信号探测。这种技术不需要低温及高真空极端化学条件下就可以正常工作,相比前面几种测磁技术,其具有更高的商业应用价值。 /p p style=" text-align: justify "   对磁场进行高分辨率、高灵敏度的测量在工程技术领域有着重要的价值。当前已有的探测手段已经不能满足微观磁共振对高分辨率、高灵敏度技术发展的需要,例如在微观尺度的成像方面,原子力显微镜(AFM)和扫描隧道显微镜(STM)等技术空间分辨率和探针尺寸相当,因此,要实现高空间分辨率,单原子是最佳的选择,而利用量子干涉仪,将弱磁信号转化成相位,可以实现高灵敏度的磁信号探测。 /p p style=" text-align: justify "   根据文献报道,NV色心单自旋体系空间分辨率可达5 nm以下 sup [15] /sup ,测磁灵敏度最高能达到 img src=" https://img1.17img.cn/17img/images/201911/uepic/b52f8ecb-6013-43a0-8446-a5fe7839d92e.jpg" title=" 微信图片_20191128144820.png" alt=" 微信图片_20191128144820.png" width=" 66" height=" 24" border=" 0" vspace=" 0" style=" text-align: center max-width: 100% max-height: 100% width: 66px height: 24px " / sup style=" text-align: center " [16] /sup span style=" text-align: center " ,这使得NV色心体系成为高分辨磁探测的有力候选者。由于金刚石NV色心室温下相干时间可以长达ms量级,可以被定位至小于10 nm的精度,电子自旋对外界磁场非常灵敏,以及NV色心与样品之间距离可以小于5nm等优点,因此,NV色心可以做成一种非常强大的单量子传感器。 /span /p p style=" text-align: justify "   NV色心具有多电子态能级结构 sup [17] /sup ,处于激发态能级的NV色心有两个竞争的退激发路径:自发辐射跃迁回到基态及系间穿越弛豫到基态。而这两条反应路径的发生概率取决于NV色心基态的自旋状态,因此可以通过收集荧光信号读出自旋态m sub s /sub = 0的概率,并且通过光共振激发能够对NV色心进行初始化。更为重要的是,当电子自旋处在叠加态时,在外界磁场下的动力学演化会积累相对相位,如此便将收集的荧光信号和磁场大小关联起来。 /p p style=" text-align: justify "   2008年,Lukin研究组和Wrachtrup研究组几乎同时发现了NV色心具有优良的磁场感应能力,提出NV色心体系可用于高分辨率高灵敏度的磁测量 sup [18-19] /sup 。2012年,Wrachtrup 等人实验验证了单核自旋探测的原理性 sup [20] /sup 。2013年,文献报道了利用金刚石NV色心作为探针对有机样品质子探测,实现了5 nm的微观核磁共振 sup [21] /sup 。因此,金刚石NV色心单自旋体系在传感和探测的应用逐渐发展来,作为磁探测史上的新兴技术具有现实可行性,研制相关的谱学仪器迫在眉睫。 /p p style=" text-align: justify " img style=" max-width: 100% max-height: 100% width: 600px height: 396px " src=" https://img1.17img.cn/17img/images/201911/uepic/55ebdb4f-651f-44ed-8124-c24c35fa1570.jpg" title=" 微信图片_20191128143746.png" alt=" 微信图片_20191128143746.png" width=" 600" height=" 396" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图2 商业化仪器现状 /strong /p p style=" text-align: justify "   图2所示,市场上全球领先的技术公司,像布鲁克、西门子、飞利浦等研发生产的相关磁共振产品均基于传统磁共振技术,例如NMR(核磁共振)、EPR(电子顺磁共振)、MRI (核共振成像)等磁共振谱仪。然而,基于钻石NV单自旋体系为原理的磁共振谱仪,市场上还未有商业化仪器出现。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 292px " src=" https://img1.17img.cn/17img/images/201911/uepic/b08c92c0-2b61-46eb-a956-fa8a45c29f38.jpg" title=" 微信图片_20191128153605.png" alt=" 微信图片_20191128153605.png" width=" 400" height=" 292" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 量子钻石单自旋谱仪实物图 /strong /p p style=" text-align: justify "   目前,国仪量子已掌握基于NV体系的核心技术,并具备成熟的制造工艺,成功研制了量子钻石单自旋谱仪,谱仪实物图外貌如图3所示。该谱仪通过控制光、电、磁等基本物理量,利用ODMR技术实现对钻石中氮—空位(NV色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,谱仪具有以下特点: /p p style=" text-align: justify "   1. 初态是量子纯态,易于初始化、操控和读出 NV色心的基电子自旋态可以通过光跃迁进行量子态的初始化和读出,利用微波进行量子态的操控。 /p p style=" text-align: justify "   2. 自旋量子相干时间长,长相干时间能够保证较长的相干操控及光信号积累。 /p p style=" text-align: justify "   3. 超高灵敏度与超高分辨率 由于NV色心的光学性质及其电子波函数特性,制备的单量子干涉仪测量磁场灵敏度可达10 sup -9 /sup T量级,NV色心系综甚至达到了10 sup -13 /sup T量级,其磁场测量空间分辨率可达到亚纳米。 /p p style=" text-align: justify "   4. 可以在室温大气条件下运行,对于生物样品有良好的兼容性。 /p p style=" text-align: justify "   5. 具备高保真度量子自旋态调控技术,通过自主研发的50 ps时间精度脉冲发生器以及宽带高功率微波调制器件,能够实现对自旋低噪声、高效、快速的量子相干操控。图4为装置拓扑图,谱仪配套了高智能化控制与信号采集软件,能够实现自动光路调节、自动磁场调节以及长时间的无人值守自动测样实验。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 321px " src=" https://img1.17img.cn/17img/images/201911/uepic/6186f9ed-0f30-44b0-94bc-2c7f5e4d919d.jpg" title=" 微信图片_20191128143903.png" alt=" 微信图片_20191128143903.png" width=" 500" height=" 321" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 仪器系统架构示意图 /strong /p p style=" text-align: justify "   国仪量子研发团队同时具有完善的高品质金刚石探针制备工艺,可以自主制备长相干时间、高稳定度的金刚石探针,能够达到比同类产品更高的技术指标。 /p p style=" text-align: justify "   基于以上NV固态体系的各种优势,此技术已在量子计算、磁探测、电探测及生物探测有较为成熟的应用。在量子计算领域,NV色心可以作为非常好的量子信息存储和调控的室温固体单自旋材料 sup [1-5] /sup 。例如利用NV色心体系,演示了D-J算法,大数分解算法等,为计算效率的提高带来极大帮助。在精密测量领域,基于金刚石氮-空位色心的精密测量技术,能够实现对电场、磁场、温度、应力等物理量的精密测量,并且赋能于科研、教育、能源、安全、健康、工业等各行各业。例如在生物医学领域,对活体细胞磁场 sup [6] /sup 、温度探测 sup [7] /sup ,以及对神经单元电位探测 sup [8] /sup 等 在材料科学领域,利用ODMR技术实现对不同材料光学性质和几何结构的研究 sup [9-11] /sup 。 /p p style=" text-align: justify "   金刚石NV色心为核心的量子钻石单自旋谱仪在磁探测领域崭露头角,满足未来磁共振成像对高分辨率高灵敏度的商业化需求。随着微纳加工技术的发展、谱仪性能的进一步提升,越来越多学科交叉领域的相关应用得到深入挖掘。相信不久的未来NV色心的量子精密测量技术将在国内外得到大范围的推广,前景令人期待。 /p p strong   参考文献: /strong /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [1] Rong, X., J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong, Z. Jiang, Y. Wu and J. Du (2015). & quot Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions.& quot Nature Communications 6. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [2] Waldherr, Gerald, et al. & quot Quantum error correction in a solid-state hybrid spin register.& quot Nature 506.7487 (2014): 204. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [3] Xu, Kebiao, et al. & quot Experimental adiabatic quantum factorization under ambient conditions based on a solid-state single spin system.& quot Physical review letters 118.13 (2017): 130504. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [4] Lai, Y.-Y., G.-D. Lin, J. Twamley and H.-S. Goan (2018). & quot Single-nitrogen-vacancy-center quantum memory for a superconducting flux qubit mediated by a ferromagnet.& quot Physical Review A 97(5). /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [5] Jelezko F, Wrachtrup J. 2006. Single defect centres in diamond: a review. Phys. Stat. Solidus A 203: 3207 – 25. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [6] Le Sage, David, et al. & quot Optical magnetic imaging of living cells.& quot Nature 496.7446 (2013): 486. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [7] Kucsko, Georg, et al. & quot Nanometre-scale thermometry in a living cell.& quot Nature 500.7460 (2013): 54. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [8] Barry, John F., et al. & quot Optical magnetic detection of single-neuron action potentials using quantum defects in diamond.& quot Proceedings of the National Academy of Sciences 113.49 (2016): 14133-14138. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [9] Chen, W. M. M. (2000). & quot Applications of optically detected magnetic resonance in semiconductor layered structures.& quot Thin Solid Films 364(1-2): 45-52. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [10] Koehl, W. F., B. Diler, S. J. Whiteley, A. Bourassa, N. T. Son, E. Janzen and D. D. Awschalom (2017). & quot Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN.& quot Physical Review B 95(3): 8. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [11] Soltamov, V. A., I. V. Ilyin, A. S. Gurin, D. O. Tolmachev, N. G. Romanov, E. N. Mokhov, G. V. Mamin, S. B. Orlinskii and P. G. Baranov (2013). EPR and ODMR defect control in AlN bulk crystals. Physica Status Solidi C: Current Topics in Solid State Physics, Vol 10, No 3. A. Toropov and S. Ivanov. 10: 449-452. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [12] Degen, C., NANOSCALE MAGNETOMETRY Microscopy with single spins. Nat. Nanotechnol. 2008, 3 (11), 643-644. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [13] E.H.Hall.On a New Action of the Magnet on Electric Currents.American Journal of Mathematics 2, 287-292(1879). /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [14] Drung, D. Assmann, C. Beyer, J. Kirste, A. Peters, M. Ruede, F. Schurig, T., Highly sensitive and easy-to-use SQUID sensors. Ieee Transactions on Applied Superconductivity 2007, 17 (2), 699-704. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [15] Staudacher, T., et al. (2013). & quot Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)(3) Sample Volume.& quot Science 339(6119): 561-563. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [16] Balasubramanian, S., et al. (2009). & quot Non Cell-Autonomous Reprogramming of Adult Ocular Progenitors: Generation of Pluripotent Stem Cells Without Exogenous Transcription Factors.& quot Stem Cells 27(12): 3053-3062. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [17] Peng, S. Liu, Y. Ma, W. Shi, F. Du, J., High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica 2018, 67 (16). /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [18] Maze, J. R., et al. (2008). & quot Nanoscale magnetic sensing with an individual electronic spin in diamond.& quot Nature 455(7213): 644-U641. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [19] Bentley, D. R., et al. (2008). & quot Accurate whole human genome sequencing using reversible terminator chemistry.& quot Nature 456(7218): 53-59. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [20] Zhao, N., et al. (2012). & quot Sensing single remote nuclear spins.& quot Nature Nanotechnology 7(10): 657-662. /span /p p style=" margin-top: 5px margin-bottom: 5px text-align: justify " span style=" font-size: 12px "   [21] Mamin, H. J., et al. (2013). & quot Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor.& quot Science 339(6119): 557-560. /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong   作者简介: /strong /span /p p style=" text-align:center" img style=" width: 100px height: 133px " src=" https://img1.17img.cn/17img/images/201911/uepic/1bc7d763-9bef-4484-b840-d649880705b1.jpg" title=" 梁昊.jpg" alt=" 梁昊.jpg" width=" 100" height=" 133" border=" 0" vspace=" 0" / /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   梁昊,安徽合肥人,博士毕业于中国科学技术大学。 br/ /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   现于国仪量子(合肥)技术有限公司担任市场部应用工程师一职,负责量子钻石单自旋谱仪 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 的应用及开发。 /span /p p br/ /p
  • 国家重大科研仪器研制项目“多波段脉冲单自旋磁共振谱仪研制”结题验收
    p style=" text-indent: 2em " 近日,中国科学技术大学承担的国家重大仪器研制项目(部门推荐) “多波段脉冲单自旋磁共振谱仪研制”结题验收会在合肥召开。国家自然科学基金委员会(以下简称“基金委”)相关负责人、中科院条件保障与财务局相关负责人、项目验收专家组、项目监理组、技术验收组、财务验收组、档案验收组、中国科学技术大学相关负责人、项目组全体成员等50余人参加了验收会。验收会由基金委数理学部副主任董国轩主持。 /p p style=" text-indent: 2em " 项目验收专家组由14位专家组成,北京航空航天大学房建成院士和中科院微电子所刘明院士分别担任验收专家组组长和副组长。专家组首先听取了项目负责人、中国科学技术大学杜江峰院士关于“多波段脉冲单自旋磁共振谱仪研制”项目研制情况的报告。杜江峰院士带领项目组历时5年时间,实现了国际上首套多波段脉冲单自旋磁共振谱仪,包括多波段复合磁共振系统、微波与射频系统、光学共聚焦系统以及控制台系统等关键系统。该谱仪实现了单核自旋量子态的探测,能够直接测量原子尺度上单个物质单元的组成、结构及动力学性质,获取被系综统计平均掩盖的个体单元独特信息,在单量子水平上更本质理解物质的结构与性质,因此在物理、信息、生物等多学科前沿领域获得重要应用。项目执行期间,采取“边研制边科研”的思路,取得了一系列重要研究成果,譬如在室温大气条件下获得了世界上首张单蛋白质分子的磁共振谱,被《科学》杂志选为当期亮点并配以专文报道,被评价为“是通往活体细胞中单蛋白质分子实时成像的里程碑”。项目组发表SCI论文67篇,其中包括Science 2篇,Nature 1篇、Nature子刊8篇和PRL15篇。相关科研进展获得2015年中国分析测试协会科学技术奖特等奖和2015年度中国科学十大进展。通过该项目,中国科学技术大学形成了一支年轻有活力的磁共振科学仪器研制团队。 /p p style=" text-indent: 2em " 验收专家组还听取了监理组报告、技术测试验收报告、财务验收报告、档案验收报告,其中项目技术测试、财务验收、档案验收是5月10日由基金委组织专家先期完成的。随后,验收专家组和基金委相关领导一起现场考察了仪器设备运行情况。专家组对项目研制工作给予了高度评价,一致认为项目组全面完成了项目工作,取得了突出进展。 /p p style=" text-indent: 2em " 验收会由基金委副主任谢心澄院士带队,参加验收会的还有计划局项目处谢焕瑛处长、数理科学部物理科学一处倪培根副处长,中国科学院条件保障与财务局副局长曹凝,项目依托单位中国科学技术大学副校长朱长飞等。 /p

