衍射极限

仪器信息网衍射极限专题为您整合衍射极限相关的最新文章,在衍射极限专题,您不仅可以免费浏览衍射极限的资讯, 同时您还可以浏览衍射极限的相关资料、解决方案,参与社区衍射极限话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

衍射极限相关的资讯

  • 《光学》:无标记染料或标签 解析光衍射极限纳米结构
    来自奥地利格拉茨大学的研究人员近日开发了一种新的测量和成像方法,可在不需要任何染料或标签的情况下解析小于光衍射极限的纳米结构。这种激光扫描显微镜新方法弥补了传统显微镜和超分辨率技术之间的差距,有朝一日或可被用来观察复杂样品的精细特征。  在国际光学出版集团的高影响力期刊《光学》上描述的这种新方法,是对激光扫描显微镜的改进,它使用强聚焦激光束照射标本。研究人员扩展了这项技术,不仅可以测量光与被研究标本相互作用后的亮度或强度,还可以检测光场中编码的其他参数。  “我们的方法可帮助扩展用于研究各种样品中纳米结构的显微工具箱。”研究小组组长彼得班泽说,“与基于类似扫描方法的超分辨率技术相比,我们的方法是完全非侵入性的,这意味着它不需要在成像前向标本中注入任何荧光分子。”  研究表明,新方法可测量金纳米颗粒的位置和大小,精度为几纳米,即使在多个颗粒接触的情况下也可做到。  在激光扫描显微镜中,光束在样品上扫描,并测量来自样品的透射光、反射光或散射光。大多数显微方法测量来自样品的光强度或亮度,但大量信息存储在光的其他特性中,例如它的相位、偏振和散射角。为了捕捉这些额外信息,研究人员检查了强度和偏振信息的空间分辨率。  研究人员表示,光的相位、偏振和强度,在空间上都会发生变化,这种变化方式包含了与之相互作用的样品细节,然而,如果只在相互作用后测量总体光功率,那么大部分信息都会被忽略。  研究人员研究了含有不同大小的金属纳米颗粒的简单样品,通过扫描感兴趣的区域,然后记录传输光的偏振和角度分辨图像展示了这种新方法。他们使用一种算法对测量数据进行评估,该算法创建了一个粒子模型,模型可自动调整,以尽可能精确地模拟测量数据。  班泽说,尽管这些颗粒及其距离比许多显微镜的分辨率极限要小得多,但新方法能够解决这一问题。更重要的是,该算法能够提供有关标本的其他参数,如颗粒的精确大小和位置。
  • 综述:太赫兹近场超分辨成像,不断突破衍射极限
    太赫兹(THz)辐射频率处于电子学和光学频率之间,因此具备多种光电子特性。THz成像作为THz辐射最重要的应用方面,在国防、通信、生物、医学和材料有着巨大应用潜力。THz 时域光谱系统(THz-TDS)被广泛用于角膜含水量测量、角膜瘢痕成像、蛋白浓度检测和细胞标志物检测等。然而受限于衍射极限存在,THz成像分辨率一般被限制在毫米量级。近场光学成像技术使用空间尺度极小探针直接探测样品表面亚波长尺度细节,可有效突破衍射极限,是实现THz超分辨成像的重要路径。目前,根据探针工作方式的区别,THz近场成像技术可分为孔径探针THz近场成像和散射探针THz近场成像。孔径探针THz近场成像方案需要平衡空间分辨率、截至频率和近场耦合效率之间关系,其成像分辨率仍无法突破至nm量级。散射探针THz近场成像分辨率与探针几何结构和探针-样品表面距离有关,截至目前其成像分辨率可以突破至0.3 nm。本文综述了THz超分辨成像的基本原理及最新进展,围绕孔径探针和散射探针两种主流的THz近场成像技术,详述其在成像原理、成像质量与成像分辨率等方面的突破,并对THz超分辨成像做出总结与展望。图1 THz近场成像及其应用场景孔径探针孔径探针THz近场成像主要利用亚波长结构形成THz辐射源或THz探测器在近场范围内扫描样品表面提升成像空间分辨率。