火星科研

仪器信息网火星科研专题为您整合火星科研相关的最新文章,在火星科研专题,您不仅可以免费浏览火星科研的资讯, 同时您还可以浏览火星科研的相关资料、解决方案,参与社区火星科研话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

火星科研相关的资讯

  • 地质地球所火星研究团队关于天问一号火星探测最新研究成果发表
    9月26日,中科院地质地球所火星研究团队召开“祝融号巡视雷达揭秘火星浅表结构”媒体解读会,解读“天问一号”火星探测最新研究成果。   2021年5月15日,我国首次火星探测任务“天问一号”携带的“祝融号”火星车在乌托邦平原南部预选着陆区成功着陆,开启巡视探测工作。乌托邦平原是火星最大的撞击盆地,曾经可能是一个古海洋,预示着火星早期可能存在过宜居环境。这里的地质如何演化?现今具有怎样的地下结构?地下是否存在水或冰?我所联合中国科学院国家空间科学中心和北京大学,利用“祝融号”获得的第一手科学探测数据分析结果,通过最新《自然》论文,报道了围绕这些重要科学问题取得的突破性进展。研究表明,“祝融号”火星车着陆区火表数米厚的风化层下存在两套向上变细的层序,可能反映了约35-32亿年以来多期次与水活动相关的火表改造过程。现今该区域火表以下0-80米未发现液态水存在的证据,但不排除存在盐冰的可能。   详细的火星地下结构和物性信息是研究火星地质及其宜居环境演化的关键依据。我国“天问一号”携带的“祝融号”火星车次表层探测雷达能够对巡视区地下浅层结构进行精细成像,深化我们对乌托邦平原演化、地下水/冰分布等关键科学问题的认识。   “祝融号”火星车搭载的次表层探测雷达是世界上首次在火星乌托邦平原实施的巡视器雷达探测。到目前为止,人类在地外天体上共开展了四次巡视雷达探测。其中,我国嫦娥三号和嫦娥四号分别实现了对月球正面和背面浅表结构的精细探测。美国毅力号和我国“祝融号”火星车于2021年先后开启了火星巡视雷达探测。不同的是,毅力号的探测区域为杰泽罗撞击坑边缘,其实际最大探测深度为15米。“祝融号”火星车探测区域为乌托邦平原南部,雷达频带较宽,其实际最大探测深度达80米。   在最新的研究中,科研人员对前113个火星日、探测长度达1171米的“祝融号”火星车低频雷达数据展开了深入分析,获得了浅表80米之上的高精度结构分层图像和地层物性信息,发现该区域数米厚的火壤层之下存在两套向上变细的层序。第一套层序位于地下约10-30米,含有较多石块,其粒径随深度逐渐增大。距今大约16亿年以来的短时洪水、长期风化或重复陨石撞击作用可能导致了这一套向上变细沉积层序的形成;第二套层序位于地下约30-80米,其石块粒径更大(可达米级)且分布更为杂乱,反映了更古老、更大规模的火表改造事件。基于前人撞击坑统计定年结果推测,这次改造事件可能发生在距今35-32亿年前,与乌托邦平原南部的大型洪水活动有关。   “祝融号”火星车次表层探测雷达的主要目标之一是探测乌托邦平原南部现今是否存在地下水/冰。低频雷达成像结果显示,0-80米深度范围内反射信号强度稳定,介质具有较低的介电常数,排除了巡视路径下方含有富水层的可能性。热模拟结果也进一步表明,液态水、硫酸盐或碳酸盐卤水难以在“祝融号”火星车着陆区地下100米之内稳定存在,但目前无法排除盐冰存在的可能性。   研究所高度重视“天问一号”火星探测的研究工作,在“天问一号”科学探测数据发布后,第一时间组织全所行星科学领域的科研人员,成立所内火星探测研究工作任务团队,开展多学科交叉的优势队伍协同攻关,全面开展开“天问一号”载荷数据的综合分析和研究。此次发表于《自然》的论文文章,是该团队取得的首批研究成果,也是研究所前沿科学联合攻关模式下的新收获。由国家航天局探月与航天工程中心发布的“天问一号”科学探测数据,为本次火星研究工作提供了坚实的数据保障。
  • "好奇号"携尖端仪器 追寻火星生命
    “好奇号”火星车的大小几乎相当于一辆SUV,质量是前两部火星车的五倍。它携带的设备是迄今为止送往火星的最为专业和先进的仪器。 (NASA官方网站/图)   与勇气号和机遇号用气囊包裹着落地不同,好奇号采用了一种更新颖的着陆方式,就好像是用起重机吊着着陆一样。 (NASA官方网站/图)   体积相当于一辆SUV,满载最先进的仪器   与2004年登陆火星的勇气号和机遇号相比,刚升空的好奇号要比它们大得多。当它于2012年8月抵达火星后,将以前所未有的精度寻找火星上可能存在过的水的痕迹,以及其他生命存在的基础。   2011年11月26日,美国宇航局的“火星科学实验室”在美国佛罗里达州卡纳维拉尔角空军基地发射升空,开始了它前往火星的八个半月的太空飞行。   “火星科学实验室”的外形是一辆火星车,它也被叫做“好奇号火星车”(Curiosity Rover)。与2004年登陆火星的勇气号和机遇号两辆火星车相比,好奇号要比它们大得多。它的大小几乎相当于一辆SUV,质量是前两部火星车的五倍。   “我们将世界上最先进的科学实验室送往了火星,这让我们非常兴奋。”美国宇航局局长查尔斯博尔登(Charles Bolden)表示,“火星科学实验室将告诉我们一些我们想要知道的关键信息,在它促进科学发展的同时,我们也会发展载人登陆那颗红色星球的能力,以及前往其他我们从未去过的目的地的能力。”   自二十世纪初期开始,人们凭着望远镜中看到的火星影像和头脑中的想象,认为火星上可能存在生命,乃至火星人。然而,当最早的着陆探测器海盗1号和2号在1976年触及火星表面的时候,人们大失所望。   “来自海盗2号(的照片)显示了一个寒冷、贫瘠、干燥、显然死掉了的行星。”美国宇航局火星探测项目科学总监迈克尔梅耶(Michael Meyer)说,“就像你能想象到的那样,人们对火星探测的热情随之一落千丈。”   然而,也是在同一时期,科学家在地球海洋底部的深海热泉里发现了极端微生物的存在。“由此开始,科学家开始了一系列在极端环境中寻找生命的研究。从这些研究中我们了解到,生命可以适应各种环境,看起来唯一必需的要素就只有液态水。”梅耶说。   1996年,美国宇航局发射了火星全球勘探者号探测器。这开启了新的探索火星的时期,一系列的轨道器和着陆器被送往火星。探测的结果让科学家了解到,火星并不是海盗号眼里那个“死掉了的行星”,它其实蕴藏着活力。   自那时起,美国宇航局火星探测任务的科学目标就围绕考察火星是否曾经支持生命存在而进行,此次的好奇号火星车亦进一步推进美国宇航局“跟着水走”的战略。当它在2012年8月抵达火星后,将用一个火星年(687个地球日)的时间以前所未有的精度寻找火星上可能存在过的水的痕迹,以及其他生命存在的基础。   2004年登陆火星的勇气号和机遇号火星车已经发现,火星在过去曾经是温暖和湿润的,甚至可能存在过海洋。但是后来它的环境发生了巨大的转变。   尽管过去十年里探测器已经发现了粘土、硫酸盐、水道等令人期待的火星环境特征,但博尔登称:“我认为好奇号火星车是自海盗号以来第一部追寻火星生命问题的探测器。”   全新的着陆方式   好奇号的降落点位于火星的赤道地区,它在明年落地时正值火星南半球的深冬季节。降落点位于一个叫做盖尔的陨石坑(Gale Crater)。与勇气号和机遇号用气囊包裹着落地不同,好奇号采用了一种更新颖的着陆方式,就好像是用起重机吊着着陆一样。通过这种方式,项目人员希望能够把探测器的着陆点控制到一个更小的区域内。   当探测器经过长途跋涉,到达火星上空131千米的时候,它就进入了所谓“进入、下降和着陆”(EDL)阶段。这个阶段大约持续7分钟,但实际的情况取决于届时火星上的风速等大气条件。   “任何进入、下降和着陆火星的过程都是一个让你忍不住咬指甲的阶段。那不是一个没有风险的环境。”火星科学实验室项目经理皮特泰辛格(Peter Theisinger)在发射前的发布会上说。   好奇号火星车是被防护罩包裹着进入火星大气层的,外观就像一个陀螺。在进入大气层之前九分钟,“陀螺”背壳上的推进器会将整个探测器的姿态调整成隔热罩面对大气层。这项调整完成之后,探测器会从背壳上释放出两个钨制的配重,每个配重有75千克,以这种方式来改变整个探测器的重心位置。这是为了让探测器做好与火星大气冲击的准备。   在探测器进入到火星大气层顶部之后,背壳上的推进器会再进行一系列的喷射,以调整探测器的飞行角度和方向。这会让探测器呈“S”形路径飞行,这种飞行方式一方面会减少探测器下降过程的水平距离,同时也能够修正由风造成的偏移。这个过程被称为“制导进入”,它由探测器根据实时探测到的信息自动完成。   “与之前的火星任务相比,制导进入技术让探测器对不可预测的大气条件产生更为灵敏的应对。”美国宇航局在一份介绍材料中写道。   探测器在着陆前的减速过程中,90%的贡献都来自火星大气的摩擦力。隔热罩承受到的最高温度会出现在进入大气层后80秒,大约有2100摄氏度。   然后探测器还有一次调整重心的动作,这次是在降落伞打开前,它丢掉六个配重,将重心调整回到对称轴上。   当探测器到达距离火星表面11千米的高度时,降落伞打开。24秒之后,隔热罩脱离。此时,好奇号仍然蜷缩在背壳之中,位于8千米的高度。与此同时,好奇号所携带“火星下降摄影机”苏醒过来,开始工作。它将下降过程拍摄成视频传回地球,一方面供互联网上的“粉丝”们观看,另一方面,这段视频也以更高的分辨率拍摄了着陆点的环境,让科学家能够依据它来制定出好奇号最初的活动路线。   再过几十秒,探测器下降到1.4千米的高度时,背壳也会分离,此时探测器以每秒80米的速度下降。探测器上安装的八台制动火箭开始喷射,为探测器进一步减速,直至下降速度降低到每秒0.75米。   好奇号所携带的科学仪器是在2004年确定的,当时美国宇航局从征集来的方案中遴选出了八个装置,外加一台来自西班牙和一台来自俄罗斯的装置,一共10台。“当宇航局确定了任务的目标和相应的科学仪器时,我们就看出我们得制造一部很大的火星车。很明显的一点就是,你没法用气囊让这样大的火星车成功着陆。”泰辛格说。   “如果你想一下的话,”他继续说,“只有两种推进型方式将火星车着陆:要么把火星车放到推进系统上面,要么把火星车放到推进系统下面。”如果选择前者的话,那么落地之后如何让火星车开下来将会是个令人头疼的问题。   于是,“空中起重机”(sky crane)的概念诞生了。“起重机”在距离地面20米时释放出尼龙绳,吊着好奇号下降,同时八台制动火箭中的四台熄火。这时好奇号已经不再蜷缩在背壳之内了,场面有点像直升机吊装货物,但直升机被换作了四脚喷火的飞行器。   在接触地面之前,好奇号的轮子伸展开来,一旦它们触及地面,尼龙绳便会断开连接,“起重机”飞到150米乃至300米开外,完成任务。   然后,电脑从“进入、下降和着陆状态”转换为“地表状态”,好奇号开始它在火星表面的探索工作。   尖端仪器   好奇号带上火星的设备是迄今为止送往火星的最为专业和先进的仪器。它“头”上的两个眼睛是两部相机,其中一部能够跨越七个足球场的距离分辨出对面放的是篮球还是足球。另外一部在好奇号抵达一个新地点的时候,能够用25分钟拍摄150张照片,然后合成一幅全景照。   这两部相机能够拍摄出彩色照片,但是其原理与以往送往火星的CCD相机有所不同。以往的相机是用不同的滤光镜拍摄一系列照片,然后地球上的科研人员将这些不同颜色的照片合成为彩色照。而好奇号的CCD能够在一次曝光中直接获得红绿蓝三种颜色,它所得到的照片会更加接近人眼的视觉。   好奇号还携带了一个被叫做“化学相机”的仪器,它能够发射出激光,击中7米之外的岩石或土壤。被激光击中的物质会产生出等离子体,而“相机”通过观测等离子体的光谱,来测定目标物的成分。设备中的分光仪能够测定6144个不同波长的光,而不同的物质被离子化后所发出的光具有特定的波长。这部化学相机的射程足以帮助科学家寻找下一个近距离采样和分析的目标。   “假如岩石表面附着了尘土或者有了风化外皮,那么(好奇号)可以发射数百次重复的激光脉冲来把表层打掉,以测量到内部成分,并可就内部和表层的成分进行对比。”美国宇航局的材料介绍说。   另外一部“阿尔法粒子X射线分光仪”则能够在10分钟的快速检测中,探测到岩石中含量低至1.5%的成分。如果给它三个小时时间,它就能够探测到含量在万分之一量级的物质。它尤其对于硫、氯、溴等与盐的生成密切相关的物质敏感,从它们中可能会看出是否曾经与水发生过作用。   好奇号有两部直接分析岩石和土壤样本的仪器,分别是“化学和矿物学分析仪”和“火星样本分析设备”。   好奇号的机械臂上有钻头和小勺子,对于岩石,它会用钻头获取样本 对于土壤,用小勺子就可以了。取得样本后,机械臂上的筛子能够把直径大于 150微米的颗粒剔除掉。完成这一步后,机械臂把样本倒入“化学和矿物学分析仪”的入口漏斗,然后通过震动让这些样本进入到仪器里。   在“化学和矿物学分析仪”的内部,有32个像衬衫纽扣一样大的小盒子,它们是用来盛放样本的。它们安装在一个转轮上,这样就可以通过转动轮子来让任何一个小盒子位于X光的照射之下。从地球出发时,小盒子中已经有5个装上了地球的样本,这是用来做校准的。   检测使用了X光衍射的方法,这也是第一次在火星任务中使用这种方法。负责该仪器的首席科学家自1989年以来就在研制X光衍射设备,他的很多技术已经商用,尤其是在发展中国家进行假药筛查。   “火星样本分析设备”是整个火星车上最大设备,有一个微波炉那么大。如果是在地球上的实验室里,它所集成的那些仪器能会占很大的空间。它包括了一台质谱仪、一台激光分光仪和一台气相色谱仪。   根据美国宇航局相关材料介绍,与当年登陆火星的海盗号相比,好奇号的“火星样本分析设备”在三个方面具有优势。首先,好奇号具有更好的机会。它的选址综合了近年来的发现,选择的是希望最大的区域。它也有更好的机动性,还可以钻取岩石样本。其次,“火星样本分析设备”的灵敏度大为提高,能够探测到含量低至十亿分之一的有机物质。第三,它使用的衍生技术让仪器的识别范围更广。   在寻找水的努力上,好奇号还有一件利器,叫做“动态中子返照率设备”。这种设备实际上早先在地球上是用于石油勘探的,它发射出中子,然后通过观察中子与氢原子核相互作用后发生的能量变化来确定氢的存在。后来科研人员将它重新设计后用于月球和火星探测。在2002年,火星奥德赛号探测器曾经用这种设备发现了火星高纬度地下的水冰。   好奇号全副武装,做好了一切寻找火星水和有机分子的准备。但科学家们并不确定他们真的能找到任何东西。“尽管火星上可能存在过生命这一点能够激起兴趣,如果发现火星上的条件不适合生命存在也是有价值的,这会有助于研究火星和早期地球之间的不同点和相似点。”美国宇航局强调。
  • 登陆火星第一步:大气探测