单自旋相关的方案

单自旋相关的论坛

  • 【技术@创新】我科学家在单分子自旋态的量子调控研究中取得新进展

    [size=4][font=黑体]简介:量子调控研究是国家中长期科技发展战略规划的重要内容。近日,中科院物理所纳米物理与器件实验室高鸿钧研究组与谢心澄研究员及英国利物浦大学Werner A. Hofer教授合作在单分子自旋态的量子调控研究中取得新进展[/font][/size]量子调控研究是国家中长期科技发展战略规划的重要内容。近日,中科院物理所纳米物理与器件实验室高鸿钧研究组与谢心澄研究员及英国利物浦大学Werner A. Hofer教授合作在单分子自旋态的量子调控研究中取得新进展。他们发现在酞菁铁分子Kondo效应中由于分子中心铁原子在金属表面的吸附位置不同对Kondo效应产生很大影响。相关研究结果发表在9月7日出版的《物理评论快报》(Phys. Rev. Lett. 99, 106402 (2007))上。这是首次报道吸附位置对单分子Kondo效应的调控作用,为单分子自旋态的量子调控及其在量子信息中应用研究提供了新思路。 Kondo效应是指磁性杂质中的局域自旋与自由电子强关联相互作用所引起的一系列低温反常现象。近年来,扫描隧道显微镜技术的迅速发展使人们能够精确地测量单个磁性原子或分子在金属表面上的Kondo效应,而在原子尺度上探索影响Kondo效应的因素是实现单分子自旋态量子调控的关键。 物理所高鸿钧研究组利用低温扫描隧道显微镜及扫描隧道谱,在对吸附在金表面的磁性分子酞菁铁的测量中,发现了Kondo温度高于室温的Kondo效应,并发现分子中心铁原子在金表面的吸附位置对Kondo效应影响很大。他们发现酞菁铁分子在金表面存在两种吸附取向,虽然在分子中心测量的扫描隧道谱显示两种分子取向都存在Kondo效应,但是彼此却存在很大差别。这种差别主要表现在两个方面:根据Fano理论拟合的Kondo温度,以及扫描隧道谱在费米面附近的线型。第一性原理计算及实验测量表明,两种取向的分子的中心铁原子吸附在金表面的不同位置:第一种分子取向,铁原子吸附在金表面两金原子之间的桥位置;第二种分子取向,铁原子吸附在金表面金原子的正上方。他们的理论分析表明,分子中心铁原子在金表面的吸附位置不仅影响到局域自旋与自由电子耦合相互作用的强弱,而且还会影响扫描隧道谱测量中隧穿电子的通道。 近年来,高鸿钧领导的研究组对纳米功能结构材料的调控生长、机制与物性等进行了系列研究(如:Phys. Rev. Lett. 97, 246101 (2006);97, 156105 (2006);96, 226101 (2006);96, 156102 (2006);Adv. Func. Mater. 17, 770 (2007))。根据该工作观察到的吸附位置对单分子Kondo效应,他们提出了调控单分子自旋量子态的可能途径:1)通过基底上不同位置或不同基底的物理化学性质(如:Phys. Rev. Lett. 97, 156105 (2006));2)通过调节纳米分子体系中非功能性侧链(如:Phys. Rev. Lett. 96, 226101 (2006))。这对量子调控和量子信息研究具有重要意义。 以上工作得到了国家自然科学基金委、国家科技部和中国科学院的资助。

  • tcxuefeng读书笔记——自旋系综及密度算符

    tcxuefeng读书笔记——自旋系综及密度算符

    之前我们所讨论的是单自旋核在外磁场及脉冲作用下的状态变化,而实际中我们所面对自旋比这复杂的多——在任一时刻,只有极少数的1/2核接近于|α﹥ 或|β ﹥ 态,而绝大多数核为这两种状态的叠加态。表示如下http://ng1.17img.cn/bbsfiles/images/2012/08/201208261532_386217_2071539_3.jpg量子力学中,将处于相同宏观条件下的相互独立运动的微观粒子的集合称为系综,我们可以将核磁中研究的大量自旋核近似看做系综。而密度算符是对系综整体的描述,而不需要考虑单个核的自旋状态,这一算符在NMR理论中处于中心地位。下面是这一算符的推导回到单个1/2核的情景。基于量子理论,单次实验下粒子所处的状态是不确定的,但是如果我们所做的观测越多,我们就会发现我们的观测结果越趋向于某一个明确的数值。假设算符Q代表的是对自旋|ψ﹥ 所做的观测,那么其观测值的期望值为http://ng1.17img.cn/bbsfiles/images/2012/08/201208261550_386222_2071539_3.jpg将展开式中与自旋核有关的cα,cβ 单独构造成一个矩阵http://ng1.17img.cn/bbsfiles/images/2012/08/201208261556_386223_2071539_3.jpg这样,期望值 的式子被简化为http://ng1.17img.cn/bbsfiles/images/2012/08/201208261556_386224_2071539_3.jpg其中Tr代表的是取矩阵对角元的加和。这是单个核的情景,系综中有大量这样的核相叠加,最终我们的观测值为http://ng1.17img.cn/bbsfiles/images/2012/08/201208261559_386225_2071539_3.jpg这里就引出了密度算符ρ的概念http://ng1.17img.cn/bbsfiles/images/2012/08/201208261559_386226_2071539_3.jpg其中的N为系综中微粒的个数。于是系综下期望值最终简化为http://ng1.17img.cn/bbsfiles/images/2012/08/201208261602_386227_2071539_3.jpg我们可以看到,对于大量微粒的宏观观测值最终可以归结为两个自旋算符。算符Q代表的是对系综的某一测量(或观测);而密度算符ρ代表的是整个自旋系综的状态,而这一状态与系综中自旋核的数量无关。这一变换大大简化了之后的推导,从而使实际应用中对宏观物体核磁现象的解释提供了可能。

