丝状真菌

仪器信息网丝状真菌专题为您整合丝状真菌相关的最新文章,在丝状真菌专题,您不仅可以免费浏览丝状真菌的资讯, 同时您还可以浏览丝状真菌的相关资料、解决方案,参与社区丝状真菌话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

丝状真菌相关的资讯

  • 临床丝状真菌鉴定是难点,VITEK MS来支招
    p style=" text-indent: 2em " 当田中耕一因发现‘生物大分子的软电离技术’而获得2002年诺贝尔化学奖时,他一定没有预想到,短短十几年时间,这一技术能够在微生物领域带来如此巨大的变革。 br/ /p p   MALDI-TOF MS这一技术自应用于微生物以来,其技术的成熟度和商品化程度迅猛发展令人咂舌。今天当一位临床微生物工作者说出“鉴定结果来自质谱”时,已经不再是带有些许的怀疑,而是成竹在胸的自信。成本低廉、操作简单、快速而准确已经使得质谱技术成为微生物发展中不可阻挡的一股趋势。 /p p   即使在这样的潮流下,也并非所有的事情都是那么一帆风顺的。 /p p   比如对于微生物中的丝状真菌,应用于质谱鉴定并非一路坦途。 /p p   不论是产品研发还是临床应用,丝状真菌在谱上的鉴定似乎注定要经历更多的时间和坎坷,而当下微生物工作者在这个问题上似乎仍然更依赖于形态学鉴定,纵使遇到难题时首先也是考虑测序的方法。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/af2392aa-bcd0-45b9-ac49-93ec182fd380.jpg" title=" 01.jpg" alt=" 01.jpg" / /p p style=" text-indent: 2em " strong span style=" text-indent: 2em color: rgb(0, 112, 192) " 关键问题一 /span /strong /p p   从原理上来看,丝状真菌的鉴定和细菌并无不同,此处省略1000字并再次脑补MALDI-TOF MS的原理过程…… /p p   然而必须要强调的是,对于微生物的质谱鉴定,一个足够丰富、有组织性的数据库才是真正重要的关键条件。这也是在某些数据库中的一个显著短板,即对于真菌,尤其是双相真菌和丝状真菌难以获得一个令人满意的结果,这些质谱系统要么是鉴定出一堆不相关的低分辨结果 要么由于分值太低而鉴定失败。 /p p   需要注意! /p p   对于鉴定失败的情况,一方面可能是由于数据库中确实不包含该菌种,另一方面可能数据库中包含该菌种,但在临床工作中分离出的临床菌株因为和建库菌株间的异质性(heterogeneity)而不能很好的匹配,导致没有鉴定结果。 /p p   丝状真菌质谱鉴定的复杂性正体现在此,由于丝状真菌本身的蛋白成分相比细菌更加复杂,加之培养条件、菌丝体大小、产孢情况的不同,也会导致丝状真菌的蛋白图谱会发生较大的差异变化,这显然给质谱的鉴定带来了一定程度的挑战。因为试图通过少量菌株的图谱来“演绎”所有菌株可能性的情况并不现实,这种蛋白表达上的“质”和“量”的变化是难以预测的。而可能的一个解决途径则是尽可能收集不同来源的菌株和不同培养条件下获得的图谱,通过“归纳”的方法将所有蛋白特征进行整理,以期覆盖该菌种的普遍性特征,并满足临床鉴定的需要。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/d7e5326e-b021-48b6-b336-494941ebe8c0.jpg" title=" 02.jpg" alt=" 02.jpg" width=" 600" height=" 300" border=" 0" vspace=" 0" style=" width: 600px height: 300px " / /p p style=" text-align: center " 黑曲霉在SDA平板上生长2天和8天获取的图谱 /p p    strong span style=" color: rgb(0, 112, 192) " 关键问题二 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/a756fa21-5e75-4de9-ba3d-6c3ecfae4517.jpg" title=" 03.jpg" alt=" 03.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p    strong 另一个问题是丝状真菌的前处理: /strong /p p   和一般细菌以及酵母样真菌不同,通过基质液甚至是甲酸处理并不能有效破坏其细胞壁并充分获取其蛋白。这是因为丝状真菌的细胞壁中包含一种叫几丁质的物质,该物质同样存在于昆虫的甲壳中,它不能被普通的有机溶剂(乙醇、甲酸等)所溶解。这也是为什么很多实验室按照一般的提取流程,所获得用于分析的蛋白波峰非常少,从而导致鉴定失败。 /p p   2018年10月,VITEK MS获得FDA临床实验验证的菌种数量已经达到401种,而其中丝状真菌达到了47种;成为目前唯一通过FDA认证的可用于丝状真菌的MALDI-TOF MS系统! /p p   其中包括了毛霉、双相真菌、皮肤真菌、暗色真菌、曲霉及其他潜在的病原菌。 /p p   在外部临床实验中总共检测了1519株丝状真菌,达到了91%的正确鉴定率² ,这显然已经完全达到了临床诊断的要求。 /p p   值得注意! /p p   VITEK MS IVD数据库中的丝状真菌已经超过了100种,但这其中仍然有一部分因为临床试验中没有分离到足够的菌株而尚未获得FDA的认证。 /p p   VITEK MS通过FDA批准的丝状真菌种类: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/4a1d0ed1-1eed-4415-af10-6d01b81b96cf.jpg" title=" 04.jpg" alt=" 04.jpg" width=" 600" height=" 200" border=" 0" vspace=" 0" style=" width: 600px height: 200px " / /p p    strong span style=" color: rgb(0, 112, 192) " Q& amp A /span /strong /p p    strong 为什么目前只有VITEK MS的丝状真菌鉴定能够通过FDA的严苛考评呢? /strong /p p   正如前文所述,一方面梅里埃为VITEK MS的数据库开发提供了强大的菌株库,作为拥有全球最大的菌株贮藏机构之一,在丝状真菌的建库上选择了多株有代表性的菌株,同时经过不同的培养条件、培养时间及不同的操作人员获取图谱并通过权重矩阵的算法实现对普遍性的覆盖。 /p p   另一方面,专利性的丝状真菌提取技术(U.S. Provisional Patent Application no. 62/209,116)能够在保证生物安全的同时,实现高效率的蛋白提取,获得高质量的蛋白图谱。 /p p   2012年,VITEK MS成为史上第一台获得FDA认证的微生物质谱鉴定系统,从此质谱的临床应用开启了全新的时代。 /p p   而随着丝状真菌感染越来越受到临床的关注,质谱鉴定的方法已经成为临床工作中必不可少的选项,在这一领域中,VITEK MS再次走在了前列。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/70cf35ab-312a-4955-8e60-1557efde4f8f.jpg" title=" 07.jpg" alt=" 07.jpg" / /p p    /p p style=" text-align: center " VITEK MS 全自动快速微生物质谱检测系统 /p
  • 亮点回顾:"质”同道“禾” 上下求索 多学科抗感染论坛-真菌专场
    8月23日,由中山大学附属第一医院医学检验科、广东省真菌病监测网、广州禾信仪器股份有限公司联合举办,以“‘质’同道‘禾’”,上下求索”为主题的多学科抗感染论坛-真菌专场交流会圆满落幕。点击图片跳转观看精彩回放温馨提示此次论坛干货满满,特意准备了汇集6位教授学术精华的真菌专场知识地图,8月26日17:00后,在本公众号后台回复 CMI-1600 便可获取。本次论坛大咖云集,北京协和医院徐英春教授、张丽教授,浙江大学医学院附属邵逸夫医院俞云松教授,中山大学附属第一医院谢灿茂教授、廖康教授、郭鹏豪教授齐聚一堂,以线上主题演讲的形式聚焦真菌感染的诊疗与检测,为大家呈现了一场饕餮学术盛宴。左右滑动查看更多《念珠菌感染诊治现状》浙江大学医学院附属邵逸夫医院 俞云松教授俞云松教授分享了从侵袭性真菌病趋势、易感高危人群类型、IFD诊断困惑、抗真菌治疗策略、念珠菌定植与感染、念珠菌病原学检测方法和治疗方案、抗真菌药物的选择等方面,进行了多维度、全面系统地论述。俞云松教授指出:侵袭性真菌病的临床管理面临诸多挑战,突破重点仍在于诊断技术的不断改进与升级。《真菌感染实验室诊断操作规范》中国医学科学院北京协和医院 张丽教授张丽教授从真菌概况、国内真菌检测能力、真菌实验室诊断相关指南、真菌实验室仪器设备基本配置、各种标本的采集和处理、真菌培养基接种选择和方式、真菌培养条件和时间等方面展开细致讲解。在培养后菌株鉴定方法板块中,张丽教授提到,在酵母菌的鉴定中,MALDI TOF-MS的准确性能达到90%以上,其在丝状真菌的鉴定上也有相关应用。《"重"中之"重"一例血流感染案例分享》中山大学附属第一医院 郭鹏豪教授郭鹏豪教授以一例血流感染的案例抛砖引玉,在对患者惊险起跌的病情进行了详细介绍后,不断抛出问题,并由俞云松教授和张丽教授针对性地给予详细专业点评及解答。最后郭鹏豪教授对该案例进行总结:真菌性心内膜炎是一种死亡率极高的感染病,不明原因发热的患者,需关注心内膜炎的可能性,实验室可借助MALDI TOF-MS技术缩短病原体鉴定的时间。最后名家论道环节,教授们就“真菌病诊疗的困难与挑战”发表见解,多学科精彩思维齐碰撞,直将热度推向最高峰,评论区内大家直呼“内容丰富,精彩纷呈,值得回看”。本次论坛展示了多学科合作模式在真菌病诊疗中的价值,各专家共同为真菌病诊疗事业贡献了一份力量。