房屋裂纹

仪器信息网房屋裂纹专题为您整合房屋裂纹相关的最新文章,在房屋裂纹专题,您不仅可以免费浏览房屋裂纹的资讯, 同时您还可以浏览房屋裂纹的相关资料、解决方案,参与社区房屋裂纹话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

房屋裂纹相关的资讯

  • “房屋养老金”刷屏!将为建材、房屋检测行业带来哪些机遇?(附仪器清单)
    2024年8月23日,国务院新闻办公室举行“推动高质量发展”系列主题新闻发布会,住房和城乡建设部副部长董建国在会上表示,研究建立房屋体检、房屋养老金、房屋保险制度,构建全生命周期房屋安全管理长效机制,上海等22个城市目前正开展试点。此消息迅速在社会各界引起广泛反响,再度引发全民对于“房屋养老金”制度的热烈讨论与关注。什么是“房屋养老金”?从公开的消息看,目前,国内关于房屋养老金还没有统一的定义。中央财经大学教授、法学院院长尹飞发文表示,房屋与普通商品相比,其生命周期较为漫长。在这个过程中,为了保障房屋安全与正常使用,必然会出现房屋及其附属设施设备的保养、维护、维修乃至更换、重建的费用。这类费用就可以称作“房屋养老金”。它包括个人账户(现行的住房专项维修资金)和公共账户两部分。公共账户的建立是为了解决涉及公共安全的问题,如地震后房屋检测或楼盘出现重大安全隐患等情况,这是现有专项维修资金制度难以满足的需求&zwnj 。为什么要设立“房屋养老金”?近年来房屋安全恶性事件频发,如长沙自建房倒塌事件、建筑外墙脱落事件等。2022年4月,长沙自建房坍塌事故后,住建部在次月部署开展全国自建房安全专项整治,指出要研究建立房屋养老金制度,更好解决既有房屋维修资金来源问题。此前在2023年3月,住房和城乡建设部等15部门发布关于加强经营性自建房安全管理的通知,要求各地开展房屋定期体检、房屋养老金和房屋质量保险试点。另外,中指研究院市场研究总监陈文静表示,随着我国房地产市场逐渐进入存量时代,截至2022年底,中国城镇既有房屋中建成年份超过30年房屋占比接近20%,需要维护、改造的老旧房屋占比快速提升。现行的住宅专项维修资金整体资金量有限、提取效率低、使用效率不均,现有住宅专项维修资金不能满足房屋“应修尽修”问题,而且这些改造多集中于基础设施的更新,对房屋本体的维修和养护关注不足,也难以解决存量时代大规模的城市更新和老旧小区改造问题,尤其是现阶段老旧小区设施设备老化维修的需求。探索建立房屋养老金制度,为房屋提供全生命周期安全保障,有利于更好解决老旧小区改造资金问题,深入实施城市更新行动,进一步推动建筑业转型升级,加快构建房地产发展新模式。建筑材料、房屋检测市场迎来新机遇此制度必然带动新一轮城市老小区的改造和管理,自然也给建筑建材、房屋检测等行业带来很多新机会,其中包括电梯、燃气管道、墙面粉刷、传感器等市场领域。与此同时,工程质量保险评估行业也将迎来一定机遇。此次会议将“房屋安全保险”作为房屋安全管理长效机制三项制度之一,后续预计将在更多省市铺开,将带动工程质量保险评估需求上行,相关业务包括前期质量风险识别与评价、全过程质量风险控制、辅助制定承保策略等。后续,随着此制度的推行,必然会催生并拉动对仪器设备的采购需求。鉴于此,小编精心汇总了房屋检测与建筑工程质量评估中不可或缺的仪器设备清单,以飨读者。