抗性问题

仪器信息网抗性问题专题为您整合抗性问题相关的最新文章,在抗性问题专题,您不仅可以免费浏览抗性问题的资讯, 同时您还可以浏览抗性问题的相关资料、解决方案,参与社区抗性问题话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

抗性问题相关的资讯

  • 通过杀伤肿瘤中多种免疫抑制细胞克服PD-1治疗过程过程中的抗性问题
    PD-1抗体作为一种免疫检验点抑制剂 (Immune checkpoint inhibitors, ICIs) 已被FDA批准应用于多种肿瘤的临床治疗,包括肺癌、黑色素瘤、头颈癌等。但在临床推广和应用中还面临着两个严峻问题:一个是部分病人无法对PD-1的治疗产生应答,即出现初始抗性 (Primary Resistant) 的临床问题;另一个是部分病人虽然初始有应答,但随后会对PD-1的治疗产生抗性,即获得性抗性(Acquired Resistant) 问题【1】。这两个问题极大限制了PD-1 的临床应用。2021年11月1日,来自美国维克森林大学医学院的鲁勇课题组(现已任职于Houston Methodist/Weill Cornell Medicine,详情请见本文最后)在Nature Biomedical Engineering上发表了题为 Elimination of acquired resistance to PD-1 blockade via the concurrent depletion of tumour cells and immunosuppressive cells的研究论文,首次从杀伤肿瘤中各种免疫抑制细胞的角度,为克服PD-1抗体治疗过程中出现的抗性问题提出了解决方案。研究人员首先进行大数据分析肿瘤微环境中各种免疫抑制性细胞 (如 Tregs, MDSC, TAM.M2)是否有共有的靶点。该研究中发现肿瘤微环境中各种免疫抑制性细胞相比较非抑制性细胞均高表达CD73这个膜表面蛋白。对此研究人员引入了一种刚刚被日本临床批准的肿瘤治疗新方案即光免疫疗法【2】 (Photoimmunotherapy),将一种特定光吸收剂与CD73抗体相欧联(下图上),这种光吸收剂在近红外光的照射下可以快速诱导能与CD73抗体结合的细胞坏死(下图下)。研究人员通过这种能同时杀死肿瘤微环境中各种免疫抑制性细胞和表达CD73的肿瘤细胞的方案,在小鼠三阴性乳腺癌中成功克服了PD-1抗体治疗中出现的获得性抗性问题。但是数据也显示任何一种免疫抑制性细胞的残存都可以导致治疗的后期复发问题,这提示同时杀伤全部类型免疫抑制细胞的重要性。最后研究人员也使用了肿瘤表面不表达CD73小鼠胰腺癌肿瘤模型,发现即使肿瘤表面不表达CD73,单纯通过光免疫疗法杀死肿瘤微环境中的免疫抑制性细胞也成功克服了PD-1抗体疗法在胰腺癌中出现的初始抗性问题。这项研究工作为克服PD-1抗体在临床应用中出现的初始抗性问题和获得性抗性问题可供了应用性极强的解决方案,很大程度上扩宽了肿瘤治疗中PD-1抗体的临床应用范围。原文链接:https://doi.org/10.1038/s41551-021-00799-6
  • 科学家利用杀伤肿瘤免疫抑制细胞克服PD-1治疗中的抗性问题
    PD-1抗体已被应用于多种肿瘤的临床治疗,但其存在的初始抗性和获得性抗性两个问题极大限制了PD-1的临床应用。近日,美国维克森林大学医学院的研究团队在《Nature Biomedical Engineering》发表了题为“Elimination of acquired resistance to PD-1 blockade via the concurrent depletion of tumour cells and immunosuppressive cells”的文章。  研究人员通过大数据分析肿瘤微环境中各种免疫抑制性细胞,发现与肿瘤微环境中各种免疫抑制性细胞相比,非抑制性细胞均高表达CD73蛋白。利用光免疫疗法能杀死肿瘤微环境中各种免疫抑制性细胞和表达CD73的肿瘤细胞的方案,在小鼠三阴性乳腺癌中成功克服了PD-1抗体治疗中出现的获得性抗性问题。进一步利用肿瘤表面不表达CD73小鼠胰腺癌肿瘤模型,发现即使肿瘤表面不表达CD73,单纯通过光免疫疗法杀死肿瘤微环境中的免疫抑制性细胞也成功克服了PD-1抗体疗法在胰腺癌中出现的初始抗性问题。  该项研究,从杀伤肿瘤中各种免疫抑制细胞的角度,为克服PD-1抗体治疗过程中出现的抗性问题提出了解决方案。   论文链接:https://doi.org/10.1038/s41551-021-00799-6
  • 英国新研究:人造病毒有望解决耐药性问题
    p style=" text-align: left text-indent: 2em " & nbsp 随着许多地方对抗生素的滥用,不少细菌已开始呈现耐药性,一些所谓“超级细菌”甚至对现有大部分抗生素都具耐药性,一旦感染人类就很难治疗。因此医学界一直在研发新型抗生素,但研发速率严重落后于细菌出现耐药性的速率。 /p p style=" text-indent: 2em " 英国国家物理实验室等机构研究人员在新一期英国《自然· 通讯》杂志上发表的研究报告说,他们在实验室中人工合成了一种病毒,能像微型无人机一样,在微观世界中发现细菌细胞并发起攻击,它可以通过接触并破坏细胞膜而将整个细菌摧毁。相比而言,此前一些抗生素需要进入细菌细胞,并击中里面的某个目标才能产生效果。 /p p style=" text-indent: 2em " 这种人工合成病毒摧毁细菌细胞的方式意味着细菌不容易对它产生抵抗性,从而有助于解决细菌耐药性问题。报告作者之一、国家物理实验室学者马克思· 里亚德诺夫说,这项研究或许能给治疗感染类疾病带来可长期有效的新方法。 /p p style=" text-indent: 2em " 研究人员说,这种人工合成病毒未来还可用于基因编辑等领域。目前一些基因编辑技术常用某种病毒为载体,将所需基因运送至细胞内部。 /p p style=" text-align: right " 新华社/张家伟 /p