温馨提示此次论坛干货满满,特意准备了汇集6位教授学术精华的真菌专场知识地图,8月26日17:00后,在本公众号后台回复 CMI-1600 便可获取。MALDI-TOF MS检测是近年发展起来的一种快速准确、经济可靠的病原微生物鉴定方法。通过绘制具有保守特征的微生物核糖体蛋白指纹图谱并与标准数据库进行比对,实现对病原菌的快速鉴定。全自动微生物质谱检测系统CMI-1600禾信仪器在此方面,已自主研发出全自动微生物质谱检测系统CMI-1600,目前已获得发明专利15项,实用新型专利14项,是国内唯一在核心期刊上以封面论文形式介绍该仪器研制的国产仪器。01关联案例:马尔尼菲篮状菌采用全自动微生物质谱检测系统CMI-1600,利用甲酸-乙腈蛋白提取法分别对酵母相和丝状真菌相的数十株临床分离的马尔尼菲篮状菌进行检测,并批量采集高质量图谱,使用禾信仪器自主研发的MicroCreate软件进行特征峰提取建立专项子谱库。部分马尔尼菲篮状菌质谱图马尔尼菲篮状菌特征谱初步验证表明,6株从病患样本分离的马尔尼菲篮状菌种级鉴定准确率达到100%。因此,马尔尼菲篮状菌自建库可实现相关样本的快速准确鉴定,CMI-1600对临床少见疑难菌株有良好的鉴定潜力。02关联案例:109种1710菌株采用全自动微生物质谱检测系统CMI-1600对临床即时分离的109种1710菌株进行鉴定,包括肺炎克雷伯菌、金黄色葡萄球菌、鲍曼不动杆菌、大肠埃希菌、无乳链球菌、头状葡萄球菌、流感嗜血杆菌、产吲哚金黄杆菌、新型隐球菌、阿莎丝孢酵母、成团泛菌、小孢根霉菌、白色假丝酵母、热带假丝酵母、光滑假丝酵母等临床病原菌。鉴定结果与医院LIS系统最终诊断结果(某进口质谱及生物鉴定结果为主)进行比对显示:CMI-1600种水平鉴定一致率为99.18%(1669/1710),属水平鉴定一致率为99.88%(1708/1710),表明对临床微生物鉴定结果与医院检验科鉴定结果具有高度的一致性。
  • 研究| “真菌树”状AgNWs@BNNS/芳纶纳米纤维导热复合膜
    01研究背景随着5G、物联网等电子信息技术的快速发展,电子电气系统正朝着超薄、高性能、智能化、功能一体化的方向发展,内部集成发热元件数量持续增加,同时导致了热量快速积累,严重影响其稳定性和使用寿命。这迫切需要设计和开发高导热聚合物复合材料,以满足先进电子或电气设备/组件对高导热/散热、优良机械性能、耐腐蚀和轻量的需求。研究人员通常在导热系数(λ)较低的聚合物基体中加入单一或混合类型的高导热填料,以有效提高聚合物复合材料的λ。由于氮化硼纳米片(BNNS)具有良好的理论λ和优异的电绝缘性能,在高导热和电绝缘复合材料中具有广泛的应用前景。银纳米线(AgNWs)是一种一维纳米材料,具有优异的导热性、导电性和高抗弯性等特点,广泛应用于触摸屏、热界面材料、电磁干扰屏蔽材料等领域。在作者之前的研究工作中,制备了BNNS/芳纶纳米纤维(ANF)仿珍珠层状的导热结构复合薄膜,在填料分数为50 wt% 时,水平和垂直导热分别可达3.94 W/(mK)和0.62 W/(mK), 是纯ANF膜的5.8倍;用多元醇合成了高导热AgNWs方法,并采用真空辅助过滤技术制备AgNWs/纤维素导热复合薄膜,当AgNWs质量分数为50 wt%时,水平导热为6.5 W/(mK),为纯纤维素膜的2.4倍。异质结结构因为有望加强填料间的搭建,减少填料的聚集,在导热复合材料领域备受关注。将BNNS和AgNW结合(BNNS包覆AgNW)有望解决导热,绝缘,抗弯折等多功能性挑战。然而,该异质结结构一直未被报道,因为AgNW的长径比大且存在弯折,很难将BNNS包覆在AgNW上并稳定的调控形貌。02成果掠影西北工业大学顾军渭教授研究团队通过“溶剂热法-原位生长法”制备出“真菌树”状银纳米线@氮化硼纳米片(AgNWs@BNNS)异质结构导热填料,再与化学解离制备的芳纶纳米纤维(ANF)复合,经“抽滤自组装-热压”法制备出AgNWs@BNNS/ANF导热复合膜。当真菌树状AgNWs@BNNS异质结填料的质量分数为50 wt%时,其ANF导热复合膜具有最高9.44 W的导热系数和136 MPa的高拉伸强度。同时具有额外的电加热性能(低供电电压下的高焦耳加热温度5 V、240.6℃)以及10 s的快速响应时间、优异的电稳定性和可靠性(1000次、6000 s拉伸-弯曲疲劳工作下稳定和恒定的实时电阻)。研究成果以“Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers”为题发表于《Angewandte Chemie International Edition》期刊。03图文导读真菌树状异质结氮化硼纳米片及其复合材料的制备。AgNWs和AgNWs@BNNS填料的XPS谱和XRD谱。AgNWs和AgNWs@BNNS填料的SEM图、AFM图和通过有限元分析的整体温度分布。AgNWs@BNNS TEM图。AgNWs@BNNS/ANF复合纤维膜的导热系数。50% wt% AgNWs@BNNS/ANF复合膜的焦耳加热性能。不同工作电压下的时变表面温度(a)、定制表面温度(b)和红外热图像(c)。50 wt% AgNWs@BNNS/ANF复合膜的不同应用场景效果。

