下游工艺

仪器信息网下游工艺专题为您整合下游工艺相关的最新文章,在下游工艺专题,您不仅可以免费浏览下游工艺的资讯, 同时您还可以浏览下游工艺的相关资料、解决方案,参与社区下游工艺话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

下游工艺相关的资讯

  • 利穗:“下游工艺技术转化与清洗验证”开始报名!
    俗话说,一年之计在于春,今天小穗就来个2016春季好货提前爆。本年度我们依旧邀请了重磅大咖针对大家最关心的工艺转化和清洁验证带来全国巡讲 。 以下四个城市的小伙伴有福了:深圳、上海、长春、北京。 在隆重介绍本季巡回讲座之前,大家可以先回顾去年10月在天府之国成都举办的“下游工艺技术转化与清洗验证”,现场座无虚席,气氛热烈。 成都讲座现场图 此次春季巡回讲座,特邀演讲嘉宾:GMP &生命科学领域资深专家罗健中博士,拥有超过20 年的生物工艺研发,实验室及GMP车间的设计、实施及验证经验。为新加坡首个GMP生物制药生产项目的先驱团队的重要成员。 同时,利穗科技国际市场总监林明益先生将做公司产品介绍。林明益先生具有超过30年的生命科学和生物制药行业从业 经验,掌握从实验室到生产规模的蛋白纯化技术,熟悉生物工艺开发 和符合cGMP的生物制品和工艺控制,熟悉生物制剂和疫苗的下游纯化工艺开发。 主题:“下游工艺技术转化与清洗验证” 议程安排:题目:下游工艺技术转化下游工艺技术转化 什么是下游工艺技术转化 下游工艺技术转化项目管理 下游工艺技术转化中的关键因素 下游工艺技术转化中的典型问题 清洗验证(一) 为什么要进行清洗验证 法规监管要求 清洁验证程序的关键要素 验证主计划 清洗过程关键工艺参数 清洗验证(二) 清洗验证方案的开发 可接受的残留限量 下游工艺设备 层析柱 验证生命周期 报名方式:请将公司名称、姓名、职务、联系方式、邮箱发送到市场部邮箱:sales@lisui.net ,或可以直接电话报名:0512-69369998 Lisurescience 联系方式: 吴婷婷 18362618085 利穗期待与您相约3月下旬,不见不散!
  • 高表达抗体蛋白下游工艺技术进展
    p   摘 要:随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 /p p   关键词:抗体 下游工艺 纯化 技术进展 /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center " span style=" font-size: 14px "   表1 单抗特性及纯化策略 /span /p p style=" text-align: center " img title=" 11111.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e2693d21-e711-4b42-bb9c-53b5b7848f82.jpg" / /p p style=" text-align: center " img title=" 2222.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/5035b8d3-81f1-4e6b-96d7-3e12b347a344.jpg" / /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0 病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "   img width=" 450" height=" 374" title=" 1.jpg" style=" width: 435px height: 258px " src=" http://img1.17img.cn/17img/images/201808/insimg/401b7d6a-ad5b-4c9a-9eee-2376ebef51fa.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px " 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /span /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center " img width=" 599" height=" 164" title=" 2.jpg" style=" width: 580px height: 159px " src=" http://img1.17img.cn/17img/images/201808/insimg/ce7191a4-3940-4315-8122-856bbbadbc24.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /span /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center "    img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/4aa1c980-c9be-44e9-82b5-899ba9f7eec9.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " 表3 两步层析纯化工艺对污染物的去除效果[15] /span /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/07a79270-4b7d-4fe5-bc9a-125837562297.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  图2 传统纯化工艺与STREAMLINE [17] /span /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/333de887-f92b-405d-9094-9ec89635f74d.jpg" / /p p style=" text-align: center " span style=" font-size: 14px "   图3 STREAMLINE的基本工作原理和操作过程[18] /span /p p style=" text-align: center "   span style=" font-size: 14px "  (箭头示液体过柱时的流向) /span /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE 技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p p /p
  • 高表达抗体蛋白下游工艺技术进展
    p   随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 br/ /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 br/ /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1eb75a7d-0f0f-4f60-8224-a3984ccff0e3.jpg" title=" 表1.png" alt=" 表1.png" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/f8ff0f67-6f0b-4295-ab81-05543e5efbd8.jpg" title=" 表2.png" alt=" 表2.png" / br/ strong 表1 单抗特性及纯化策略 /strong /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/a804fe1c-9660-4ab2-8cc4-177870630ce5.jpg" title=" 图1.png" alt=" 图1.png" style=" text-align: center " / /p p style=" text-align: center " strong 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /strong /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/3ef7b3a2-9f79-4e74-8a71-6a6cbcbea5ec.jpg" title=" 图2.png" alt=" 图2.png" / /p p style=" text-align: center " strong 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /strong /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/282961ea-e704-47d1-aabd-f044e108f59c.jpg" title=" 图3.png" alt=" 图3.png" / /p p style=" text-align: center " strong 表3 两步层析纯化工艺对污染物的去除效果[15] /strong /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/dba748ae-d64e-479c-8fb1-ea738ef437da.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center " strong 图2 传统纯化工艺与STREAMLINE [17] /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/0f71d1a8-a218-43f5-8c1f-917bd4f432a5.jpg" title=" 图5.png" alt=" 图5.png" / /p p style=" text-align: center " strong 图3 STREAMLINE的基本工作原理和操作过程[18](箭头示液体过柱时的流向) /strong /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p