    火星距离地球较近,是人类有望率先登陆的地外行星,因此一直是国际行星探测的重点目标,是除月球外人类探索最多的地外天体。火星大气数据测量能够建立和完善火星大气模型,而所有的火星航空器,例如气球、直升机、扑翼机和固定翼飞机等,必须参考火星大气测量数据进行开发和研制,才能确保其工作性能。这对未来开展火星探测研究、载人登陆和开发火星资源具有重要的意义。“天问一号着巡合影”  1.火星大气数据测量是火星探测的首要任务  在太阳系中,火星环境与地球最为相似,可能保存着太阳系生命起源和行星演化中,灾难性变化的最好记录,对研究地球起源与演化具有非常重要的比较意义,是探寻地外生命、探索生命起源与演化等重大科学问题最有价值的目标之一。火星距离地球较近,也是人类有望率先登陆的地外行星,因此一直是国际行星探测的重点目标,是除月球外人类探索最多的地外天体。  火星大气数据测量是火星探测的首要任务,对了解探测器来流参数、大气环境和探索火星尘暴具有重要的意义。这种测量可以获取火星大气静压、密度和风速等参数,建立和完善火星大气模型,为下一步火星表面常规航空飞行器,如气球、直升机、扑翼机和固定翼飞机等开展探测提供技术支撑。  这是因为,所有的火星航空器必须参考火星大气测量数据进行开发和研制才能确保其工作性能。因此,火星大气数据测量对未来探测火星、载人登陆和资源开发具有重要的意义。  “天问一号”是我国首次探测火星的飞行任务,在国际上首次通过一次飞行任务实现火星“环绕、着陆、巡视”的三步跨越,是我国航天事业发展又一具有里程碑意义的进展。  此次“天问一号”任务实现了中国火星探测零的突破,也是国内首次搭载火星进入大气数据测量系统(MEADS),获取了一手火星探测大气科学数据。这使国内行星科学大气探测研究取得显著进步,成功开启了中国行星大气探测的新征程。“天问一号”任务的实施,构建了中国独立自主的行星大气探测基础工程体系。  目前,利用“天问一号”火星探测器搭载的大气数据测量系统,我国已成功获取了沿探测器飞行弹道海拔60千米以下的大气静压、密度、风速、总压、马赫数、攻角和侧滑角等珍贵数据,完善和修正了现有的火星大气数据模型,成为继美国之后,世界第二个近距离测量火星大气的国家。  2.火星大气受环境影响非常多变  我国此次“天问一号”的火星进入大气数据系统,其测量结果与欧洲航天局提供的火星大气模型偏差较大,特别是在20千米高度以下,静压偏差达到120Pa,相对误差接近100%。  这种情况此前也曾出现过——美国“机智”号火星直升机,多次出现由于静压降低,在地面无法正常起飞的现象。可以推断,火星大气静压受到环境影响变化很大。这是对火星大气探测的新进展。  此前,世界其他国家也多次开展了火星探测,在火星大气探测方面,也取得了很多进展。科学家们已经发现,火星大气非常稀薄,密度只有地球的1%左右,表面大气压500Pa~700Pa。  火星大气的主要成分为二氧化碳和氮气等,而且经常有沙尘暴。火星大气层与地球大气层都有氮气、二氧化碳存在,这是火星与地球最大的相似之处。火星表面温度白天最高可达28℃,夜晚降低到-132℃,平均-57℃。虽然二氧化碳含量是地球的几倍,但因缺乏水汽,所以温室效应只有10℃,比地球的33℃低得多。火星大气的这些特征决定了深空探测器在火星进入阶段必须要经历比地球大气更稀薄、声速更低的大气环境,大气介质在飞行器高超声速进入中更易电离,电离后的高温气体将使探测器温度升高。  二氧化碳是火星大气的主要成分。冬天时,火星的极区进入永夜,低温使大气中多达25%的二氧化碳在极冠沉淀成干冰,到了夏季则再度升华至火星大气中。这个过程使得极区周围的气压与大气组成在一年之中变化很大。  和太阳系其他星球相比,火星大气有着较高比例的氩气。不像二氧化碳会沉淀,氩气的总含量是固定的,但因为大气中二氧化碳的浓度会在冬夏季发生变化,氩气在不同地点的相对含量也会随季节而改变。根据近期的卫星资料,南极区在秋季时氩气含量提高,到了春季则会降低。  火星大气变化很大。当夏季二氧化碳升华回大气时,留下微量的水汽。季节性、时速接近400公里的风吹过极区,带着大量的沙尘与水汽,其中水汽造就了霜与大片卷云。2008年,美国国家航空航天局“凤凰”号发现火星地下冰——当地大气中的水分在晚上时会消失,同时土壤的水分则会增加。  火星大气中含有十亿分之一级的微量甲烷,这由美国国家航空航天局戈达德太空飞行中心的团队于2003年首次发现。甲烷的存在十分吸引人,它是不稳定的气体,必有某种来源。据估计,火星每年产生约270吨的甲烷,但由小行星带来的只占0.8%。虽然地质活动也可提供,但火星近期缺乏火山活动,甲烷来自热液活动、热点等的可能性较低。微生物(如甲烷古菌)也可能是其来源之一,但尚未证实。火星甲烷的分布不是全球性的,这表示它在充分分布均匀之前就已被破坏,不过这也指出它是被不时释放至大气中的。目前火星探测计划希望寻找可能的伴随气体,借以推测其甲烷的来源。因为,在地球海洋中,生物产的甲烷常伴随着乙烯,而火山作用产生的甲烷则伴随着二氧化硫。  2005年,有研究发现橄榄石与水、二氧化碳于高温高压下蛇纹岩化后可产生甲烷,过程与生物无关。在地表下几公里深即可满足反应的温压条件,且要维持目前甲烷浓度几十亿年,所需的橄榄石量并不多,增加了甲烷无机来源的可能。不过,如果要证实,就得发现此反应的另一产物蛇纹岩。  