丝状真菌相关的方案

丝状真菌相关的论坛

  • 《CNW液相色谱柱使用征文大赛之五》:CNW Athena C18液相色谱柱检测丝状真菌产生的次生代谢产物

    《CNW液相色谱柱使用征文大赛之五》:CNW Athena C18液相色谱柱检测丝状真菌产生的次生代谢产物

    CNW Athena C18液相色谱柱检测丝状真菌产生的次生代谢产物实验目的:实验背景及目的我的实验目的是利用高效液相色谱法(HPLC)检测并分离丝状真菌产生的次生代谢产物。丝状真菌俗称霉菌,它们往往能形成分枝繁茂的菌丝体,在潮湿温暖的地方,很多物品上长出一些肉眼可见的绒毛状、絮状或蛛网状的菌落,便是霉菌。丝状真菌能够合成结构多样、具有重要药理性和毒理性的天然产物而受到广泛的关注。丝状真菌的代谢产物对人类生活起到了至关重要的影响,它们的巨大应用价值与影响,推动着人们对它不断地研究探索,有些可做药用,比如人类所发现最早的抗生素-青霉素(Penicillin),是由青霉菌(Penicillium)所制造;环孢霉素(Cyclosporin)用于器官移植时抗排异反应;他汀类可用于降血脂预防中风等;有的又具有强毒性,有致癌作用,威胁人类的健康,比如黄曲霉毒素和单端孢霉烯等。在食物的生产方面,一些霉菌也被刻意培殖应用,例如:蓝起司是发酵后再加入青霉菌所制成的;酱油、豆瓣、豆豉和味噌等需要米曲菌发酵;红糟、豆腐乳和红露酒等则是由红曲菌所发酵制造;发酵臭豆腐的臭滷水也含有多种菌种。目前已知的丝状真菌次级代谢产物只是真菌能够合成的产物的冰山一角,比如分析构巢曲霉(Aspergillusnidulans) 基因组,发现该菌具有产生27 个聚酮类化合物,14 个非核糖体多肽,1 个萜类化合物