下游工艺相关的方案

下游工艺相关的论坛

  • 可比性研究对上游和下游工艺开发的支持——默克密理博生物制药工艺基础课堂九

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif可比性研究对上游和下游工艺开发的支持——默克密理博生物制药工艺基础课堂九讲座时间:2014年10月23日 10:00 主讲人:朱蓉蓉在加州大学戴维斯分校的物理化学系完成了所有博士学位的课程和资格考试,获得ABD 资格。现默克密理博生物分析部的高级科学家。 建立了许多先进的分析方法和技术。在小分子、蛋白质和抗体药的生物物理及生化特性的研究领域,从发现到投入商业化,具有20多年的资深经验。http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】 生物蛋白药制造工艺的变化往往会造成产品质量的变化。因此,在工艺变更时必需进行可比性研究,以确保生产工艺的变化不影响生物药的质量,安全性和有效性。建立产品质量和工艺参数之间的相关性,可以最好地帮助我们了解制造工艺,并协助上游和下游工艺的开发。在这次讲座中,将会举例讲述上游工艺过程的变化(细胞系,细胞培养基和收获时间)如何影响产品质量。也将提出如何改善下游工艺可以提高单克隆抗体产品的质量(包括低聚合体和较低的工艺相关杂质)。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年10月23日 9:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg

  • 化学气相沉积CVD工艺中MKS下游排气高速节流阀的国产化替代方案及产品

    化学气相沉积CVD工艺中MKS下游排气高速节流阀的国产化替代方案及产品

    [color=#ff0000]摘要:对标MKS、VAT和CDK等公司的下游排气高速节流阀系列产品,本文介绍了相应的国产化替代方案和产品。基于CVD工艺,技术方案将下游流量调节阀变为了下游压力调节阀,并采用分体结构,将调压阀与PID控制器分离,调压阀具备大口径和高速功能,电子气控驱动调压阀快速动作,PID控制器接收真空计信号和控制气控驱动阀,可实现阀门全开时间小于0.1秒。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000]一、背景介绍[/color][/size]在各种化学气相沉积CVD工艺中,腔室上游为各种工作气体的进气端,腔室下游布置节流阀和真空泵,使得工作腔室内的工作气压在高温条件下按照设定程序进行控制。为达到较高的工艺质量,在CVD工艺中真空度的控制需达到以下几方面的要求:(1)下游控制方式:因为在CVD工艺过程中的真空度并不高,基本在10~500Torr范围内,在此范围内的低真空控制,采用下游控制方式可以达到较高精度,且控制速度很快。而上游控制方式则很难达到满意的控制效果,上游控制方式一般适用于较高真空度的低压控制。(2)高速调节能力:CVD工艺过程中,除了开始阶段的真空度缓慢调节控制之外,在温度突变过程中要求具备快速调节和恒定真空度的能力,这就要求下游调节阀门的响应速度极快,阀门从全闭到全开的时间至少不能大于1秒。(3)大口径:作为下游控制模式,节流阀安装在工作腔室和真空泵之间,要求具有较大口径以满足真空的快速抽取和控制。(4)易维护:CVD工艺中会有大量微尘抽出排放,尽管使用了过滤装置,但还是会对节流阀产生污染,由此要求节流阀便于拆装清理而不影响使用。目前市场上能满足CVD工艺上述要求且应用较多的节流阀是MKS、VAT和CDK等国外公司的系列下游排气高速节流阀,系列节流阀的全开速度在0.2~1.7秒范围内,口径1.270~2.362英寸,并集成了蝶阀、步进电机和PID控制器。目前MKS的下游节流阀在CVD工艺中应用比较成熟,但存在价格偏高和货期较长的问题。针对此问题,本文提出了相应的替代方案,介绍了相关产品,以期在国产化方面做出尝试。[size=18px][color=#ff0000]二、国产化替代方案[/color][/size]国产化替代方案主要包括以下几方面的内容:[color=#ff0000]2.1 压力调节方式[/color]目前MKS公司的下游节流阀是一种流量调节阀,通过调节蝶阀的开度大小来调节排气流量,与进口流量达到平衡来实现工作腔室内真空度的控制。我们的方案是直接采用压力调节阀,通过调节工作腔室排气口处的气压来实现腔室真空度控制。调压方式同样可以实现真空度的准确控制,特别是在CVD的低真空(高气压)工作区间内,排气量会更少,能节省工作气体的排放。[color=#ff0000]2.2 分体结构[/color]与MKS下游节流阀的集成式结构不同,我们将阀门和PID控制器进行了模块分离。采用分体结构主要出于以下几方面的考虑:(1)采用独立的2通道PID控制器。这种PID控制器具有24位A/D和16位D/A的超高精度,更能保证真空度的控制精度,同时具有40多种信号输入类型,即可用来控制真空度,也可控温等。(2)2通道PID控制器可以连接两个不同量程的电容式真空计,并具有真空计自动切换功能,由此可实现全量程范围内真空度的自动测量和控制。如果只连接一个真空计,另外一个通道可连接温度传感器进行温度控制。(3)很多CVD设备都配备了独立且功能强大的PLC控制系统用来进行真空度、温度和流量等电气参数控制,同时也具备达到一定精度的PID控制功能。分体结构可以使PLC系统直接去控制阀门,避免功能的重复,有利于降低造价。[color=#ff0000]2.3 气控驱动压力调节阀[/color]有别于美国MKS公司下游节流阀所采用的高速步进电机驱动蝶阀,我们的技术方案是电子气控先导阀驱动阀芯位移,由此可带动阀芯实现高速位移和压力调节。针对不同口径采用相应规格阀芯,内部阀芯非常便于拆卸、更换和清理。[size=18px][color=#ff0000]三、国产化相关产品[/color][/size][color=#ff0000]3.1 大口径高速真空压力调节阀[/color]新推出的国产化EVR系列(EyoungVacuum Regulator)真空压力调节阀及其内部结构如图1所示。[align=center][img=,690,348]https://ng1.17img.cn/bbsfiles/images/2022/06/202206020854523534_9772_3384_3.png!w690x348.jpg[/img][/align][align=center]图1 国产EVR系列真空压力调节阀及其内部结构示意图[/align]EVR系列真空压力调节阀是一种常闭型调压阀门,可直接对气密性容器的真空压力(负压或正压)进行高速调节,调节方式采用顶部气控先导阀,先导阀可采用手动和电子控制形式。EVR系列产品可配各种手动和电子控制形式的先导阀,可形成开环和闭环控制回路。通过外接真空计和真空压力控制器相结合,可构成闭环形式快速高精度可编程真空控制回路。EVR系列真空压力调节阀的技术参数如表1所示。[align=center]表1 EVR系列真空压力调节阀技术参数表[/align][align=center][img=,550,299]https://ng1.17img.cn/bbsfiles/images/2022/06/202206020928417726_9841_3384_3.png!w690x376.jpg[/img][/align][align=left][color=#ff0000]3.2 两通道24位高精度多功能PID控制器[/color][/align][align=center]对标英国欧陆控制器,国产VPC-2021系列PID控制器是多通道、24位A/D和16位D/A、可编程的通用型PID控制器,如图2所示。