抗性问题相关的方案

抗性问题相关的论坛

  • 【“仪”起享奥运】抗性淀粉的作用

    [size=16px][font=宋体, SimSun][b]抗性淀粉的作用[/b][/font][font=宋体, SimSun][b][/b][/font][font=宋体, SimSun][b]抗性淀粉优化肠道环境[/b][/font][font=宋体, SimSun]抗性淀粉不会被人体的胃和小肠所消化,从而能完整地进入大肠。在进入大肠后,肠道中的有益菌会利用这些淀粉进行发酵。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]有益菌的发酵能够改善肠道的环境,比如降低肠道的PH值,产生短链脂肪酸。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]而在这些脂肪酸中,含有丰富的丁酸盐。丁酸盐是大肠中细胞的优质能量来源,它能减轻炎症,并降低结肠直肠癌的风险。并且,这些短链脂肪酸可以维持肠道壁的完整性,从而防止肠漏症的发生。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]丁酸盐不仅仅只是停留在肠道中,它还能进入血液循环,对于人体的其他部位也可能起到作用。在人体血液的免疫细胞中,丁酸盐具有很强的抗炎症作用。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]值得提出的是,与其他益生元相比,抗性淀粉能更大幅度地增加丁酸盐的含量。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]此外,在动物实验中发现,抗性淀粉能够增加肠道对钙、铁、镁的吸收。[/font][font=宋体, SimSun][/font][font=宋体, SimSun][b]抗性淀粉能够降低血糖水平[i][/i]并提高胰岛素敏感性[/b][/font][font=宋体, SimSun]抗性淀粉对于人体的代谢健康起着重要作用。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]胰岛素抵抗是许多慢性炎症性疾病的诱因,其中包括代谢综合征、老年痴呆症、肥胖和心血管疾病。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]许多研究发现,抗性淀粉能够提高胰岛素的敏感性,并且抗性淀粉对于餐后血糖的降低也起到很好的作用。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]在一项研究中,超重和肥胖人群在每天摄入15-30克的抗性淀粉时,他们的胰岛素敏感性可以得到很好的提升,达到的效果等价于他们体重降低10%时产生的效果。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]此外,抗性淀粉拥有『延餐效应』,也就是说,你中午吃了富含抗性淀粉的食物,晚餐后的血糖也能够被降低。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]事实上,抗性淀粉在大肠中被细菌分解时,其产生的葡萄糖就会马上被肠道细菌所利用,而基本不进入人体的血液。[/font][font=宋体, SimSun][/font][font=宋体, SimSun][b]抗性淀粉帮助减肥[/b][/font][font=宋体, SimSun]抗性淀粉能从不同的方面产生帮助减肥的功效。我们上面提到了,抗性淀粉能够降低血糖改善胰岛素敏感性,这对于减肥是有帮助的。另外抗性淀粉能增加人的饱腹感,并减少脂肪储存细胞的脂肪储量。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]小鼠实验表明抗性淀粉能够减轻体重。[/font][font=宋体, SimSun][/font][font=宋体, SimSun][b]抗性淀粉帮助治疗过敏[/b][/font][font=宋体, SimSun]研究发现,长期摄入抗性淀粉能够减少肠道细胞的凋亡,并保持肠道粘膜的完整性。并且,它能够减少肠漏症的发生并防止外毒素进入血液循环。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]而过敏和自身免疫疾病往往和肠道通透性[i][/i]的增加相关,因而抗性淀粉可能会对此起到帮助。[/font][/size]