  • 【转帖】活性污泥中丝状菌与絮体结构的关系研究环境保护

    摘要:通过试验和观察,研究了活性污泥中丝状菌与絮体结构的关系。常见的活性污泥絮体可分为六大类型,在不同的处理工艺和运行条件下,各类型污泥比例不同,丝状菌在污泥絮体的形成过程中所起的作用也不相同。而在活性污泥膨胀时,生物相结构中的丝状菌可分为结构性的和非结构性的两大类,它们起着不同的作用,运行中必须通过不同的方法和措施加以防治。丝状微生物是一大类菌体相连而形成丝状的微生物的统称,其中包括丝状细菌、丝状真菌、丝状藻类等[1]。荷兰学者Eikelboom将丝状微生物分为29个类型、7个群,并制成了活性污泥丝状微生物检索表。  丝状微生物的功能与结构形态密切相关,长丝状形态有利于其在固相上附着生长,保持一定的细胞密度,防止单个细胞状态时被微型动物吞食;细丝状形态的比表面积大,有利于摄取低浓度底物,在底物浓度相对较低的条件下比胶团菌增殖速度快,在底物浓度较高时则比胶团菌增殖速度慢。许多丝状微生物表面具有胶质的鞘,能分泌粘液,粘液层能够保证一定的胞外酶浓度,并减少水流对细胞的冲刷,其中还含有特定的抗体,以防止其他生物附着。  丝状微生物种类繁多,对生长环境要求低。其本身生理生长特性很特别:增殖速率快、吸附能力强、耐供氧不足能力以及在低基质浓度条件下的生活能力都很强,因此在废水生物处理生态系统中存活的种类多,数量大。如何使丝状微生物相互聚集,使之在废水处理中达到较好的泥水分离效果,如何确定丝状微生物同其他微生物的相互作用,以及不同丝状微生物的最适需氧量等,都是需要进一步研究的问题。1 试验设计及过程试验分别在本院给水排水实验室、重庆市唐家桥污水处理厂、重庆市渝北区城南污水处理厂进行。活性污泥采样自本实验室活性污泥法小试反应器、唐家桥污水处理厂和城南污水处理厂的曝气池、初沉池和二沉池。通过镜检观察记录活性污泥絮体大小、形态和结构,对不同反应器的丝状微生物进行鉴定,从而寻找丝状微生物与絮体形态结构之间的关系。试验历时5个月。  丝状微生物鉴定采用Eikelboom法,镜检观察以下八项特征:①是否存在衣鞘;②滑行运动;③真、假分枝;④丝状体长度、形状、性质;⑤细胞直径、长度、性质;⑥革兰氏染色反应;⑦纳氏染色反应;⑧有无胞含体(聚-β-羟基丁酸PHB、硫粒、多聚磷酸盐等)。染色采用石炭酸复红染色法、革兰氏染色法、纳氏染色法和积硫试验法。通过目微尺测定污泥絮体直径,记录各种大小、形状和结构的絮体数量,归纳污泥絮体的主要类型及特征。通过大量观察,寻找丝状微生物种类、浓度与污泥絮体大小、形状、结构的关系。2 试验结果2.1 絮体结构形态类型  通过大量的观察发现,活性污泥在正常运行和膨胀时呈现不同的结构形态和种类。正常运行时活性污泥结构形态可分为四类,Ⅰ型:致密、细小,看不到丝状菌为骨架的污泥;Ⅱ型:有明显丝状骨架、呈长条形的污泥;Ⅲ型:厚实、具有网状结构的巨型污泥;Ⅳ型:有孔洞结构的巨型污泥。污泥膨胀时其结构形态可分为两类,Ⅴ型:结构丝状菌大量生长、伸长,絮体结构松散;Ⅵ型:非结构丝状菌大量生长,不形成絮体。  试验过程中发现,Ⅰ型污泥在两污水厂正常运行的曝气池中所占比例较低,城南污水厂为10%左右,唐家桥污水厂更低,而在二沉池上清液中比例较高,因此它是从良好结构的污泥上脱落下来的,在二沉池随出水流失。正常运行时长条形污泥、网状污泥和孔洞污泥(Ⅱ、Ⅲ、Ⅳ型)占很高比例,两污水厂中均占90%以上。根据絮体伸出的部分丝状菌,可以判断这些具有良好结构的污泥是以丝状菌为骨架,胶团菌附着于其上而形成的。它们是去除有机物的主要部分。  在混合液中可见到其他丝状微生物游离于菌胶团之外,见不到附着生长物,三种样本见到的菌种有:球衣菌、发硫菌、0803型、0581型、硬发菌、链球菌等,但数量都十分少。  试验过程中,城南污水厂由于发生停电事故时仍保持进水流量,发生了结构丝状菌大量增殖的现象,污泥结构呈松散状(Ⅴ型),SVI达到142mL/g干污泥;待供电正常,按正常方式运行一段时间后,污泥结构恢复正常,SVI回落至90mL/g 干污泥。而活性污泥小试过程中多次出现污泥膨胀,泥水分离困难(Ⅵ型),SVI高达500mL/g 干污泥以上,调节运行方式仍不能控制,镜检发现球衣菌、发硫菌大量增殖,最终通过投加漂白粉杀生剂再经逐步培养才恢复正常。2.2 微生物鉴定结果  根据Eikelboom法对作为污泥良好结构骨架的丝状菌进行鉴定,发现各处取样污泥的结构丝状菌特征一致:丝状体直径1.5~2μm,丝体长200μm左右,不运动,略弯,在絮体内扭曲,细胞呈柱状,长0.5~4μm,直径0.7~1.0μm,有鞘,横隔明显,常见分枝,有大量附着生长物,无硫粒,革兰氏染色阴性,纳氏染色可见兰灰色颗粒,呈阳性。  查丝状微生物鉴定表,找不到特征完全相符的种,比较接近的是Eikelboom1701型。Eikelboom1701的特征是:链状圆柱形细胞,被鞘紧裹,丝体长100~200μm,偶尔超过200μm,虽然丝体正常时稍弯,但可有很强的盘绕性,细胞长2.5~3.5μm,直径0.5~0.9μm,有鞘,有时可见PHB黑色小颗粒,横隔和缩缢明显,偶有假分枝,常有大量附着生长物,无硫粒,革兰氏染色阴性,纳氏染色阳性。3 分析与讨论3.1 絮体形成过程  许多絮体可以同时具有Ⅱ型、Ⅲ型、Ⅳ型污泥的多种特征,在絮体中心部分为孔洞结构,向四周伸展的长条形污泥相互搭接形成网状结构,最外侧则可见新伸出的骨架丝状菌。从这种污泥的形态可以推断其形成过程为:结构丝状菌交织生长,胶团菌附着其上形成新生污泥,新生污泥逐渐成熟形成条状、网状污泥,在氧和营养物充足等条件下,网状污泥的胶团菌增粗,网孔逐渐变小形成孔洞状,最后孔洞被填实,而结构丝状菌的伸出为胶团菌提供了新的附着面,包裹形成新的条状污泥,条状污泥相互交织又形成新的网状污泥,重复上述过程,形成更大的污泥絮体。  一些污泥能见到成节的形态,大的孔洞结构污泥之间由细的条状污泥连接,有的由丝状微生物连接,这种污泥的形成可能是絮体成长到一定成熟度后,由于内部供氧不足,促进了包埋于其中的结构丝状菌的生长,将絮体撑开导致结构松散形成节状。  还有极少量的污泥,可以见到极粗大的丝状骨架,上面附着胶团菌,经多次对比鉴定,这些丝状骨架为死亡累枝虫的杆,由于结构松散,这类污泥易于在二沉池发生漂浮,因此保持原生动物稳定的生长条件可以有效地减少二沉池的污泥上浮。3.2 丝状微生物与微生态群落的关系  试验表明,胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降性而不易被出水带走,并且由于胶团菌的包附使得结构丝状菌获得更加稳定、良好的生态条件,所以这两大类微生物在活性污泥中形成了特殊的共生体。  根据生态学的观点,环境因子对微生物个体的影响首先是影响某些敏感生物,然后通过微生物之间的相互作用逐步传递,最终当影响超过一定限度时引起结构上的波动。正是因为生态系统中生物种类多,并按一定结构组成了微生态群落,环境压力在逐级传递过程中受到消减,所以生态系统具备了一定抗冲击负荷的能力。与纯培养相比,生态系统能通过优势种群的变化维持良好的结构,而纯培养只需轻微刺激就会引起强烈反应,直接破坏其脆弱的结构。这也是保证活性污泥微生态群落稳定性的根本原因。  根据本试验结果,可以将活性污泥微生态群落描述如下:活性污泥微生态群