VPC-2021系列PID控制器可进行真空度、温度、流量和转速等多种参数的精密控制,功能十分强大,且性价比非常高。[/align][align=center][img=,500,260]https://ng1.17img.cn/bbsfiles/images/2022/06/202206020929494455_1310_3384_3.png!w650x338.jpg[/img][/align][align=center]图2 VPC-2021系列高精度PID程序控制器[/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)最高采样速度:50ms。(3)多种输入参数:47种(热电偶、热电阻、直流电压)输入信号,可连接各种温度和真空度传感器进行测量、显示和控制。(4)多种输出形式:16位模拟信号、2A (250 VAC)继电器 、22V/20mA 固态继电器、 3A/250VAC可控硅。(5)多通道:独立1通道或2通道输出。2通道可实现温度和真空度的同时测控,报警输出通道可用来控制旋转电机。(6)多功能:正向、反向、正反双向控制、加热/制冷控制。(7)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(8)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(9)显示方式:数码馆和IPS TFT真彩液晶。(10)软件:通过软件计算机可实现对控制器的操作和数据采集存储。(11)外形尺寸:96×96×87mm(开孔尺寸92×92mm)。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    [size=14px][color=#cc0000]  摘要:本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了上海依阳公司为解决这一关键技术所采用的真空压力下游控制模式及其装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 问题的提出[/b][/color][size=14px]  各种纤维材料做为纤维复合材料的增强体在军用与民用工业领域中发挥着巨大作用,例如碳纤维、陶瓷纤维和玻璃纤维等,而高温热处理是提高这些纤维材料性能的有效手段,通过高温可去除杂质原子,提高主要元素含量,可以得到性能更加优良的纤维材料,因此纤维材料高温热处理的关键是方法与设备。[/size][size=14px]  低温等离子体技术做为一种高温热处理的新型工艺方法,气体在加热或强电磁场作用下电离产生的等离子体可在室温条件下快速达到2000℃以上的高温条件。目前已有研究人员利用高温热等离子体、直流电弧等离子体、射频等离子体等技术对纤维材料进行高温热处理。低温等离子体具有工作气压宽,电子温度高,纯净无污染等优势,且在利用微波等离子体对纤维材料进行高温处理时,可利用某些纤维材料对电磁波吸收以及辐射作用,通过产生的微波等离子体、电磁波以及等离子体产生的光能等多种加热方式,将大量能量作用于纤维材料上,实现快速且有效的高温热处理。同时,通过调节反应条件,可将多种反应处理一次性完成,大大降低生产成本。[/size][size=14px]  中国科学院合肥物质科学研究院等离子体物理研究所对微波等离子体高温热处理工艺进行了大量研究,并取得了突破性进展,在对纤维材料的高温热处理过程中,热处理温度可以在十几秒的时间内从室温快速升高到2000℃以上,研究成果申报了国家发明专利CN110062516A“一种微波等离子体高温热处理丝状材料的装置”,整个热处理装置的原理如图1-1所示。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202228157595_5464_3384_3.png!w690x416.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图1-1 微波等离子体高温热处理丝状材料的装置原理图[/color][/size][/align][size=14px]  等离子体所研制的这套热处理装置,可通过调节微波功率、真空压力等参数来灵活调节温度区间,可在低气压的情况下获得较高温度,但同时也要求这些参数具有灵活的可调节性和控制稳定性,如为了实现达到设定温度以及温度的稳定性,就需要对热处理装置中的真空压力进行精确控制,这是实现等离子工艺平稳运行的关键技术之一。[/size][size=14px]  为了解决这一关键技术,上海依阳实业有限公司采用新开发的下游真空压力控制装置,为合肥等离子体所的高温热处理装置较好的解决了这一技术难题。[/size][size=14px][b][color=#cc0000]2. 真空压力下游控制模式[/color][/b][/size][size=14px]  针对合肥等离子体所的高温热处理装置,真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][color=#cc0000][size=14px][img=,690,334]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202229013851_5860_3384_3.png!w690x334.