欧洲航天局发现甲烷的分布不均匀,但却和水汽的分布相当一致。在上层大气这两种气体分布均匀,但在地表却集中在三处:阿拉伯地、埃律西昂平原和阿卡迪亚平原。有科学家认为这种一致性增加了生物来源的可能。如果要证明甲烷的分布与生物有关,探测船或登陆艇需要携带质谱仪,分析火星上碳12与碳14的比例(即放射性碳定年法),便可辨别出是生物还是非生物源。  2013年,根据“好奇”号得到的进一步测量数据,美国国家航空航天局科学家报告,并没有侦测到大气甲烷存在迹象,测量值为0.18±0.67ppbv,对应于1.3ppbv上限(95%置信限),因此总结甲烷微生物活性概率很低,可能火星不存在生命。但是,很多微生物不会排出任何甲烷,仍旧可能在火星发现这些不会排出任何甲烷的微生物。  3.火星航天器都携带大气探测传感器  火星是太阳系中与地球最相似的行星,是最有可能存在生命和实现人类移民的星球。早在人类开始利用地基望远镜观测深空的时候,对火星的观测就开始了。随着航天科技的发展,人类开始使用航天探测卫星对火星进行详细探测,使系统性火星研究得以开展。  2012年,美国国家航空航天局的火星科学实验室进入舱成功进入火星大气层,并在火星表面盖尔环形山位置安全着陆,实现了人类首次对火星大气数据的近距离测量研究,其上就携带了嵌入式大气数据传感系统,即火星进入大气数据系统。  目前,火星研究使用的卫星探测数据主要来自美国和欧洲航天局的火星轨道探测器。火星大气和气候的研究是火星航天探测的主要目标之一,迄今发射的每一个火星航天探测器都携带有大气探测传感器用来研究火星大气的状态,分析火星气候乃至研究火星大气远古时候的状态,进而分析火星大气和气候长期演变的原因。  由于火星大气非常稀薄,密度只有地球的百分之一左右,其大气的主要成分为二氧化碳和氮气等,而且经常有沙尘暴。这种恶劣的气候条件,对大气数据测量系统的软件和硬件设计产生很大影响。由于探测器在进入火星大气层的飞行弹道马赫数高达30,而到达近地面时马赫数接近2。飞行速域宽,出现马赫数无关性和化学非平衡反应效应等物理现象对火星大气数据测量算法建模造成很大困难。  在此次“天问一号”的火星大气测量任务中,我们的科研团队针对火星探测器进入飞行弹道的高马赫数、化学非平衡效应和低动压等特点,提出了大气数据测量方法,并利用自主研发的航天计算流体力学软件平台(CACFD)的化学非平衡模型/完全气体模型计算,获得火星探测器宽速域飞行流场的表面压力点数据,建立了基于神经网络的火星进入大气数据系统(MEADS)算法模型。  4.大气逸散和水汽变化是未来研究重点  火星大气初期探测阶段主要目的是了解火星大气和气候的属性信息,确定火星大气是否适合生命的存在。二十世纪九十年代后多个火星探测器相继升空,获取了连续的火星航天观测数据,这一阶段火星大气探测的主要目的除了初期的目的之外,理解火星大气和气候的分布和变化规律,研究其演变历程也是主要目的。两个阶段中水汽都作为主要探测目标之一。  火星就像一个低温、干燥的荒漠式地球,具有明显的季节变化和年际重复性,但南北半球具有不对称性。火星数十亿年前曾经拥有大气层和液态水,曾经适合生命繁衍。但如今的火星却是一个冰冷的不毛之地,曾经浓厚的大气层现在却变得十分稀薄。科学家推测,火星可能经历过重大变化。  火星大气现状研究能为了解火星发展历程提供基础信息,这对解答火星上是否有生命存在和人类能否移民火星等问题非常重要。此外,研究火星大气和气候的演变过程可以更好地理解地球大气与气候变化,有助于预见地球气候变化带来的灾难性影响。  火星的大气层从几十亿年前就已经开始流失,逐渐从一个湿润、温暖的宜居星球变成了寒冷干燥的沙漠。迄今为止,科学家们已经知道了火星磁层,但还没弄清磁层如何影响着火星大气层,以及太阳风到底输送了多少能量从而导致大气逸散,这也是未来开展研究的重要方向。  大气温度是对大气状态的最基本的描述,也是热红外波谱反演大气参数和隔离行星地表热发射的起点。火星大气中常年悬浮着气溶胶,以沙尘和冷凝物两种形式出现,气溶胶会影响大气热结构和影响大气成分的时空分布,水汽含量在火星大气中虽然很少,但水汽是变化最显著的大气成分,水汽循环是火星气候研究的关键因素。  因此火星大气研究最初多集中在大气温度、气溶胶和水汽的空间分布和时空变化以及三者之间存在的相互影响关系上。随着火星航天探测数据的增多,针对火星大气中的痕量气体(甲烷、水汽和臭氧等)成分的含量与分布研究开始增加。水汽是火星上变化最大的痕量气体,它的分布尤其是垂直分布,通过光化学反应和它产生的云的辐射效应影响其他大气过程。因而火星大气中的水汽是火星大气研究中最惹人注目的存在,而且水汽本身是变化剧烈的微量气体,对于火星气候循环有重要作用,也是火星上是否存在生命的佐证。  尽管对火星水汽的观测已经进行了数十年,但对于火星水汽循环机制仍然知之甚少,来源具体在哪儿、空间分布的形成原因、水汽与气溶胶的耦合等也需要科学家们开展更多研究。  (刘周、李国良、刘晓文、杨云军、周伟江为共同作者,作者单位为:中国航天空气动力技术研究院)