  • 活性污泥中丝状菌膨胀的条件和成因

    正常的活性污泥中都含有一定量的丝状菌,它是形成活性污泥絮体的骨架材料。如果活性污泥中丝状菌数量太少,则形不成大的絮状体,沉降性能不好 如果丝状菌过度繁殖,则形成丝状菌污泥膨胀。在正常的环境中,菌胶团的生长率远大于丝状菌,不会出现丝状菌过度繁殖的现象。但如果活性污泥环境条件发生不利变化,丝状菌因其表面积较大,抵抗环境变化能力比菌胶团的细菌强,丝状菌的数量就有可能超过菌胶团细菌,从而导致丝状菌污泥膨胀。引起活性污泥中丝状菌膨胀的环境条件有:1、进水中有机物质太少,曝气池内F/M低,导致微生物食料不足。2、进水中氮、磷等营养物质不足。3、PH太低,不利于微生物生长。4、曝气池混合液内溶解氧太低,不能满足微生物需要。5、进水水质或水量波动太大,对微生物造成冲击。6、进入曝气池的污水因“腐化”产生出较多的H2S(超过1-2mg/l)时,还会导致丝状硫磺菌的过量繁殖,使丝硫磺菌污泥膨胀。7、丝状菌大量繁殖的适宜温度在25℃~30℃,因而夏季易发生丝状菌污泥膨胀。