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 下游控制模式示意图[/color][/align][size=14px]  具体到图1-1所示的微波等离子体高温热处理丝状材料的装置,采用了频率为2.45GHz的微波源,包括微波源系统和上、下转换波导,上转换波导连接真空泵,下转换波导连接微波源系统和样品腔,上、下转换波导间设有同轴双层等离子体反应腔管,双层等离子体反应腔管包括有同轴设置的外层铜管和内层石英玻璃管,内层石英玻璃管内为等离子体放电腔,外层铜管与内层石英玻璃管之间为冷却腔,外层铜管的两端设有分别设有冷媒进口和出口以形成循环冷却。真空泵、样品腔分别与等离子体放电腔连通,样品腔设有进气管,工作气体及待处理丝状材料由样品腔进气管进入等离子体放电腔。微波源系统采用磁控管微波源,磁控管微波源包括有微波电源、磁控管、三销钉及短路活塞,微波由微波电源发出经磁控管产生,磁控管与下转换波导之间设置有矩形波导,矩形波导安装有三销钉,下转换波导另一端连接有短路活塞,通过调节三销钉和短路活塞,得到匹配状态和传输良好的微波。[/size][size=14px]  丝状材料由样品腔进入内层石英层玻璃管,从两端固定拉直,安装完毕后真空泵抽真空并由进气管向等离子体放电腔通入工作气体。微波源系统产生的微波能量经三销钉和短路活塞调节,通过下转换波导由TE10模转为TEM模传输进入等离子体放电腔,在放电腔管内表面形成表面波,激发工作气体产生高密度微波等离子体作用于待处理丝状材料,同时等离子体发出的光以及部分泄露的微波也被待处理丝状材料吸收,实现多种手段同时加热。双层等离子体反应腔管外围环绕设有磁场组件,外加磁场可调节微波在等离子体中的传播模式,同时可以使得丝状材料更好的重结晶,提高处理后的丝状材料质量。[/size][size=14px]  装置可以通过调节微波功率、工作气压调节温度,变化范围为1000℃至5000℃间,同时得到不同长度的微波等离子体。为了进行工作气压的调节,在真空泵和上转换波导的真空管路之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=14px][b][color=#cc0000]3. 下游控制模式的特点[/color][/b][/size][size=14px]  如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px]  下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px]  在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px]  下游模式具有以下特点:[/size][size=14px]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作;[/size][size=14px]  (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px]  (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=14px][b][color=#cc0000]4. 下游控制用真空压力控制装置及其控制效果[/color][/b][/size][size=14px]  下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度控制器。[/size][size=14px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px]  数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px]  (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px]  (2)适用范围(Pa):快卸法兰(KF)2×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]/活套法兰6×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]。[/size][size=14px]  (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px]  (4)阀门漏率(Pa.L/S):≤1.3×10[sup]?-6[/sup]。[/size][size=14px]  (5)适用温度:2℃~90℃。[/size][size=14px]  (6)阀体材质:不锈钢304或316L。[/size][size=14px]  (7)密封件材质:增强聚四氟乙烯。[/size][size=14px]  (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px]  (9)电源供电:DC 9~24V。[/size][size=14px]  (10)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202231249739_6263_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=14px][color=#cc0000]4.2. 真空压力控制器[/color][/size][size=14px]  真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力控制器,如图4-2所示,其技术指标如下:[/size][size=14px]  (1)控制周期:50ms/100ms。[/size][size=14px]  (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px]  (3)采样速率:20Hz/10Hz。