火星科研相关的方案

火星科研相关的论坛

  • 探究金凤液氮罐的创新特性,提升科研实验效率

    探究金凤液氮罐的创新特性,提升科研实验效率

    金凤液氮罐作为现代科研实验中常用的冷冻设备,具有许多创新特性,能够有效提升科研实验效率。本文将探讨金凤液氮罐的创新特性,并分析其在提升科研实验效率方面的作用。首先将介绍液氮罐的基本原理和结构特点,然后重点剖析金凤液氮罐相对于传统液氮罐的改进之处,包括温度控制精度、安全性、便携性和智能化程度,并分析这些改进对科研实验的意义。最后,将就金凤液氮罐的未来发展趋势进行展望,以期为科研工作者提供借鉴和思考。  液氮罐是一种用于存储和运输液氮的设备,通常用于生物样品的冷冻保存和实验操作中。液氮的温度极低,约为-196摄氏度,在科研实验中具有重要的应用。传统的液氮罐结构简单,主要由双层不锈钢容器、绝热材料和压力释放装置组成,具有低温保持时间长、运输便利等优点。然而,传统液氮罐也存在着诸多不足,例如温度控制精度不高、存在安全隐患、操作复杂等问题。为了解决这些问题,金凤液氮罐在技术上进行了创新,使其具有更高的性能和更好的适用性。[img=细胞冻存,677,489]https://ng1.17img.cn/bbsfiles/images/2023/12/202312010948123004_918_3312634_3.jpg!w677x489.jpg[/img]  首先,金凤液氮罐在温度控制精度方面进行了改进。传统液氮罐在使用过程中由于外界温度变化或操作失误可能导致内部温度波动较大,影响实验结果的准确性。而金凤液氮罐采用了先进的温度控制技术,能够精确控制罐内温度在所需范围内波动,保证样品处于稳定的低温状态,从而提高了实验数据的可靠性和重复性。  其次,金凤液氮罐(www.mvecryoge.com)在安全性方面进行了重大改进。液氮具有极低的温度和挥发性,一旦泄漏可能对人体和环境造成严重危害。传统液氮罐在使用过程中存在安全隐患,如意外压力释放、样品破损等情况可能引发事故。而金凤液氮罐配置有多重安全保护装置,包括温度报警系统、自动压力释放阀等,有效预防了意外事件的发生,保障了实验人员和实验样品的安全。  此外,金凤液氮罐还在便携性和智能化程度方面进行了改进。传统液氮罐通常较大且重量较重,使用不便于携带,限制了实验的灵活性。而金凤液氮罐采用轻量化设计,使得它更易携带和操作,满足了移动实验室和野外调查的需求。同时,金凤液氮罐还配备了智能温度监测与控制系统,能够实时监测罐内温度并进行自动调节,提高了实验操作的便利性和效率。[img=液氮罐,690,540]https://ng1.17img.cn/bbsfiles/images/2023/12/202312010948467451_3172_3312634_3.jpg!w690x540.jpg[/img]  金凤液氮罐的创新特性极大地提升了科研实验的效率。其高精度的温度控制保证了实验数据的准确性和重复性,多重安全保护装置则保障了实验人员和实验样品的安全,轻便的设计和智能化系统则提高了实验操作的灵活性和便利性。可以预见,金凤液氮罐未来的发展趋势将更加注重智能化和数字化,结合大数据和人工智能技术,为科研实验提供更加高效、便利的支持。  综上所述,金凤液氮罐作为一种新型冷冻设备,具有诸多创新特性,能够显著提升科研实验的效率和可靠性。通过不断的技术创新和改进,相信金凤液氮罐将在未来的科研实验中发挥越来越重要的作用,为科学家们的研究工作提供强大的支持和保障。

  • 【转帖】美评出2006年度10大科学进展,预测07科研热点。

    2006年度十大科学进展:  1 庞加莱猜想的证明 属于数学中的拓扑学分支,1904年由法国数学家庞加莱提出,即如果一个封闭空间中所有的封闭曲线都可以收缩成一点,那么这个空间一定是三维圆球。科学家们已经达成共识,认为这一猜想已经被证明。2 从化石中提取DNA 利用DNA(脱氧核糖核酸)解码和分析技术,研究人员从尼安德特人化石和猛犸化石中获取了宝贵的遗传信息。  3 冰原在收缩 2006年研究人员记录下了这一“令人不安”的趋势,南极洲和格陵兰岛的冰原都在以前所未有的速度消失,流入海洋中。  4 鱼迈出的第一步 考古学家发现一种特殊的鱼化石,这种鱼能用胸鳍站立并“行走”,这可能是后来动物在陆地上用以行走的肢进化的开始。  5 隐身术的科学 虽然看上去一点也不像哈里波特的魔法斗篷,但科学家今年制造的隐身装置却是第一个将物体在视觉上屏蔽起来的雏形装置。它能引导入射的微波,使其既不反射,也没有影子。  6 黄斑变性患者的希望 研究“老年性黄斑变性”这种眼部疾病的专家们发现,一种药能显著改善患者的视力,他们还找出了几个使得人们易患该病的基因。  7 生物多样性如何发生 从沙滩小鼠到果蝇、蝴蝶,各种各样的动物们帮助科学家发现了促成新物种进化的遗传变化。  8 显微学的新前沿 2006年,生物学家们借助新的显微技术,成功观察到小于200纳米的细节,这为他们了解细胞和蛋白质的精细结构提供了更清晰的视野。  9 制造记忆 科学家们认为,大脑负责加强神经元之间连接的“长时程增强”过程现在看来很可能是大脑记忆的基础。  10 新一类的小RNA 科学家们发现了一类新的小RNA(核糖核酸)分子,它们能够关闭基因的表达,这类新分子被命名为“Piwi-干扰RNA”。(据新华社)美《科学》杂志预测2007年科研热点  据新华社电 美国《科学》杂志21日预测说,2007年的科研热门领域及话题将涉及全基因组相关性研究、气候变化、在其他恒星周围搜寻类地行星等。  全基因组相关性研究 是指将健康人的基因组与患病者的基因组进行全面对比,试图找出疾病的基因病理。这类研究目前正在以令人吃惊的速度兴起。  人类与灵长类基因组比较研究 《科学》杂志说,科学家已经完成人类和黑猩猩基因组的测序,下一步生物进化的基因研究将向灵长家族树的其他分支推进,可能最终解释人类是如何与其他灵长类动物在进化道路上分道扬镳的。  古人类化石 近年来,古人类学家在格鲁吉亚、中国、肯尼亚的多处考古地点新发掘出不少最早期人类的颅骨、牙齿、下肢等化石。从2007年开始,研究人员将陆续发布对这些化石的比较研究结果。  行星研究 2007年将是令人无比期待的一年,4个初出茅庐的行星探测器将在这一年全速运转。欧洲的COROT探测器2006年12月27日即将升空,它未来将专职搜索太阳系外行星。美国宇航局的“火星勘测轨道飞行器”2007年将在火星表面拍摄迄今最为清晰的图像,并启用雷达试图搜寻火星地表之下1000米深处的岩石层。欧洲的“金星快车”探测器也将全力工作。  气候变化问题 在2007年仍将是关注热点。《科学》杂志说,人类活动引发的气候变暖问题已经不容忽视。2007年2月,政府间气候变化问题研究小组将发布最新的全球变暖研究报告。新闻分析  解读2006年度  十大科学进展  每逢岁末,美国《科学》杂志都会公布当年度的十大科学进展。这是对全球科学研究的年终盘点,因此有“科学界的奥斯卡”之称。  在《科学》杂志22日公布的年度十大科学进展中,证明庞加莱猜想名列榜首,这应该符合大多数人此前的“猜想”。1904年,法国大数学家亨利庞加莱提出的猜想,成为数学界100多年未能证明的难题。  在今年夏天的国际数学家大会上,为证明庞加莱猜想作出杰出贡献的俄罗斯数学家佩雷尔曼毫无悬念地赢得了数学界最高奖——菲尔茨奖。而在佩雷尔曼的成果基础之上,来自中、美等国的多位数学家均对庞加莱猜想的最终证明作出了贡献。  过去多年来,数学类成果很少能入围《科学》杂志的年度十大进展。因此,此次证明庞加莱猜想登顶年度十大科学进展,也提醒科学界不应忽略数学作为现代科学技术的“金钥匙”地位。  多项基因生物技术的成果入围今年十大进展,反映了这一领域继续成为全球的科研热点。这些突破依然主要由美国科学家取得,这也是美国联邦科研机构将高比例研究经费投向基因生物领域的必然结果。  有关气候和环境领域的成果今年再次入选,表现出科学界对这一关系到人类生存和发展问题的重视。今年科学界已就此问题多次发出了强烈的呼声,如告诫北极冰层可能在2050年夏季完全消失、欧洲经历百年来最温暖的秋天等等。  值得注意的是,韩国科学家黄禹锡造假事件被评为“年度崩溃事件”。黄禹锡如今早已在科学界身败名裂,《科学》杂志再度将此事拎出来的用意应该是,提醒全世界的科学家们引以为戒,时刻保持严谨求实的科学作风。 ——————转自SOHU.COM