依据孔径类型分类,孔径探针THz近场成像共有四种技术路线,分别是物理孔径、动态孔径、人工表面等离子激元和近场天线。物理孔径探针通常为锥形波导,可以将THz辐射局域成亚波长THz辐射源并扫描样品,提升空间分辨率。其优势在于:结构简单制备容易,可根据THz源设计波导几何结构提升THz耦合效率。图2 锥形物理孔径THz近场成像示意图动态孔径THz成像系统主要有两种实现方式。一种是基于光泵浦方案,该方案激发半导体材料形成特定分布的载流子,进而调制THz空间分布。另一种是基于飞秒激光成丝方案,该方案应用光丝对THz辐射强束缚作用,或是应用交叉光丝,形成动态微孔调制THz空间分布。动态孔径技术优势在于,一方面可以和压缩感知技术结合在保证空间分辨率情况下极大提升成像速度,另一方面基于飞秒激光光丝可以进一步提升成像分辨率至20 μm。图3 交叉光丝形成动态孔径实现THz近场成像人工表面等离子激元器件表面具有周期结构,通过改变材料表面等效介电常数实现THz波近场聚焦。常规调制方案包括金属锥形结构聚焦探针、金属周期结构THz超透镜和石墨烯THz超透镜等;其适用波长范围广、聚焦效率高具有一定的应用前景,尽管目前还处于实验室阶段,但是随着THz器件加工技术逐渐发展,相信在不久的将来其实用性会得到提升。图4 人工表面等离子激元器件实现THz近场成像近场THz天线这是一种微型近场THz探测器,优势为在提升空间分辨率同时能够保证时间分辨率,另一方面THz近场天线可以被集成至片上,拓宽了其使用场景。 图5 近场天线实现THz近场成像散射探针散射探针THz近场成像系统,是通过测量探针与样品表面在外场作用下的近场耦合效应反映样品表面信息。其适用于宽谱THz光源,成像空间分辨率与探针几何结构和探针-样品表面间距有关最高可以达到0.3 nm量级。由于背景散射信号强度远大于近场散射信号强度,散射探针THz近场成像系统主要技术难点在于信号收集与提取。目前,较为成熟的近场散射信号提取技术包括:自零差方案、正交零差方案、伪外差方案和合成光学全息方案等。在保障扫描时间的前提下,伪外差方案成像对比度高且具备相位分辨能力,因此被广泛采用。散射探针THz近场成像系统通常使用扫描隧道显微镜或者原子力显微镜作为提供近场条件的媒介,可将探针针尖与样品表面间距精确控制在20 nm范围内。基于扫描隧道显微镜的散射THz近场成像系统优势:1)其空间分辨率最高可以提升至0.3 nm;2)基于扫描隧道显微镜增强隧穿电流原理,可以增强近场散射信号。缺点:扫描隧道显微镜是通过测量针尖与样品表面隧穿电流实时反馈控制针尖与样品表面间距,故此种方案不适用于不导电样品。图6 基于扫描隧道显微镜搭建的近场成像系统及其一维扫描结果图基于原子力显微镜的散射THz近场成像系统原子力显微镜,因其和扫描隧道显微镜类似,具有卓越的空间分辨能力,是搭建散射探针THz近场成像系统的主力设备,同时能够通过检测针尖与样品之间相互作用反馈控制针尖和样品间距,故该系统可以适用于多种样品。图7 基于原子力显微镜搭建的近场成像系统及其扫描结果图散射探针THz近场成像不仅可以将THz成像分辨率提升至nm量级,还可以被应用于检测样品表面载流子运动。与光学波段和红外波段成像技术相比,有掺杂的半导体或者半金属材料对THz波段更加敏感,因此散射探针THz近场成像技术还被应用在nm量级表征载流子数目和分布情况。 总结与展望随着强THz产生技术和高灵敏THz探测技术的不断发展,超分辨THz成像技术得到了长足发展。孔径探针和散射探针THz成像方案各有侧重,在不同领域得到广泛应用。根据以上总结,从应用角度出发对近场THz成像技术作出展望:(1)成像速度。目前大多数超分辨THz成像方案都是采用逐点扫描模式,尽管成像分辨率得到很大提升,但是成像速度较慢。(2)装置集成化与轻量化。高效的桌面式近场THz成像系统能够助力此项技术得以推广。(3)样品多样性。目前,nm量级THz近场成像技术主要被应用于材料学研究,未来可以充分发挥THz辐射优势,将检测样品扩展至生物大分子甚至活体。(4)大范围成像。未来可以在平衡成像质量与成像速度前提下,实现nm量级大范围样品成像。综上所述,本文概括了超分辨近场成像技术的多个技术指标,分别是空间分辨率、时间分辨率、相位分辨能力、成像速度、成像对比度和装置复杂性。在保证空间分辨率的前提下,提升其他技术指标仍然任重而道远。