  • 【“仪”起享奥运】抗性淀粉及其分类

    [size=16px][font=宋体, SimSun][b]什么是抗性淀粉?[/b][/font][font=宋体, SimSun][b][/b][/font][font=宋体, SimSun]1992年的时候,FAO(联合国粮农组织)根据Englyst和欧洲抗性淀粉研究协作组(EURESA)的研究,将其定义为:“健康者小肠中不吸收的淀粉及抗性淀粉的降解产物。”通俗的来说,抗性淀粉在小肠中不能被吸收并且酶解,但其在人的肠胃道结肠中可以和挥发性脂肪酸进行发酵反应。因此,抗性淀粉又称为抗酶解淀粉、难消化淀粉。[/font][font=宋体, SimSun][/font][font=宋体, SimSun]RS广泛存在与一些水果及豆科作物中,食物加工过程如热处理含淀粉食品,如谷类早点及面类食品等都会产生RS,它不像膳食纤维那样较易保持高水分。[/font][font=宋体, SimSun][b]抗性淀粉的分类[/b][/font][font=宋体, SimSun][b][/b][/font][font=宋体, SimSun][b]RS1 [/b][/font][font=宋体, SimSun]RS1为生理上不接受的淀粉,一般为整个谷粒和大的淀粉颗粒。指那些因细胞壁的屏障作用或蛋白质的隔离作用而不能被淀粉酶接近的淀粉。如部分研磨的谷物和豆类中,一些淀粉被裹在细胞壁里,在水中不能充分膨胀和分散,不能被淀粉酶接近,因此不能被消化。但是在加工和咀嚼之后,往往变得可以消化。[/font][font=宋体, SimSun][/font][font=宋体, SimSun][b]RS2[/b][/font][font=宋体, SimSun]抗性淀粉颗粒,指那些天然具有抗消化性的淀粉。主要存在于生的马铃薯、香蕉和高直链玉米淀粉中。其抗酶解的原因是具有致密的结构和部分结晶结构,其抗性随着糊化完成而消失。[/font][font=宋体, SimSun][/font][font=宋体, SimSun][b]RS3[/b][/font][font=宋体, SimSun]回生淀粉指糊化后在冷却或储存过程中结晶而难以被淀粉酶分解的淀粉,也称为老化淀粉。如煮熟的冷土豆等。[/font][font=宋体, SimSun][/font][font=宋体, SimSun][b]RS4[/b][/font][font=宋体, SimSun]化学改性淀粉[i][/i](ChemicallyModifiedStarch)主要指经过物理或化学变性后,由于淀粉分子结构的改变以及一些化学官能团的引入而产生的抗酶解淀粉部分,如羧甲基淀粉、交联淀粉[i][/i]等。同时,也指种植过程中,基因改造引起的淀粉分子结构变化,如基因改造或化学方法引起的分子结构变化而产生的抗酶解淀粉部分。[/font][/size]

  • 【求助】谁知道PBT材料的化学抗性?