[/size][size=14px]  (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px]  (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px]  (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px]  (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px]  (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232157970_4559_3384_3.jpg!w500x500.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/size][/align][size=14px][b][color=#cc0000]5. 控制效果[/color][/b][/size][size=14px]  安装了真空压力控制装置后的微波等离子体高温热处理系统如图5-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232573625_5179_3384_3.png!w690x395.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 微波等离子体高温热处理系统[/color][/align][size=14px]  在热处理过程中,先开启真空泵和控制阀对样品腔抽真空,并通惰性气体对样品腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在2000℃以上,在整个过程中样品腔内的真空压力始终控制在设定值上。整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234216839_5929_3384_3.png!w690x419.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px]  为了更好的观察热处理过程中真空压力的变化情况,将图5-2中的温度突变处放大显示,如图5-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,427]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234347767_4036_3384_3.png!w690x427.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px]  从图5-3所示结果可以看出,在300Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=14px]  另外,在激发等离子体后样品表面温度在几秒钟内快速上升到2000℃以上,温度快速上升使得腔体内的气体也随之产生快速膨胀而带来内部气压的升高,但控制器反应极快,并控制调节阀的开度快速增大,这反而造成控制越有超调,使得腔体内的气压反而略有下降,但在十几秒种的时间内很快又恒定在了300Torr。由此可见,这种下游控制模式可以很好的响应外部因素突变造成的真空压力变化情况。[/size][size=14px]  上述控制曲线的纵坐标为真空计输出的与真空度对应的电压值,为了对真空度变化有更直观的了解,按照真空计规定的转换公式,将上述纵坐标的电压值换算为真空度值(如Torr),纵坐标换算后的真空压力变化曲线如图54所示,图中还示出了真空计电压信号与气压的转换公式。[/size][size=14px]  同样,将图5-4纵坐标放大,如图5-5所示,可以直观的观察到温度突变时的真空压力变化情况。从图5-4中的转换公式可以看出,由于存在指数关系,纵坐标转换后的真空压力波动度为6.7%左右。如果采用线性化的薄膜电容式真空计,即真空计的真空压力测量值与电压信号输出值为线性关系,这种现象将不再存在。[/size][align=center][color=#cc0000][size=14px][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236297989_3820_3384_3.png!w690x423.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][align=center][size=14px][img=,690,421]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236397212_4575_3384_3.png!w690x421.jpg[/img][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][size=14px][b][color=#cc0000]6. 总结[/color][/b][/size][size=14px]  综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,同时还充分保证了微波等离子体热处理过程中的温度调节、温度稳定性和均温区长度等工艺参数,为微波等离子体热处理工艺的推广应用提供了技术保障。另外,这也是替代真空控制系统进口产品的一次成功尝试。[/size][size=14px]  [/size][size=14px][/size][align=center]=======================================================================[/align][size=14px][/size][size=14px][/size]