  • Science:透射电镜新突破!电子叠层衍射成像实现晶格振动原子分辨率极限
    透射电子显微镜(TEM)在物理、化学、结构生物学和材料科学等领域的微纳结构研究中发挥着重要作用。电子显微镜像差校正光学的进展极大地提高了成像系统的质量,将空间分辨率提高到了低于50pm的水平。然而,在实际样品中,只有在极端条件下才能达到这个分辨率极限,其中一个主要的障碍是,在比单层更厚的样品中,多电子散射是不可避免的(由于电子束与原子静电势之间的强库仑相互作用)。多次散射改变了样品内部的光束形状,并导致探测器平面上复杂的光强分布。当对厚度超过几十个原子的样品进行成像时,样品的对比度与厚度之间存在非线性甚至非单调的依赖关系,这阻碍了通过相位对比成像方式直接确定样品的结构。定量结构图像解释通常依赖于密集的图像模拟和建模。直接修正样品势需要解决多重散射的非线性反函数问题。尽管已经通过不同的方法对晶体样品的不同布拉格光束进行相位调整(其中大部分是基于布洛赫波理论),但对于具有大晶胞或非周期结构的一般样品来说,这些方法变得极其困难,因为需要确定大量未知的结构因子。Ptychography(叠层衍射成像)是另一种相位修正方法,可以追溯到20世纪60年代Hoppe的工作。现代成熟的装置使用多重强度测量——通常是通过小探针扫描广大的样品收集的一系列衍射图案。这种方法已广泛应用于可见光成像和X射线成像领域。直到最近,电子叠层衍射成像技术还受到样品厚度和电子显微镜中探测器性能的限制。二维(2D)材料和直接电子探测器的发展引起了更广泛的新兴趣。用于薄样品(如2D材料)的电子叠层衍射成像已达到透镜衍射极限的2.5倍的成像分辨率,降至39μm阿贝分辨率。然而,这种超分辨率方法只能可靠地应用于小于几纳米的样品,而较厚样品的分辨率与传统方法的分辨率没有实质性差异。对于许多大块材料来说,这样的薄样品实际上很难实现,这使得目前的应用局限于类2D系统(例如扭曲的双层)。对于比探针聚焦深度更厚的样品,多层叠层衍射成像方法提出了使用多个切片来表示样品的多层成像。所有切片的结构可以分别恢复。目前,利用可见光成像或X射线成像都成功地演示了多层叠层衍射成像。然而,由于实验上的挑战,只有少数的多层电子叠层衍射成像证据的报道,并且这些报道在分辨率或稳定性方面受到限制。透射电子显微镜使用波长为几皮米的电子,有可能以原子的固有尺寸最终确定的固体中的单个原子成像。然而,由于透镜像差和电子在样品中的多次散射,图像分辨率降低了3到10倍。康奈尔大学研究人员通过逆向解决多次散射问题,并利用电子叠层衍射成像技术克服电子探针像差,证明了厚样品中不到20皮米的仪器(图像)模糊以及线性相位响应;原子柱的测量宽度受到原子热涨落的限制,新的研究方法也能够在所有三维亚纳米尺度的精度从单一的投影测量定位嵌入原子的掺杂原子。相关研究工作以“Electron ptychography achieves atomic-resolution limits set by lattice vibrations”为题发表在《Science》上。图1 多层电子叠层衍射成像原理图2 PrScO3的多层电子叠层衍射重建图3 多层电子叠层衍射成像的空间分辨率和测量精度图4 多层电子叠层衍射的深度切片