    聚對苯二甲酸丁二醇酯(PBT)的化学抗性的资料?即PBT能溶解于哪些有机溶剂?(指甲苯、四氢呋喃、二氯甲烷等等)我以前记得PBT可以溶解于甲苯,但是过了比较久,记得不是很清楚。

抗性问题相关的资料

抗性问题相关的仪器

  • 电位滴定仪通常用于样品含量分析,用已知浓度的滴定剂和待测物进行化学反应,通过消耗滴定剂的体积,计算样品的含量。任何仪器设备都是为了准确的结果而产生,但实际使用中,污染、磨损、老化一定相伴左右。工程师在维修滴定仪的时候,经常发现驱动器的推杆被污染、导致机械部件被磨损和腐蚀,更有甚者会腐蚀电路板,这些都是原本可以避免的。如何能够保持仪器长期稳定的运行状态,确保日常实验结果一致、可靠并延长仪器的使用寿命和持续产出能力?本期小梅课堂,将为您介绍电位滴定仪日常使用注意事项以及科学的维护保养方法。电位滴定仪日常使用和维护注意事项如下:使用环境仪器的各单元均应经常保持清洁干燥,并防止灰尘及腐蚀性气体侵入;仪器的使用环境温度及滴定液温度不得超过35℃,避免滴定剂浓度的变化引入结果误差;仪器的插座必须保持清洁、干燥,切忌与酸、碱、盐溶液接触,防止受潮,以确保仪器绝缘和高输入阻抗性能。外观检查请检查设备外部管路是否有破损、严重老化情况,若存在请及时更换,避免漏液及造成结果方面的误差。仪器清洁使用纯水冲洗搅拌桨,电极,滴定管等部件(如配置有手动淋洗装置,按压3-5次淋洗泵头即可),将电极保存于相应缓冲液中(电极杆末端有标注需要使用何种缓冲液,对于有加液口的电极,保证电极内部缓冲液液面不低于加液口1cm以上,关闭加液口胶塞保存)。滴定管中不要长期静置存放碱性或易结晶的滴定剂(如NaOH或AgNO3滴定剂),避免结晶磨损玻璃管和三通阀从而损坏滴定管,如2天以上不使用,建议用纯水冲洗滴定管。红色橡胶管红色橡胶管久用易变形,使弹性变差,这时可放开支头螺钉,变动橡胶管的上下位置以便于使用;如橡胶管已无法使用,可用备件更换,在更换前应放在微碱性溶液中煮数小时;切勿使用与橡胶管起作用的高锰酸钾等溶液,以免腐蚀橡胶管。设备重启重新启用设备时,建议先断开仪器主机背面与电源适配器的power接口,电源适配器与插座连接无异常后再连接power接口。按压设备正面电源键完成开机。其他操作与日常无异,重新填充滴定管,标定滴定液浓度后即可开始实验。服务建议如听到滴定仪有异响、结果数据有偏差,或需要维护保养与校准等服务,请及时拨打服务咨询热线4008-878-989联系我们。梅特勒托利多提供的电位滴定仪维护保养与校准服务,可对仪器进行周期性服务,确保掌握仪器当前运行状况,及时发现潜在风险,并可快速进行预防性处理。我们可对驱动器、信号板及滴定管三个关键部件进行校准,由此得出的结论更加全面和可靠。欢迎报名参与小梅课堂线上培训课程,看资深服务专家为您在线解读滴定中的常见问题,如滴定资源缺失、提示服务到期、溶剂管理器(无法加液和排废液)等,以及相应解决方案。关于 METTLER TOLEDO Service梅特勒托利多一直致力于为全球用户提供全方位的优质设备服务与支持,确保您的设备在整个生命周期内的合规性及良好性能。如您有任何问题,欢迎拨打站内咨询热线,或点击”立即咨询“,请服务顾问与您联系。
    留言咨询
  • 点击蓝字!关注我们目前用于植物抗性品种筛选的仪器设备大多比较复杂,数据繁多,数据分析耗时多,难以快速筛查出指示性指标。 PhenScope高通量植物抗性筛选系统,以监测植物的叶绿素荧光变化特征为基础,在大田条件下,自动在线测量,可以快速筛查抗性样本。同时在线测量32个样本,太阳能供电,远程数据传输,野外长期独立工作。可用于突变株&抗性株筛选、遗传育种、植物病理学、植物胁迫生理学等应用研究。大田条件下多样本同时测量主机技术特点01探头配备专利日光暗适应模块,方便在白天同时对大批量植物自动进行暗适应测量。抗性筛选都会选择测量叶绿素荧光参数,大部分叶绿素荧光参数需要在暗适应的条件下测量,同时伴随着频繁使用高强度饱和光闪,研究证实夜晚在植物的同一位置上频繁出现的饱和光闪会破坏植物组织,对植物的光合能力产生影响,而白天进行暗适应测量,可以减少对植物生长的影响。 每个探头都配备暗适应模块,程序化设计,解决了田间大批量植物同时进行暗适应测量的难题,也可以随意设置不同时间不同处理的暗适应测量。