下游工艺相关的资料

下游工艺相关的仪器

  • Millistak+ HC Pro是高载量全人工合成材质系列的深层过滤器,比目前市面上的硅藻土(DE)和纤维素(CE)材质过滤器更洁净、批次差异更小。可提供多个介质等级,用于初级和二级澄清以及下游过滤应用。特点与优势:- 合成材质减少TOC可提取物,建议的使用前冲洗体积减少50%;没有β-葡聚糖干扰内毒素(LAL)测试;批间一致性,已成功开发和实施稳健可靠的澄清工艺- 深层过滤介质配方和设计多达两倍的过滤载量,以及同等的过滤截留特性;有效提升HCP杂质清除- 一次性Pod装置提供了从5到20000 L的可放大性方案;容易安装和使用Millistak+ HC Pro合成材质深层过滤器有3个介质等级,用于初级、二级澄清和下游处理步骤,以保护层析柱:- 介质等级:D0SP初级澄清,用于直接收获液- 介质等级:C0SP初级和二级澄清,用于直接收获液、离心后料液- 介质等级:X0SP二级澄清(用于直接收获液和离心后料液)和下游过滤 了解更多:更多信息,e.g., 详细参数列表,滤器性能等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • 在Thermo Scientific™ versaCART™ 移动配件推车上快速配置和整理您的液体处理系统,使宝贵的洁净室空间和资源最大化。versaCART配件推车的模块设计可使用户快速自定义配置一次性解决方案,用于多个生物制造步骤。细长的设计和人体工学结构可以使空间最大化,且不影响实用性。versaCART移动配件推车可使用户获取所需组件和设备,从而实现快速且高效的分配。• 液体处理设备的轻松自定义配置。• 绕轴旋转的托盘可以调节高度,实现轻松取用。• 侧护板可以使正常和错流过滤器保持在可调整的高度。• 泵和工艺传感器监控器可以整合至推车上。• 通过称重传感器精确监测袋中的液体体积。应用:• cGMP商品化和临床生物治疗、疫苗和其他生物学工艺。• 上游应用包括:培养基、缓冲液、细胞培养和收集。• 下游应用包括:缓冲液、收集物纯化、中间产物和大体积药物。
    留言咨询
  • PolysepTM II过滤器可广泛适用于水相应用场合。PolysepTM II过滤介质由一层硼硅酸盐玻璃和一层混合纤维素酯膜构成。微纤维滤层的深度提供了高颗粒承载能力,截留了大颗粒,同时保持高流速。混合纤维素酯膜层为关键性的预过滤步骤提供了所需的高截留率,同时保护了更昂贵的下游过滤装置和设备。PolysepTM II过滤器有三种规格(Opticap小型一次性囊式过滤器;Opticap XL一次性囊式过滤器;筒式过滤器),五种孔径尺寸。优点:- 将深层过滤器的承污能力与膜式过滤器的截留效率相结合- 为更昂贵的下游滤器提供出色的保护- 用于关键性的预过滤工艺,截留效率优异- 需高流速和高通量之应用场合的完美之选- 从小规模到生产规模的可缩放工艺设计方案的理想选择应用:- 细胞培养基- 眼用制剂- 血清- 大容量注射剂(LVP)了解更多:更多信息,e.g., 滤器表现、详细技术参数等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询