(如有纰漏,可文末留言或邮件:zhangxir@instrument.com.cn)序号仪器名称作用(一)结构材料强度检测1混凝土回弹仪检测一般建筑构件、桥梁及各种砼构件(板、梁、柱、桥架)的强度2混凝土取芯机从结构混凝土中钻取芯样以检测混凝土强度或观察混凝土内部质量3里氏硬度计检测钢筋表面硬度4砂浆贯入仪测量砂浆强度5钢筋扫描仪检测建筑物的钢筋布局和保护层厚度(二)损伤状况检测6超声波混凝土检测仪用于检测混凝土和钢筋混凝土中的裂缝、空隙以及其它缺陷7超声探伤仪用于检测建筑物结构中的隐患,如杆件、梁、板等的裂缝、穿孔、疲劳和腐蚀等问题8裂缝测量仪测量建筑物的裂缝宽度和深度,用于评估建筑物是否存在安全隐患,并制定相应的维修和加固措施9电磁辐射探伤仪墙体裂纹检测、钢筋锈蚀检测等10混凝土碱含量检测仪测量混凝土的碱含量,用于评估混凝土的耐久性和防腐蚀(三)变形检测与监测11沉降观测仪监测和记录建筑物或地基在垂直方向上的变形情况,以确保建筑物的安全稳定12水准仪房屋沉降检测13经纬仪检测结构变形、地基沉降、结构振动等14全站仪测量建筑物的倾斜角度、倾斜方向和高度等多种参数,快速获取建筑物的三维坐标数据,并进行数据处理,得出房屋倾斜情况的分析报告(四)建筑节能15红外热像仪检测热工缺陷,确保建筑性能及质量,评估建筑节能;建筑质量检测,用于建筑渗漏、电气系统、管道系统等16傅里叶变换红外光谱仪建筑节能检测17导热系数测定仪建筑节能检测18保温系统测定仪建筑节能检测19门窗气密性测定仪门窗气密性检测此外,该制度的实施无疑将为涉足房屋检测领域的公司带来积极影响。据东方财富网的数据显示,近期房屋检测概念板块发生异动,多家相关企业股价迎来上涨潮。同时,已有部分上市公司积极回应,宣布着手布局或加强在房屋检测业务上的投入与发展。因此,小编还整理了具有房屋检测资质的公司,以飨读者。(如有纰漏,可文末留言或邮件:zhangxir@instrument.com.cn)序号公司名称业务布局1华建集团公司目前拥有上海市房屋质量检测证书、检验检测机构资质认定证书,中国合同评定国家认可委员会检验机构认可证书、中国合同评定国家认可委员会实验室认可证书、测绘资质证书、上海市既有建筑幕墙现场检查组认定证书、上海市建设工程检测机构评估证书。2建科股份深耕建工领域多年,具有丰富的房屋检测、体检、鉴定经验。具备结构检测鉴定所需的资质,能够开展各类建(构)筑物的工程质量检测和结构鉴定,以及房屋安全的实时在线监测工作,并可为其修缮加固提供一体化解决方案。3华测检测在建筑领域的服务主要包括新建工程检测和既有工程鉴定评估两大板块。新建工程检测包括地基基础和工程变形监测检测服务、主体结构及装饰装修检测服务、钢结构检测服务、建筑材料及构配件检测服务、建筑节能及智能检测服务、消防工程检测服务、人防工程检测服务等。既有工程鉴定评估包括房屋建筑安全鉴定评估、道路桥梁及水利工程鉴定评估、户外设施鉴定评估、电气安全检查等服务。4上海建工下属天津市房屋质量安全鉴定检测中心有限公司,是天津市的专业检验检测机构,被中国建筑业协会授信为工程质量检测AAA级信用机构。5建科院房屋检测鉴定服务依托全资子公司开展,立足于深圳市、雄安新区,在上海市、惠州市及珠海市均设有分支机构,可满足华南地区和华北地区的检测服务需求,提供地基基础、主体结构、外墙幕墙、装饰装修、空气质量及节能设备的检测检验。6国检集团既有房屋检测鉴定业务仅为检验检测板块的细分领域之一。7设研院全资子公司中犇检测认证有限公司持有河南省住房和城乡建设厅颁发的“地基基础、室内环境、钢结构、主体结构、见证取样、建筑节能、建筑幕墙”等检测资质,8垒知集团旗下子集团健研检测集团作为建设综合技术服务的领军企业,为工程全寿命周期提供测绘、勘察、设计、鉴定、检测、评估、认证、咨询和培训等技术服务,其中包括房屋结构鉴定及加固业务。9华蓝集团持有广西住房和城多建设厅颁发的检测资质证书,广西区质量技术监督局颁发的检验检测机构资质认定证书,检测设备先进,检测手段完善,检测能力优秀,业务遍布全国,为建筑工程质量提供科学、公正、权威的检测数据和验收评估结论。10中钢天源通过中钢国检(国家金属制品质量检验检测中心/中钢集团郑州金属制品研究院股份有限公司)开展检验检测业务,拥有见证取样、地基基础、主体结构工程、钢结构工程等检测资质。
  • 焊缝中出现裂纹,原来还可以是这个原因!