  • 科研管理系统如何实现科研数字化管理

    [font=宋体]为了实现科研工作的数字化管理,加速科研管理数字化发展进程。结合科研机构自身特点,整合科研工作所需要的各类资源,以信息共享为目标建设[color=#236fa1]科研信息化管理平台[/color]。将先进的科研管理制度引入信息化管理流程,改变了传统的科研管理方式,为科研管理奠定数字化基础。实现信息共享,减少在科研管理工作量与复杂度,最终达到科研项目管理规范化,流程化,提高了工作效率,提升了管理水平的目的。首先,我们了解科研管理系统的功能有哪些呢?[/font][font=宋体][b]1、科研成果:[/b]提供对科研成果、知识产权等技术成果全面的管理,促进新技术的推广应用,并对优秀成果进行鼓励和奖励。一般可以分为科研论文、著作、获奖、成果转载、鉴定成果、艺术作品、专利等。[/font][font=宋体]1)论文成果:用于实现学校科研人员论文按人、按文献类型、按发表年度、按来源进行自动归类展示,并与科研人员承担的科研项目相关联,为个人业绩及各级各类统计提供有效完备的数据支撑。[/font][font=宋体]2)著作管理:用于著作权信息管理,可分为专著、编著、译著等多种类型。[/font][font=宋体]3)获奖管理:针对组织成果进行报奖后获奖情况的管理。成果获奖包括基本信息、获奖作者和衍生成果三部分。[/font][font=宋体]4)专利管理:专利信息管理。[/font][font=宋体][b]2、学术活动:[/b]学校主办或者参与的学术会议、发表的会议论文、国内国外的学术交流等。对学术活动进行查询、学术活动新增、学术活动修改、学术活动删除、统计管理记录存档和常用报表等功能。[/font][font=宋体][b]3、科研考核:[/b]科研考核主要是通过建立科研工作量的量化指标和设置岗位考核标准,通过对科研项目、科研成果、科研奖励、学术交流等信息的综合分析,计算科研人员和科研单位的科研工作量,由系统所设定信息自动判断是否通过考核。考核流程为:设立考核批次-在考核机构表中,针对不同机构进行机构人员考核。[/font][font=宋体][b]4、年度统计:[/b]科研考核年度统计分为科技和社科两部分,并且每年需要对不同的归口部门提交不同的科研数据,完成相应的科研统计上报工作。平台需要兼容教育部统计系统,并能进行同步升级,避免实现信息孤岛,实现业务的统一。[/font][font=宋体][b]5、系统管理:[/b]针对于系统中角色及学校定义角色进行权限分配。为科研人员进行角色、帐号、密码、权限分配以及对统计数据及基础数据的导出、对邮件服务器及页面操作帮助信息的填写等。[/font][font=宋体]1)用户管理:完成对申报单位、管理机构和评审专家等用户的身份认证,系统会根据用户类别分配权限及职能,从而提供个性化的服务。[/font][font=宋体]2)权限管理:通过了系统登陆审核的用户都具有使用上传、浏览、查询、导人、导出、打印等功能的权限。[/font][font=宋体]3)角色管理:分为管理员、专家、会员(包含项目负责人、项目成员)、普通访客。管理员拥有平台最高权限,发布及维护平台信息,人员权限分配,包含人员身份的审核及确定。[/font][font=宋体]以上是鸿仁科研管理平台的一些基本功能,鸿仁科研管理系统覆盖了科研业务全过程,包括科研项目管理、科技经费管理、成果鉴定管理、科技奖励管理、科技活动管理、科技资源管理、数据统计管理、工作流管理等。可以实现科研工作从项目申报到档案归档的全流程追溯和管理。未来鸿仁公司将乘势而行,紧跟云计算时代的发展潮流,立志成为国内信息化管理平台的开拓者。积极响应国家信息化和智能化进程的需求,持续推进信息化管理发展进[/font]