日光暗适应模块关闭状态日光暗适应模块打开状态02可以同时测量叶绿素荧光参数和叶绿素含量,几秒钟测完大批植物。非接触式叶绿素含量探头可以直接测量叶绿素绝对含量(单位:mg/m2),几乎所有的植物叶片都可以测量。一次可以测量多株植物。采用调制光测量,不受环境光照影响。防水设计,非常适合监测营养胁迫。还配有快速测量NDVI、NDRE、PPR&CCCI植被指数的探头,适合测量C3、C4或CAM植物的干旱胁迫和氮胁迫。叶绿素含量探头用于营养胁迫NDVI、NDRE、CCCI探头用于干旱胁迫、氮胁迫03精确测量qE、qM、qT和qI参数,准确评估植物光合效率和生产力。qE、qT、qI、qM是NPQ的四个分量,多用于抗性品种的鉴定,Goss和Lepetit(2015)使用光保护性成分qE、qM鉴定抗性品种。各种研究人员提出了计算NPQ分量的正确方法(Maxwell and Johnson 2000,Guadagno et al.2010,Rohá?ek2010,Kasajima et al.2015,Tietz et al.2017)可用于鉴定抗性品种或评估qE在胁迫耐受性中的效率。qI是光合作用的光抑制作用,是植物对环境压力和变化的保护性调节。 准确计算四个分量有助于从光合特性的角度深层次研究植物的抗性机理。qE、qM、qT、qI测量结果显示抗性筛选试验方案01筛选抗旱品种, 测量Fv/Fm、Y(II)、ETR、NPQ、qP参数测定:配置32个荧光探头,每个探头测量一株植物。选择系统已有程序,凌晨4点开始,依次测量Fv/Fm,每60min测量一次,共测量3次。然后测量Y(II),ETR、NPQ、qP,每30min测量一次,共测量10次。以上步骤均为系统自动测量,无需人为操作。Fv/Fm、Fo、Fm测量结果显示Y(II)、ETR、qP、qN、NPQ测量结果显示02筛选耐弱光植物,测量Fv/Fm、Y(II)、ETR、NPQ、qP、qE、qM、qT、qI、RLC参数测定:配置32个荧光探头,每个探头测量一株植物。选择系统已有程序,凌晨4点开始,依次测量Fv/Fm,每60min测量一次,共测量3次。然后测量Y(II),ETR、NPQ、qP,每30min测量一次,共测量10次。测量qE,qT,qM和qI,测量完成。再调用系统内置的RLC快速光曲线程序,测量8个光强梯度下的RLC曲线,每隔两小时测量一次,共测量3次,以上步骤均为系统自动测量,无需人为操作。Y(II)、ETR、NPQ测量结果显示RLC快速光曲线测量结果显示03筛选耐高温植物,测量Y(II)、叶绿素含量。参数测定:配置32个探头,16个荧光探头,16个叶绿素含量探头,平均分配,每个探头测量一株植物。选择Y(II)和叶绿素含量测量程序,测量Y(II)和叶绿素含量CCI,每60min测量一次,共测量5次。以上步骤均为系统自动测量,无需人为操作。Y(II)测量结果显示Y叶绿素含量测量结果显示(mg/m2)04筛选耐低温植物,测量Fv/Fm、Y(II)、ETR、qP、NPQ、qE、qI参数测定:配置32个荧光探头,每个探头测量一株植物。选择已有程序,先测量Fv/Fm,每10min测量一次,共测量3次。然后测量Y(II),ETR、NPQ、qP,每30min测量一次,共测量10次。最后测量qE,qT,qM和qI,测量完成后,测量完成。以上步骤均为系统自动测量,无需人为操作。Y(II)、ETR、NPQ、qP、qE、qM、qI、qT测量结果显示05筛选耐盐碱,土壤肥力差地区生长的植物,以氮缺乏为例,测量叶绿素含量和Y(II)参数测定:配置32个探头,16个荧光探头,16个叶绿素含量探头,平均分配,每个探头测量一株植物。选择Y(II)和叶绿素含量测量程序,测量Y(II)和叶绿素含量CCI,每60min测量一次,共测量5次。每次测量间隙,光化光都会自动关闭,测量完成。抗性筛选案例01使用美国Opti-Sciences公司OS5p+叶绿素荧光仪选择Y(II)、ETR、NPQ荧光参数,比较弱光条件的大麦和小麦的光合特性的变化(Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions,2019),结果显示弱光胁迫条件下大麦显示出比小麦更强的光合作用适应性,在辐照度降低的情况下也可保证产量。