衍射极限相关的方案

  • 奥龙集团:利用X射线衍射仪进行多相物质的相分析
    一、实验目的1.概括了解X射线衍射仪的结构及使用。2.练习用PDF(ASTM)卡片及索引对多相物质进行相分析。二、X射线衍射仪简介传统的衍射仪由X射线发生器、测角仪、记录仪等几部分组成。自动化衍射仪是近年才面世的新产品,它采用微计算机进行程序的自动控制。图实2-1为日本理光光学电机公司生产的D/max-B型自动化衍射仪工作原理方框图。入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。衍射线被探测器所接收,电脉冲经放大后进入脉冲高度分析器。操作者在必要时可利用该设备自动画出脉冲高度分布曲线,以便正确选择基线电压与上限电压。信号脉冲可送至计数率仪,并在记录仪上画出衍射图。脉冲亦可送至计数器(以往称为定标器),经微处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数据输出。控制衍射仪的专用微机可通过带编码器的步进电机控制试样( )及探测器(2 )进行连续扫描、阶梯扫描,连动或分别动作等等。目前,衍射仪都配备计算机数据处理系统,使衍射仪的功能进一步扩展,自动化水平更加提高。衍射仪目前已具有采集衍射资料,处理图形数据,查找管理文件以及自动进行物相定性分析等功能。
  • 晶体日记(十八)- 寻找反常和有趣- X射线衍射XRD
    既然Domain功能并没有达到预期,肯定是有原因的。回到起初学习的方式,按部就班的手动分离衍射点下来,并且把共有的衍射点都分配到两组衍射点里。自然发现了其中的问题所在。
  • 矿物的X射线衍射测试报告
    本实验中,使用浪声映SHINE型X射线衍射仪进行测试,将岩石制成150-200目的粉末样品,在给定的测试条件下,用X射线衍射仪对样品进行扫描 ,取得相应岩石的X射线衍射图谱 ,利用软件进行矿物定性解 译和半定量分析。

衍射极限相关的论坛

  • 电子束成像的衍射极限

    我按照阿贝方程简单计算了电子束衍射极限,可为啥算出来分辨率那么高呢……含泪求解,感谢[img=,690,167]https://ng1.17img.cn/bbsfiles/images/2021/12/202112212115101655_3401_3032435_3.png[/img]

  • 【资料】x射线衍射中单晶衍射与多晶衍射的区别!

    [size=4][font=楷体_GB2312]X射线衍射法因晶体的是单晶还是多晶分为x射线单晶衍射法和X射线多晶衍射法。  [b]单晶X射线衍射分析的基本方法[/b]为劳埃法、周转晶体法和四圆单晶衍射仪法。书上还会有别的方法,因不太常用在此不再啰述。现在最常用的是四圆单晶衍射仪测单晶。  [b]劳埃法[/b]改变波长、以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带曲线。  [b]周转晶体法[/b]:周转晶体法以单色X射线照射转动的单晶样品,用以样品转动轴为轴线的圆柱形底片记录产生的衍射线,在底片上形成分立的衍射斑。这样的衍射花样容易准确测定晶体的衍射方向和衍射强度,适用于未知晶体的结构分析。周转晶体法很容易分析对称性较低的晶体(如正交、单斜、三斜等晶系晶体)。  [b]四圆单晶衍射仪法[/b]是转动晶体。以四个圆的转动变量φ、χ、ω和2θ进行晶体和计数器的转动,以实现倒格点与埃瓦尔德(Ewald)衍射球球面相遇产生衍射的必要条件。φ圆对应于安置晶体的测角头的自转转动,χ圆对应于测角头在其所坐落的仪器金属χ环内侧圆上的转动,ω圆对应于金属χ环绕中垂线(Z轴)进行的转动,2θ圆则对应于为保持衍射方向相对于入射X射线为2θ的角度所需进行计数器的转动。是常用的测量单晶衍射的方法[/font][/size]