    一个生产部件和组件的制造商向一个供应商订购了一批SS304不锈钢管材。制造商要对1800件管材进行切割和机械加工,然后再通过焊接方式将这些管材制造成更大的子装配件。不久,管理人员在无损检测(NDT)过程中发现了焊缝中有裂纹。接下来,立即叫停所有的生产过程,以对生产质量进行控制,直到查出问题的原因。调查的内容包括根据他们的标准操作程序(SOP)核查焊接保护气体、焊丝和焊接机的设置情况。但是,接着对焊缝的检测仍然表明存在着裂纹。质量控制经理建议对原始管材的材料证书进行核查。不出所有人所料,证书上清楚地表明这些管材就是他们所订购的SS304不锈钢管材。他们还在系统内部进行了其它方面的核查,但是一直没有找到问题的原因。 质量控制经理一筹莫展。还有什么情况他们没有核查?结果发现,他们实际上一直没有核实所接收的管材是否是SS304不锈钢管材。如果在接收这批管材时使用手持式X射线荧光(XRF)技术对货物进行核查,他们就会发现所收到的货物实际上是SS303不锈钢,这个牌号的不锈钢与SS304不锈钢的不同之处是多了硫元素,因而更容易进行机械加工处理,但是在焊接过程中却非常容易出现高温裂纹。如果在收到管材时对管材进行核查,以确保管材与材料证书所述的情况相符,则可以避免出现这种问题。而现在,制造商不仅被迫花费了很多宝贵的时间寻找问题的原因,而且还留下了一些已经开始制造,但是却无法使用的产品。不过,最终制造商还是很幸运,因为他们在出货之前发现了这个问题。如果他们所制造的部件在使用中出现了故障,则问题可能会变得更为严重。 如果这个制造商采用了整体验证计划对来料进行核查,则几乎可以消除加工错误材料的风险。那么,我们为什么会在制造过程中发现使用了错误的材料呢?这是因为每次材料运输时,无论是在工厂、库存商的仓库或服务中心,还是在制造商的仓库,或者在任何制造过程中,都会出现混料的风险。不正确的材料证书、不正确的标记,以及较差的追溯性都会导致材料出现混淆。 要想改变这种不良状况,在每个阶段对材料进行验证至关重要。手持式XRF分析仪就是一种广受欢迎的验证工具。我们的Vanta分析仪有助于制造商在制造过程的每个阶段,验证将要使用的材料是否是希望使用的材料。Vanta分析仪具有检测迅速、坚固耐用的特性,不仅可以在几秒钟之内提供准确的合金识别信息,而且可以在工业环境中持续正常地工作。借助选配的无线连通功能,用户还可以将分析仪连接到奥林巴斯科学云系统,从而可以轻松地将分析仪集成到任何智能制造设施中。奥林巴斯手持式X射线荧光分析仪可对包括镁和铀在内的很多元素进行快速无损分析,可检测出的含量从百万分率到100%。分析仪在检测速度、检出限及可检元素的范围方面具有优质性能。这款分析仪的外壳符合工业设计标准,极为坚固耐用,可以在恶劣的环境中正常工作。新型Vanta系列仪器性能改进:坚固耐用,高效多产仪器配备SD存储卡可使用WI-FI,蓝牙(Bluetooth)适配器进行数据传输可使用USB闪存盘进行方便快速的数据传输Axon技术提高分析结果的精准性IP 55/54—防尘防水坠落测试(MIL-STD-810G)探测器快门闸保护及聚酰亚胺网眼保护
  • 利用维氏硬度压痕裂纹表征材料的断裂韧度