小麦和大麦弱光胁迫下Y(II)、ETR和NPQ的差异比较02使用美国Opti-Science公司的CCM300叶绿素含量仪和OS1p便携式叶绿素荧光仪选择CCI、Fv/Fm、Y(II)荧光参数,筛选蓝莓适宜生长的土壤(Growth, Fruit Yield, Photosynthetic Characteristics,and Leaf Microelement Concentration of TwoBlueberry Cultivars under Di?erent Long-Term SoilpH Treatments,2019),结果显示酸性土壤(pH=4.5)适合蓝莓生长,并筛选出ChaoyueNo.1是适合在高pH环境下生长的蓝莓品种。两个品种的蓝莓在不同土壤pH下,CCI、Fv/Fm、Y(II)和光合速率的比较03使用美国Opti-Science公司OS5p+叶绿素荧光仪利用Fv/Fm、qN、qP筛选抗旱金银花品种(刘志梅,蒋文伟,2012),结果显示,不同干旱胁迫处理条件下,不同品种的金银花Fv/Fm、qN值显示出不同程度的降低,qP呈上升趋势,3种金银花抗旱能力排序为红花金银花>京红久金银花>台尔曼忍冬.三个品种的金银花,不同干旱胁迫下Fv/Fm、qN、qP的比较04使用美国Opti-Science 公司OS5p+叶绿素荧光仪,选择Fv/Fm、Y(II)、ETR、qP和qN对比两种速生树种竹柳和尾巨桉的抗旱性(白晶晶,吴俊文,2015)。结果显示,干旱胁迫下,两个树种Y(II)、ETR、qP和Fv/Fm均有不同程度的下降,尾巨桉的下降幅度大于竹柳;而qN呈上升趋势,竹柳上升幅度大于尾巨桉,两树种相比,竹柳的抗旱性更强。技术指标测量参数叶绿素荧光参数:Fv/Fm、Y(II)、ETR、qP、NPQ、qE、qT、qM、qI、Ik、Im、PAR、T叶绿素含量指数:CCI、NDVI、NDRE、PPR、CCCI标准荧光探头技术参数蓝光饱和脉冲强度: Fm’校正,7000 μmols/m2/s 方形顶脉冲,10000 μmols/m2/s红光饱和脉冲强度:Fm’校正,7000 μmols/m2/s 方形顶脉冲,10000 μmols/m2/s调制光源:Blue 455nm – 半波宽21nm的蓝色光源 Red 640nm - 半波宽17nm的红色光源光化光源:蓝光,可达5000 μmols m-2 s-1红光,可达5000 μmols m-2 s-1远红光源:结合暗适应模块用于Fo’测量或者暗适应模式中Fv/Fm测量前的预照射。检测器&滤波器: 具有700 ~ 750带通滤波器的PIN光电二极管叶绿素含量探头技术参数测量参数:CFR或叶绿素荧光比率(F735/F700),叶绿素含量mg/m2 测量面积:10cm—1.2m直径NDVI、NDRE、PPR & CCCI探头技术参数测量参数:NDVI, NDRE, PPR, CCCI测量面积:10cm—1.2m直径采样速率 : 1~10000点每秒,根据不同测量自动选择存储空间:2GB输出: CSV文件,可以通过wifi,以太网、U盘传输;可选手机、无线点对点、卫星电话传输方式供电:可以根据要求提供外部12伏电池。可以使用太阳能电源和主电源。操作温度: -10℃~+50℃
    留言咨询
  • 肉桂酸钾简介:1中文名:肉桂酸钾英文名称:Potassium cinnamate肉桂酸钾产生的一种多肽物质,由34个氨基酸残基组成。食用后在的生理pH条件和α—胰凝乳蛋白酶作用下很快水解成氨基酸,不会改变内正常菌群以及产生如其它素所出现的抗性问题,更不会与其它素出现交叉抗性,是一种的食品防腐剂。别名:3-苯基-2-丙烯酸钾,苯丙烯酸钾包装规格:25kg规格型号:99%质量标准:GB产品特性:性状:白色结晶粉末,易溶于水,微溶于乙醇,具有肉桂香气。 (1)面包、蛋糕、面条类、通心面、提高原材料利用率,改善口感和风味。用量0.05。(2)水产糜状制品、罐头食品、紫菜干等,强化组织,保持新鲜味,增强味感(3)调味酱、番茄沙司、蛋黄酱、果酱、稀奶油、酱油,增稠剂及稳定剂。(4)果汁、酒类等,分散剂。(5)冰淇淋、卡拉蜜尔糖,改善味感及稳定性。(6)冷冻食品、水产加工品,表面胶冻剂(保鲜)。
    留言咨询