  • 【分享】电子衍射原理及多晶、单晶衍射的标定

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=33923]电子衍射原理及多晶、单晶衍射的标定[/url]刚接触TEM衍射,跟大家分享点资料,好像这里还没有。主要内容包括:电子衍射原理多晶电子衍射成像原理与衍射花样特征 多晶电子衍射花样的标定单晶电子衍射成像原理与衍射花样特征单晶电子衍射花样的标定复杂电子衍射花样TEM的典型应用等

衍射极限相关的资料

衍射极限相关的仪器

  • 1.双波长透镜双波长透镜组的主要功能为将两个不同波长的入射光聚焦到相同的焦点上,如下图所示,采用常规的硒化锌材料透镜,将CO2激光以及HeNe激光的聚焦点整合到一起。示意图:选型表:型号波长(nm)输入孔径 1/e2(mm)工作距离(mm)直径(mm)材料镀膜DW-201-A-Y-A10600, 6334~1212515ZnSe防反射多层膜DW-202-A-Y-A10600, 6334~122019ZnSe防反射多层膜 2.平顶光束整形衍射平顶光束整形元件用于将一个高斯入射光变为强度均匀的平顶光束,具有很锐利的边缘,可以是圆形或方形。主要的应用包括激光烧蚀、激光焊接、激光打孔、激光显示器、激光医学及激光医疗等。示意图:相关参数: 区域内光束能量 (1/e² )光斑均匀性工作距离(mm)输入光束直径(mm)波长(nm)整形后光斑尺寸 下限 75%± 0.5%250.826615 &mu m 上限 75~98%± 20%Infinity25 mm10600100× 100mm选型表:型号波长(nm)直径(mm)输出孔径1/e2(mm)工作距离(mm)像尺寸1/e2光斑形状材料TH-205-A-Y-A1060025.441001.5mmRoundZnSeTH-003-A-Y-A1060012.73.742.5300× 100 µ mLineZnSeTH-215-I-Y-A106425.46infinity1mRadRoundFused SilicaTH-013-I-Y-A106425.47infinity1× 1degreeSquareFused SilicaTH-016-K-Y-A98025.47infinity0.9× 0.9degSquareFused SilicaTH-033-X-Y-A80025.46200.293 mmRoundFused SilicaTH-032-Q-Y-A53225.410.92002 mm @FWHMRoundFused SilicaTH-036-Q-Y-A53225.43.599.5200× 200 µ mSquareFused SilicaTH-209-U-Y-A35525.49x6200100 µ mRoundFused SilicaTH-217-U-Y-A35512.72100100× 100 µ mSquareFused SilicaTH-044-V-Y-A33720849.39520 µ mRoundFused SilicaTH-051-W-Y-A26625.454215 µ mRoundFused Silica 3.衍射校正聚焦镜常规的平凸透镜会产生不同位置的入射光焦点不一的问题。采用衍射校正透镜,是在常规平凸透镜的平面端刻蚀像差校正的衍射微结构,从而达到整个入射光的焦点归一,提高激光效率。示意图: 普通聚焦镜 衍射矫正聚焦镜选型表(部分):型号波长(&mu m)有效焦距(英寸)直径(英寸) SE-1511 10.61.51.1 SE-2511 10.62.51.1 SE-2515 10.62.51.5
    留言咨询