火星科研相关的资料

火星科研相关的仪器

  • 酵母活性测定仪 400-860-5168转2169
    酵母活性测定仪Gastograph 酵母活性测定仪是用来测量面团因酵母作用产生的CO2气体的产量以及酵母活性。Gastograph测量的是新鲜酵母和干(速溶)酵母,一次可分析多个样品。仪器有一个温控的打样箱,可在此处插入实验材料,仪器的发酵箱是橡胶密封的,再涂上铬。仪器测量一定时间期间内产生的CO2体积,可最多完成3个小时期间的测试,而不需要任何操作者操作。Gastograph酵母活性测定仪主要用于酵母制造商,面粉厂,烘焙厂,实验室和科研领域。实验结果分别以图表和CO2柱状图表示,并可以直接打印输出,也可以转换成pdf或excel文件格式。- 测定酵母质量- 数据和结果能被存储在电脑中- 在线绘制测试图表- 测试期间的在线温控- 高精确度(准确性0.5 ccm/CO2 )- 操作简单,稳健性设计- 容易校准- 内置电脑,可连接以太网- 可远程操控升级软件- 多种操作语言1 Gastograph酵母活性测定仪是用来测量面团因酵母作用产生的CO2气体的产量以及酵母活性。Gastograph测量的是新鲜酵母和干(速溶)酵母。Gastograph酵母活性测定仪主要用于酵母制造商,面粉厂,烘焙厂,实验室和科研 领域。2*. 一次可同时分析3个样品。3*. 仪器测量一定时间期间内产生的CO2体积,可最多完成3个小时期间的测试,而不需要任何操作者操作4*. 采用嵌入式工业PC以及专业的测量软件, 实验结果分别以图表和CO2柱状图表示,并可以直接打印输出 ,也可以转换成pdf或excel文件格式。在线绘制测试图表,在线温度控制。可连接以太网 ,可远程操控升级软件 ,多种操作语言5*. 测定酵母质量,测量最达到3000ccm/CO2, 电子测量和计算,无需要需要机械绘图和手动计算。 6. 数据和结果能被存储在电脑中 7. 高精确度 (准确性 0.5ccm/CO2) 8. 操作简单,稳健性设计 9. 具有校准功能10. 技术规格 : 尺寸:(HxDxW) 880+400mmx305mmx805mm,电源:220V50-60
    留言咨询
  • FLIR T865红外热像仪为科研领域提供了极大的灵活性和便携性,收集有意义的红外数据,无论是手持式或固定式配置。凭借低至-40℃的超大温度测量范围以及±1℃ / ±1%的测量精度等高级特性,为您保证每次温度测量都能获得准确的结果FLIR UltraMax和MSX(多波段动态成像)技术提供了优异的成像质量和测量能力。可选的微距模式允许您快速从广角切换到微距分析,无需更换镜头。热像仪自带的强大分析功能和将热辐射图像电影文件保存到可移动SD卡的能力,让用户能够在几乎任何环境中保存红外成像数据,或使用强大的FLIR Research Studio软件进行数据分析。精简且直观的用户界面和独特的功能组合,使所有级别的用户能够记录和评估来自多台FLIR热像仪和记录源的红外成像数据.良好的测量能力精确测量各种温度,并尽可能增加目标上的像素数,无需考虑目标的大小或与热像仪的距离。卓越的灵活性和便携性在几乎任何条件下收集有意义的红外数据,并且具有灵活的连接能力——无论是手持式或固定式配置。省时省力在执行红外分析时,无需复杂的调试,可尽快开始检测。
    留言咨询
  • SimulTek火星环境模拟试验舱SimulTek-MES主要用于模拟火星表面低气压、CO2气氛、大跨度风速和尘浓度、火星尘暴等综合/极端空间环境,开展火星尘物理与环境效应试验,揭示火星尘暴形成与演化机理,为航天器服役火星综合环境效应提供研究手段。 模拟装置主要技术参数:表面重力:0.38g平均地表温度: -600C温度范围: -145 to +200C紫外辐射光谱范围 ≥ 190nm气氛压力: 5-11 hPa平均PAR光子通量 : 8.6x1019 photons m-2 s-1气体成分: N2 0.189 hPa, 2.7%,O2 0.009 hPa, 0.13%,CO2 6.67 hPa, 95.3%,Ar 0.112 hPa, 1.6% 模拟环境条件如下: 1. 模拟火星大气压力2.火星气氛环境3. 火星环境温度4. 火星尘暴5. UV紫外辐射6. 质子辐射和电子辐射
    留言咨询

火星科研相关的耗材

  • 高端科研显微镜配件
    高端科研显微镜配件是生命科学和医学领域的科研级显微镜,提供40X-1000X的放大倍率,特别适合实验室科研等高级应用。 高端科研显微镜配件特点: 非常适合生物学,生命科学,医学等领域使用 具有4x,10x,40x,100x物镜配置,放大40--1000倍。 可添加相机组成显微成像系统。 具有50W或100W的卤素灯照明,适合220V/50Hz的中国电力标准。 可配置成多人共用显微镜,提供2人,3人,5人共用配置选项。 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于高端科研显微镜配件价格,高端科研显微镜配件品牌等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 科研用BD Vacutainer P800血浆蛋白保存系统
    BD Vacutainer P800血浆蛋白保存系统标准化收集和保存血浆即刻保存代谢相关生物活性肽的活性稳定-GLP-1(胰高血糖素样肽-1)-Glucagon(胰高血糖素)-GIP(肠抑胃肽)-Ghrelin(胃促生长素)
  • 热电仪器活性炭 美国赛默飞 大气环境监测仪 环保检测气体 111活性炭
    活性炭使用范围空气站、烟气监测,科研单位等精密仪器、用于峰悦奥瑞,赛默飞,先河,聚光,天虹,中晟,API,EC等空气站,烟气监测,精密仪器等过滤。热电活性炭优点:精密仪器专用;颗粒型/柱形;无杂质;吸附能力强;过滤效率高;特点:优质过滤效率高,适合空气站等精密仪器过滤,去除NO2,SO2,CO和O3等污染气体对仪器的影响;环保吸附能力强,同样重量,颗粒越细小吸附能力则更强;热电活性炭使用范围广 仪器配套广,各品牌空气站活性炭皆有生产。客户使用广各地运维公司优选活性炭,久经考验,荣获一致好评。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制