抗性问题相关的耗材

  • ExAssist Helper Phage w/ XOLR
    包括 XOLR 的 ExAssist 辅助噬菌体与 Lambda 表达载体系统试剂盒共同用于大量切除 ZAP Express 或 Lambda ZAP 载体中的文库。pCMV-Script 或 pBluescript 噬菌粒将生长。 ExAssist 辅助噬菌体设计用于从 ZAP Express 载体有效细胞内切除 pBK-CMV 噬菌粒载体,同时防止辅助噬菌体共感染的问题。ExAssist 辅助噬菌体可以简单快速地切除多个克隆。在克隆水平监测切除效率。 ExAssist 含有琥珀突变,可防止噬菌体基因组在非抑制大肠杆菌菌株(例如 XLOLR 细胞)中复制XLOLR 细胞对 Lambda 感染具有抗性,可防止切除后的 Lambda DNA 污染XLOLR 细胞对 Lambda 感染具有抗性,可防止切除后的 Lambda DNA 污染
  • 肽分离反相生物色谱柱标准品
    肽标准品用于反相色谱中的系统适用性和色谱柱性能测试。定期使用肽标准品时,可快速检测色谱柱或仪器性能的任何变化并加以纠正,从而减少数据不确定性问题,避免不必要的重复分析。特性:针对反相色谱进行优化包含亲水性、疏水性和碱性侧链的肽尺寸范围包括用于每批 AdvanceBio 肽谱分析色谱柱测试混标的谱图
  • 一次性注射器
    产品特点 1、该产品推杆与活塞创新的设计、合二为一,推杆头有弹性,采用高压锅密封圈和打气筒的原理,与筒体紧密结合,具有良好的密封性,解决了现有一次性注射器中的渗漏问题。提高了产品的安全性和有效性。 2、该产品采用PP(聚丙烯)材质,化学抵抗性高,在常温下对常规化学溶剂如二氯甲烷、四氢呋喃、甲醇、乙腈、丙酮、异丙醇、丁二醇及多种有机酸如乙酸、草酸、水杨酸等均显示出出色的化学抵抗能力。 3、无橡胶活塞,有效的避免了胶塞可能存在化学物质的渗出和环氧乙烷灭菌时可能残留的易氧化物对样品的污染,保证了实验结果的准确性。 4、筒体无需要添加硅油、凡士林等润滑剂,避免了硅油、凡士林等化学物质的渗出对样品的污染,更加提高了产品的安全性能。 5、刻度线由注塑一次成型(受照片像素影响不是太清楚,但实物的刻度线十分清晰),减少了生产环节,避免了采用印刷油墨对产品的污染。

抗性问题相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制