  • Thorlabs 衍射极限非球面透镜 AL75150H-B 光学仪器特性高斯特列尔比:大于0.80七种直径/焦距组合:Ø 12.5 mm / f = 25.0 mmØ 25.0 mm / f = 20.0 mmØ 25.0 mm / f = 50.0 mmØ 50.0 mm / f = 40.0 mmØ 50.0 mm / f = 100.0 mmØ 75.0 mm / f = 150.0 mmØ 100.0 mm / f = 200.0 mm三种设计波长:532 nm、780 nm或1310 nm非常适合衍射极限准直与耦合Thorlabs的非球面透镜为轴上光束聚焦与准直提供真正的衍射极限性能。这是通过计算机数字控制(CNC)抛光与高精度磁流变抛光(MRF)达到的。对于单色光源,单个球面透镜在聚焦或准直光束时无法达到衍射极限的性能通常是因为球面像差。本页提供的透镜消除了球面像差,是很多轴上应用的最佳单元件方案,比如准直光纤或激光二极管的输出、光纤耦合、空间滤波或光成像在探测器上。我们的高精度非球面透镜的斯特列尔比大于0.80,是Thorlabs所有透镜中最高的。Ø 12.5 mm、Ø 25.0 mm和Ø 50.0 mm N-BK7非球面在350-2000 nm或400-2000 nm的离散波长处达到此斯特列尔比。Ø 75.0 mm和Ø 100.0 mm N-BK7非球面以及S-LAH64非球面透镜在780 nm处达到此斯特列尔比。我们的高精度非球面透镜可选Ø 12.5 mm、Ø 25.0 mm、Ø 50.0 mm、Ø 75.0 mm或Ø 100.0 mm N-BK7透镜;或者Ø 25.0 mm或Ø 50.0 mm S-LAH64透镜。两种基底都可提供从可见光到近红外的高透射率(透射数据请查看下面的信息图标)。但是,由于S-LAH64的折射率比N-BK7高,因此通常用于制造高NA、短焦距的透镜。下面的透镜提供350 nm - 700 nm、650 nm - 1050 nm或1050 nm - 1700 nm的未镀膜或增透膜版本。未镀膜透镜的设计波长为532 nm、780 nm或1310 nm,而镀膜透镜的设计波长接近镀膜范围的中心值。例如,AL1225G-A的设计波长为532 nm,增透膜范围为350 nm - 700 nm。如果使用未安装的非球面透镜来准直点光源或激光二极管发出的光,应该将曲率半径较大的一面(即较平坦的一面)面向点光源或激光二极管。注意,透镜的数值孔径应该大于或等于光源的数值孔径。
    留言咨询
  • 仪器简介:Miniflex 600系列是世界上体积最小、 重量最轻的便携式X射线衍射仪。主要特点:台式X射线衍射仪MiniFlex600,外型小巧方便,具有近于高端分析仪器的测试性能,可以广泛应用于各种材料结构分析的各个领域,是一种适用于大专院校学生实验及研究的X射线衍射仪,特别适合于野外作业进行材料结构解析;Miniflex600系列也是一种适用于工厂生产现场质量管理检查,劳动保护、环境污染测量的X射线衍射仪;Miniflex600系列是世界上体积最小、重量最轻的便携式X射线衍射仪。* 打破以往X射线分析仪器常规,以小型化和高效能的完美组合刷新了X射线行业的基准;* 外箱采用具有高度安全性的完全密封设计,使仪器移动、安装均能简单自如完成,可充分调整光学系统;* 安装后接入电源即可开始使用,操作简单,初学者也能轻松自如;* 具有超高性价比的MiniFlex 600,为您开创轻松自由的X射线新时代。 技术参数1. 最小最轻的X射线衍射仪。主机宽约560mm,高700mm,深395mm;重量约80kg。2. 功率600W,强度大大提高(上一代产品MiniFlexII最大功率450W)。3. 测角仪精度高、放置样品方便。4. 测角仪配程序式可变狭缝,改善低角度P/B,提高高角度强度。5. 安全设计,放置样品时自动关闭X射线。6. 软件丰富7. 附件可配:计数端单色器,扣除K&beta 、荧光X射线,提高P/B比旋转样品台隔绝空气。水蒸气样品台六样品自动交换器高速一维阵列探测器D/teX Ultra2主要的应用软件有:1. 多重记录2. 定性分析3. 定量分析4. ICDD数据库管理5. 环境粉尘专用定量软件
    留言咨询