下游工艺相关的耗材

  • SkillPak层析工艺优化填料筛选预装柱
    SkillPak 1 mL和5 mL层析柱主要用于快速实现纯化方法的开发及优化、填料的筛选以及样品的浓缩。两种不同尺寸层析柱都预装填了各类TOYOPEARL、TSKgel以及Ca++Pure-HA羟基磷灰石填料,能够对单克隆抗体、蛋白质、寡核苷酸以及病毒进行出色的纯化评价、评估。SkillPak 1 mL和5 mL预装柱为从平台工艺开发到中试规模纯化而设计。这类预装层析柱一经收到即可立即投入使用,由于具有优异的刚性强度和理想的压力/流速特性,尤其适合下游纯化工艺。SkillPak层析柱性能卓越、稳定可靠,可与常用的低压或中压液相色谱/层析系统配合使用。该类层析柱不仅可以重复再生使用,还充分考虑了每种填料不同的装填压缩比。因此,能够精确展示各种尺寸层析柱的代表性状态。SkillPak 1 mL层析柱的规格参数: SkillPak 5 mL层析柱的规格参数:
  • 好的游离RNA保存管需要具备哪些特征?
    游离 RNA(cell-free RNA)是指存在于生物体内的细胞外 RNA 分子,包括 mRNA、miRNA、tRNA 等等。近年来,随着分子生物学技术和液体活检的发展,游离RNA 在疾病诊断、生物标志物研究、个体化治疗等领域的所发挥的作用越来越大。因此,如何在准确、快速地提取游离RNA后进行保存、运输,对于后续研究的准确性和可靠性具有重要意义。那么,好的游离RNA 保存管需要具备哪些特征呢?一、好的游离RNA保存管应该具有高效的RNA保护作用。游离RNA 在生物体内很容易被降解。因此保存管需要能够有效地固定和保护游离RNA,防止其降解和污染。常见的保护剂有聚乙烯醇(PEG)、核酸酶抑制剂等,它们可以结合游离 RNA,形成稳定的复合物,保护 RNA 免受降解。第二、好的游离RNA保存管应该具有良好的兼容性。兼容性是指保存管在与其他试剂或样本混合时,能够保持游离 RNA 的稳定性和完整性。好的游离RNA保存管应该能够与常见的RNA提取试剂盒、RNA酶抑制剂、DNA酶抑制剂等兼容,确保RNA 提取和保存过程的顺利进行。第三、好的游离RNA保存管应该具有易于操作的特点。好的游离RNA保存管应该设计简洁、操作方便,使实验人员能够在短时间内完成RNA的提取和保存。此外,保存管应该具有良好的密封性,防止液体泄漏,导致污染和损失。第四、好的游离RNA保存管应该具有稳定的保存效果。游离 RNA 在常温下容易降解,因此,好的游离 RNA 保存管应该能够在常温下长时间保存游离 RNA,确保其在后续的检测和分析中具有较高的稳定性和活性。 国盛医学所研发生产的游离RNA保存管,不仅能稳定血细胞并防止血液凝固,防止血液中有核细胞中基因组DNA和RNA的释放,还能有效抑制血浆中的核酸酶,防止游离RNA降解。此外,该保存管在常温贮存及转运,储存样本5天以上可稳定血浆中的游离RNA并防止血细胞释放非靶标背景RNA,下游可从全血中分离并纯化RNA进行RT-PCR、转录组分析等分子生物学实验及检测。
  • 工艺透析循环槽
    用于大体积料液(100 ml - 2 L)的动态透析 Spectrum Spectra/Por 工艺透析循环槽 Repligen的Spectrum Spectra/Por循环透析槽通过动态透析方式,提高大体积批量料液的透析效率。透析槽连接大体积缓冲液容器,缓冲液通过蠕动泵,以单次通过或循环模式,缓慢通过透析槽。相比传统静态透析,连续流动的缓冲液可在膜两侧维持更高的传质系数。多个循环串联操作,可进一步提高工艺效率。 GMP批量工艺透析的理想选择提高透析效率并节省时间增加批次产量优化并节省缓冲液使用 循环透析槽配件 盖套件循环槽等分隔板循环槽底座 串联操作 最多可串联6个循环槽,使用单个缓冲液容器,同时批量动态透析8-12L样品,从而是批量纯化更加高效和经济。 简单规模放大 100 mL - 1.5 L样品,单个循环槽,规格5、7和10L200 mL - 2 L样品,可选循环槽等分隔板,倍增容量3 L - 6 L样品,2-6个循环槽串联操作
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制