单自旋相关的资料

单自旋相关的仪器

  • 量子钻石单自旋谱仪ODMR是一台以NV色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。带有负电的NV色心具有优良的量子特性。当施加532nm的绿色激光,电子从基态跃迁到激发态,从激发态衰减到基态的过程中,会发出红色荧光。ms=0态的荧光强度比较强,而ms=±1态发出的荧光比较弱,可以通过荧光强度区分自旋状态。量子钻石单自旋谱仪具有超高灵敏度与纳米级超高分辨率,能在室温大气条件下运行,可以完成单分子、单细胞的微观磁共振谱学和成像。该谱仪具备高保真度量子自旋态调控技术,通过自主研发的50ps时间精度脉冲发生器以及宽带高功率微波调制器件,能够实现对自旋低噪声、高效、快速的量子相干操控。与谱仪配套的高智能化控制与信号采集软件,能够实现自动光路调节、自动磁场调节以及长时间的无人值守自动测样实验,是科研实验的好搭档。公司同时具有完善的高品质金刚石探针制备工艺,可以自主制备长相干时间、高稳定度的金刚石探针。产品参数: 产品特点:欢迎下载样本了解更多产品详情。
    留言咨询
  • 国仪量子自旋磁力仪 SpinMag -Ⅰ量子自旋磁力仪利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。应用案列:1.生物医学领域量子自旋磁力仪主要应用于心磁和脑磁研究。量子自旋磁力仪通过采集人体心脏磁场信号,获得心磁分布图像,可对心肌缺血、冠脉微循环障碍心肌病等进行功能性诊断及预后研究。脑磁比心磁的磁信号更弱,量子自旋磁力仪能够测量神经电流产生的磁场,实现人脑的电生理直接成像,为临床提供宝贵的信息。2.地球物理领域量子自旋磁力仪通过精确捕捉地球磁场的变化,获得地磁异常信息,可用于石油工业的定向钻井、地质灾害监测、矿产资源勘探等方向。国仪量子自旋磁力仪 SpinMag -Ⅰ磁性测量
    留言咨询
  • 电子自旋共振波谱仪电子自旋共振(ESR)波谱仪能够检测样品中自由基的浓度和成分。样品可以是液体、固体或气体。自由基是具有未成对电子的原子或分子,它们非常活跃。也有许多稳定的自由基,如毛发里的黑色素或群青色素等。许多过渡金属和稀土金属也有未成对电子,会检测出ESR信号。诸如紫石英、烟晶和萤石等因含有未成对电子而呈现出颜色的矿石,也会有ESR信号。电子自旋共振(ESR),亦称电子顺磁共振(EPR),它和NMR、MRI都是磁共振波谱技术。NMR和MRI是原子核与电磁辐射(EMR)发生交互作用,而ESR/EPR则是一个或多个未成对电子与电磁辐射发生交互作用。尽管NMR无法检测出所有原子核,但绝大多数物质都会产生NMR信号,不过,ESR并非这种情况。在各种形式的磁共振中,EMR是其磁分量与原子核或电子的磁矩发生交互作用。自旋成对电子的净磁矩为零;因此,不会有ESR信号。典型ESR波谱仪,是将样品放置于可以缓慢变化的均匀磁场辐照范围的高频共振腔中。在微波以固定频率照射下,未成对电子将在符合等式E=hν=gBH的特征磁场中,在自旋“向上”和自旋“向下”状态之间,发生共振跃迁,如下面的概念图所示:台式 Micro ESR m i c ro E S R配备了一个小巧的0 . 3 4 8特斯拉稀土磁体 。这个 磁 体 装 置 采 用 低 功 率电磁 铁 芯 来 调 节 磁场。microESR是一台连续波(CW)波谱仪,扫描范围超过500Gauss。磁场中心位于自由电子自旋g值附近。这台波谱仪采用线性压控振荡器作为微波源,可在9.7GHz频率下产生0.5至70mW射频功率。microESR采用正交锁相检 测法,系统内置锁相放大器。
    留言咨询

单自旋相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制