丝状真菌相关的资料

丝状真菌相关的仪器

  • 饲料真菌毒素检测仪 400-860-5168转4655
    一、产品简介:  YT-L03型饲料真菌毒素检测仪采用荧光定量快速检测原理,主要检测粮油谷物饲料中真菌毒素含量,包括黄曲霉毒素、玉米赤霉烯酮、呕吐毒素、伏马毒素、赭曲霉毒素、T-2毒素等等,检测样品涵盖粮食谷物(大米、玉米、小麦、大麦、高粱等)及其制品、饲料及其原料、食用油脂、牛奶及其制品等 样品前处理简单,整个检测过程检测12min,产品适用于地方粮库、谷物生产企业、饲料厂、各类畜牧养殖企业、面粉厂、食品加工厂、第三方检测机构及各级政府监管部门。  二、饲料真菌毒素检测仪性能指标  1、一体化设计,集成孵育和检测功能同时进行,孵育完成直接检测   2、全中文 7英寸高清液晶显示,触摸屏操作   3、 Android 系统,支持在线升级,可WIFI联网   4、检测原理:荧光定量免疫层析法   5、6通道设计,可同时进行一种或多种指标的检测,6个独立检测单元,检测效率高,并且互不干扰   6、具有二维码自动识别系统,可直接识别检测项目、检测流程等信息   7、仪器自带热敏打印机,检测结果可实时打印   8、具有检测数据存储(存储数量不少于 10000 条)、查询、批量数据处理和打印功能   9、仪器≥2 个USB 接口,可拷贝结果及原始数据,具有 wifi 接入模块,可通过无线连接网 络实现数据上传   10、 分钟内达到工作状态(37℃),封闭系统,不受外界环境(光、热)干扰,工作环境温度:0-30℃   11、相对极差≤10%   12、重复性 CV≤1%   13、批间变异≤3%   14、尺寸310x210x93mm
    留言咨询
  • 一、真菌毒素快速检测仪 饲料真菌毒素检测仪产品简介: IN-J600型真菌毒素快速检测仪采用胶体金定量快速检测原理,主要检测粮食中重金属铅、镉,粮油谷物饲料中真菌毒素含量,包括黄曲霉毒素B1、黄曲霉毒素M1、玉米赤霉烯酮、呕吐毒素、伏马毒素等等,检测样品涵盖粮食谷物(大米、玉米、小麦、大麦、高粱等)及其制品、饲料及其原料、食用油脂、牛奶及其制品等;样品前处理简单,整个检测过程检测12min,产品适用于地方粮库、谷物生产企业、饲料厂、各类畜牧养殖企业、面粉厂、食品加工厂、第三方检测机构及各级政府监管部门。 二、真菌毒素快速检测仪 饲料真菌毒素检测仪产品特点: 1.仪器流线型外观设计,美观大方,结实耐用。2.大屏幕液晶显示,界面人性化,读数直观。3.光源采用发光二极管,具有节能、环保、省电、寿命长、响应速度快等优点。4.超大容量内存,可存储并测量多个检测项目。6.内部微处理器对电源、线路、光源等进行自诊断。7.可随时按检测日期、打印、删除存储测量数据。8.真菌毒素快速检测仪 饲料真菌毒素检测仪器配备2个USB接口,可通过仪器本身进行数据处理和统计分析。9.监控网络信息功能强大,包括测量数据系统和监控管理系统,实施数集、统计、查询、交换,上传和打印等功能。让管理部门和上下监管可有效实施远程监控管理。 10.仪器由开关电源、光路系统、Android系统和样品传输系统组成。11.形式多样的综合中文报告输出,支持内置热敏打印机。三、真菌毒素快速检测仪 饲料真菌毒素检测仪产品参数操作系统Android 7.1输入方式电容触摸屏显示采用10.1寸工业屏级电容式触摸屏,分辨率为1024*800图像处理性能采用CMOS工业互补金属氧化物导体传感器进行动态图像的处理和分析检测口单联插槽数据传输A.无线WiFi功能(支持IEEE 802.11 b/g/n)B.10/100M 有线网络(支持IEEE 802.11 b/g/n)外部接口USB接口2个RS232 DB9标准串口,1个打印机采用微型打印机,可替换纸张检测重复性CV≤3%检测时间检测仪的单次及多联卡样本检测时间小于5秒存储4G超大容量内存,可存储并测量多个检测项目可存储500个以上测试项目,200万个以上测试数据(可扩展),并具有数据浏览及查找的功能。读卡仪器技术参数符合下表的要求:-读卡仪稳定性:≤5%-读卡仪重复性: ≤3%-读卡仪准确性: ≤5%-读卡仪分辨率: 0.001四、真菌毒素快速检测仪 饲料真菌毒素检测仪检测项目序号项目定量检测限定量检测范围1呕吐毒素(DON)100ppb100-5000ppb2黄曲霉毒素B1(AFB1)2ppb2-100ppb3赭曲霉毒素4玉米赤霉烯酮(ZEN)5ppb5-250ppb
    留言咨询
  • 饲料真菌毒素检测仪 400-860-5168转4275
    HM-L03型饲料真菌毒素检测仪采用荧光定量快速检测原理,主要检测粮油谷物饲料中真菌毒素含量,包括黄曲霉毒素、玉米赤霉烯酮、呕吐毒素、伏马毒素、赭曲霉毒素、T-2毒素等等,检测样品涵盖粮食谷物(大米、玉米、小麦、大麦、高粱等)及其制品、饲料及其原料、食用油脂、等;样品前处理简单,整个检测过程检测12min,产品适用于地方粮库、谷物生产企业、饲料厂、面粉厂、食品加工厂、第三方检测机构及各级政府监管部门。 二、性能指标1、一体化设计,集成孵育和检测功能同时进行,孵育完成直接检测;2、全中文 7英寸高清液晶显示,触摸屏操作;3、 Android 系统,支持在线升级,可WIFI联网;4、检测原理:荧光定量免疫层析法;5、6通道设计,可同时进行一种或多种指标的检测,6个独立检测单元,检测效率高,并且互不干扰;6、具有二维码自动识别系统,可直接识别检测项目、检测流程等信息;7、仪器自带热敏打印机,检测结果可实时打印;8、具有检测数据存储(存储数量不少于 10000 条)、查询、批量数据处理和打印功能;9、仪器≥2 个USB 接口,可拷贝结果及原始数据,具有 wifi 接入模块,可通过无线连接网 络实现数据上传;10、 分钟内达到工作状态(37℃),封闭系统,不受外界环境(光、热)干扰,工作环境温度:0-30℃;11、相对极差≤10%;12、重复性 CV≤1%;13、批间变异≤3%;14、尺寸310x210x93mm三、检测项目指标:项目名称定量范围适用样品类型黄曲霉素B12-30ug/kg(谷物)玉米、小麦、麦麸、豆粕、花生粕、米糠粕、玉米蛋白粉.玉米胚芽粕、膨化玉米、DDGS和喷浆玉米皮及成品饲料5-80ug/kg(饲料)玉米赤霉烯酮25-400ug/kg(谷物)50-1000ug/kg(饲料)呕吐毒素200-3000ug/kg(谷物)200-8000ug/kg(饲料)伏马毒素100-6000ug/kg玉米、小麦、麦麸、豆粕、花生粕、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮、浓缩料及犊牛颗粒料及成品饲料赭曲霉毒素A2-20ug/kg(谷物)玉米、小麦、麦麸、豆粕、花生粕、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮及成品饲料50-500ug/ka(饲料)T-2毒素50-800ug/kg玉米、小麦、大米、麦麸、豆粕、花生粕、玉米胚芽粕.DDGS、喷浆玉米皮及膨化玉米及成品饲料
    留言咨询