衍射极限相关的耗材

  • 衍射光栅
    衍射光栅用于在空间上将不同波长光分开,典型的衍射光栅包含一个光学材料基底,基底表面刻有或复制有大量平行凹槽,同时还镀有反射材料如铝。我们提供来自Richardson Gratings的光栅,是光谱学、电信和激光应用领域衍射光栅的设计和制造领域的理想供应商。选型查看:https://www.newport.com.cn/c/diffraction-gratings_sub
  • THz衍射镜片
    THz衍射镜片 在很多THZ应用中都要求对光束进行处理。目前常采用的的方法是抛物柱面镜和衍射光学元件。尽管衍射光学元件是最近才开始采用的,但是仍有不少人采用,因为它可以实现THZ波的空间分布的改变。 为了满足THZ波段的衍射需求,我们提供下列衍射光学元件(DOE): - THz Fresnel 透镜 - THz 光束分配器 主要参数: 参数 Type of DOE THz Fresnel 透镜 THz beam divider 材料 HRFZ-Si HRFZ-Si 最大外型尺寸, mm 55 55 最大光学尺寸, mm 50 50 厚度, mm 1 1 工作波长范围, μm 60-250 60-250 衍射效率*, % 40 80 膜层 两面高透 两面高透*衍射效率是某个衍射级的衍射光和入射光的比例。我们的衍射元件可以实现最高达到96%的衍射效率。THz Fresnel 透镜 Fresnel透镜是最简单的衍射元件,用以聚焦单设THz波。该透镜不像其他衍射透镜一样会产生球差。 衍射透镜有两个焦距:一个主焦距,一个次焦距。主焦距I1/I的衍射效率是40%,次焦距I2/I的衍射效率3.6%,这个已经在实验中得到了证明。用自由电子激光器作光源,矩阵探测器来探测的实验已经证明了这一点。生产焦距从100mm甚至更长的透镜是有可能的,焦距的公差是5%。 我们可以用公式X=1.22*λ*F/D 来计算Airy disk的尺寸,这里λ是波长,F是焦距,D是光学直径。 THz 光束分配器 光束分配器可以把入射波改变成特定功率空间分布的几个电磁波。(+1和-1级)衍射效率为40(+/-2)%,其他的5%.衍射角可以从20度到80度。
  • 德国HOLOEYE衍射光学元件(DOE)
    德国HOLOEYE衍射光学元件(DOE) 衍射光学在工业中的应用越来越广泛。从印刷,材料处理,传感,非接触式测试,生物科技到光学技术和光学测量,衍射光学为激光系统提供了更多的增值。通过在激光光束的光场中使用使用衍射光学元件(DOE),激光光束的“形状”可以被控制灵活的调整到各种应用需求。 DOE元件表面的微结构,在光子自由空间传播的过程中扮演着路由的作用,衍射光学元件通过使用表面的微结构来实现光学函数。表面微结构浮雕有2个或多个台阶。表面结构一般刻蚀在熔融石英或者玻璃表面,或者刻蚀在各种聚合物材料上。HOLOEYE提供的衍射光学元件: 激光分束、平顶整形、图像生成光束整形元件线条衍射元件、十字线衍射元件 衍射透镜(菲涅尔透镜、微透镜阵列、柱透镜)光栅(振幅、相位、闪耀光栅)随机相位图波前生成定制衍射元件第一步是给出一个包含了所有参数的规格书,在一些情况下,需要进行可行性验证,HOLOEYE提供多种现成的衍射光学元件。这些产品的验证试验通常有助于规范的推导,另外,作为一个空间光调制器(SLM)的供应商。HOLOEYE拥有使用SLM设备来证明DOE光学性能的能力。 解决方案:系统分析可行性研究通过标准DOE或SLM进行试验性研究根据客户的要求定制衍射元件制作原型样品用于DOE复制的模板衍射元件复制光学性能测试
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制