丝状真菌相关的耗材

  • 通用真菌毒素方法
    产品特点:通用真菌毒素方法用于固体1. 将25 g 样品研细,加入100 mL 乙腈/水(80 : 20),高速搅拌 3min 进行萃取。为了同时测定玉米烯酮,加入玉米赤霉酮 (ZAN) 的乙腈内标溶液至萃取液中,使浓度为50 ng/g。过滤2. 取4 mL 滤液过Bond Elut Mycotoxin 小柱3. 将2 mL 洗脱液在50 °C 下用温和氮气流吹干4. 残渣用0.5 mL ACN/H2O(1 : 4;v/v)复溶5. 然后进样10 μL 进行LC 分析用于饮料1. 将饮料样品超声30 分钟后过滤2. 取4 mL 样品滤液过Bond Elut 真菌毒素柱3. 将2 mL 洗脱液在50 °C 下用温和的氮气流吹干4. 加入0.5 mL ACN/H2O(20 : 80;v/v)复溶5. 用LC/MS QQQ 进样分析麦啤真菌毒素% 回收率% rSD% 回收率% rSD35 ng/g350 ng/gDON922.695.51.5ZEA1166.1101.91.3T-261.312.660.11.1HT-281.85.676.11.4清酒真菌毒素% 回收率% rSD% 回收率% rSD35 ng/g350 ng/gDON94.37.496.80.5ZEA99.31.399.80.8T-2101.31.3660.9HT-2113.98.31111
  • Cleanert MC 真菌毒素检测专用柱
    Agela 专用柱家族新成员:√ 更高效:能同时净化几十种真菌毒素,显著提高实验效率√ 更准确:采用LC-MS/MS检测方法定量更准确√ 更安全:减少真菌毒素的暴露时间,大大降低化学品危害专为检测食物和饲料中的真菌毒素开发的专用柱方法对比ELISA快速检测试剂盒免疫亲和柱Cleanert® MC真菌毒素检测专用柱通用性弱,一次只能检测一种或者一类真菌毒素强,可同时检测多种真菌毒素操作性差,检测样品中同时含有几类真菌毒素时,需选用不同试剂盒或不同免疫亲和柱进行多次试验,操作繁琐。强,可同时检测多种真菌毒素认可程度传统方法。反复实验,增加实验人员暴露在真菌毒素中的时间,严重危害健康。净化效果已得到用户充分肯定《液相色谱-串联质谱法同时测定饲料原料中25种真菌毒素的方法》Cleanert® MC 真菌毒素检测专用柱由多重填料按特殊比例填装而成,能实现几十种真菌毒素的同时检测。产品操作简单,无需活化、洗脱和淋洗步骤,一步过滤实现净化,LC-MS/MS方法定量更准确。目前,博纳艾杰尔可为您提供注射器和IC柱两种形式产品。样品处理 图1 空白玉米饲料基质匹配标准溶液的定量离子色谱图(1~12浓度为10 ng/g,13~25为50 ng/g)实验结果添加回收和精密度试验表明,平均回收率介于70%~120%之间,相对标准偏差(RSD)<20%
  • Captiva EMR 真菌毒素小柱
    Captiva EMR 真菌毒素小柱专为多类真菌毒素分析而设计。增强型基质去除 (EMR) 混合模式通过式净化可实现全面的化学品过滤。Captiva EMR 真菌毒素小柱采用安捷伦独特的吸附剂,经过优化并验证的配方专门用于多类真菌毒素分析,可实现高效的基质净化。差异化的性能提高了真菌毒素的总体回收率。更高的基质去除效率降低了基质效应并提高了数据质量。Captiva EMR 真菌毒素柱可减少 LC/MS/MS 上的基质污染和积累。特性:与传统的溶剂萃取相比,提高了多类真菌毒素的回收率降低基质效应并提高数据质量通过简单的小柱通过式净化简化工作流程无需进行多类真菌毒素分析的多种萃取方案适合自动化的小柱格式应用:玉米和大豆中 21 种真菌毒素的多类别多组分分析本研究开发并验证了一种分析干玉米粒和大豆中 21 种真菌毒素的方法,该方法首先使用 QuEChERS 萃取,然后使用 Captiva EMR 真菌毒素小柱进行 EMR 混合模式通过式净化,最后进行 LC/MS/MS 检测。该方法在基质去除方面相比 SIDA 方法有了大幅改进,并且与使用其他建议用于多组分真菌毒素分析的 dSPE 和 SPE 产品的基质净化方法相比,具有更高的真菌毒素回收率。宠物食品中的多类别多组分真菌毒素测定本研究开发并验证了一种分析宠物食品中 21 种真菌毒素的方法,该方法首先使用 QuEChERS 萃取,然后使用 Captiva EMR 真菌毒素小柱进行 EMR 混合模式通过式净化,最后进行 LC/MS/MS 检测。该方法在基质去除方面相比 SIDA 方法有了大幅改进,并且具有出色的回收率和重现性,以及可接受的最终定量准确度和精密度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制