    可以利用维氏硬度压痕裂纹计算材料的断裂韧度,尤其适合表征硬脆材料的断裂性能。学者提出了很多半经验半定量的关系式。裂纹主要有巴氏(Palmqvist或径向)和中位(Median)裂纹两种形式,有些公式适用于特定的裂纹形式,有些公式对两种(Both)裂纹形式都适用。微米硬度实验设备简单,测试方便,分析直接,不仅在工程实践中有广泛应用,也是评估材料断裂韧度的有效工具。断裂韧度作为衡量材料抵抗裂纹扩展能力的力学性能指标通常用临界应力强度因子KⅠC表示,单位为MPam0.5。字母K为应力场强度因子,反映的是裂纹尖端区域应力场强弱;字母C指的是裂纹扩展的临界情况;下标罗马数字Ⅰ是指裂纹扩展形式为张开型,脆性材料的裂纹扩展类型为Ⅰ型。测量材料KⅠC的方法主要有:山形切口梁法(C. N. B)、单边预裂梁法(S. E. P. B)、表面弯曲裂纹法(S. C. F)、单边切口梁法(S. E. N. B)、单边V形切口梁法(S. E. V. N. B)、短V形切口杆法(S. R)、双扭法(D. T)、双悬臂梁法(D. C. B)、微米划痕法、纳米压痕法和维氏压痕法等。S. R、D. C. B和S. E. P. B法的测试试样难生产、成本高,难以广泛使用;S. E. N. B、S. E. V. N. B和C. N. B法加工试样缺口较困难;D. T法试件的几何尺寸会对测量值产生影响;S. C. F法必须要去除足够深度的表面层来消除残余应力场,才能保证KⅠC不被高估;微米划痕法需要考虑压头的磨损以确保测试结果的准确性;而压痕法具有制备试样简单、测试效率高、以及综合成本低等优点,已被广泛应用于表征陶瓷材料、硬质合金和玻璃材料的断裂韧度。虽然基于Griffith-Irwin平衡断裂力学的压痕法可以反映材料断裂的特征,有效表征材料的断裂韧度,但是使用压痕法确定KⅠC仍然存在不足,依然有争论,比如:诸多半经验半定量的公式在实际应用中受到裂纹模式(径向,中位,横向等)多样复杂的影响,计算的KⅠC结果不可靠;不适用于低泊松比的材料。如何根据不同的材料、不同的压头选择适合的公式和载荷,是当前利用压痕裂纹法表征材料断裂韧度亟需解决的问题。各种依据维氏硬度压痕裂纹长度计算断裂韧度的表达式列于表1,对于不同的裂纹模式有不同的表达式。裂纹主要有两种类型,见图1:一种是基于半椭圆型的中位裂纹(Median crack);另一种是基于半月状的巴氏裂纹(Palmqvist crack)或径向裂纹(Radial crack)。可以基于曲线拟合的方法得到同时适用于两种(Both)裂纹模式的表达式。典型硬脆材料的压痕裂纹见图2,需要测量压痕的接触半径a和裂纹长度c,可以计算得到l=c-a。维氏硬度HV可以由载荷F除以残余压痕面积AV得到:式中,AV考虑了压痕的倾斜表面(sin68°可以由压头形状获得),而不是压痕的投影面积;d (= 2a) 是压痕两个对角线长度的平均值;当F和d的单位分别是mN和μm时,维氏硬度的单位是GPa。值得注意的是工程上使用的维氏硬度没有单位,而且相关标准里面也没有单位,这不利于各种测试方法的比较,无法有效服务于科学研究。可见,即使维氏硬度如此基础、简单、成熟,仍然有待进一步发展。由于仪器化压入的兴起,压入硬度HIT是根据投影面积定义,并且努氏硬度HK也是根据投影面积计算,传统的维氏硬度HV可以通过投影面积转换成梅氏硬度(Meyer hardness)HMV(=2F/d2), 便于各种硬度之间的比较。表1中的维氏硬度HV也可以转换成HMV。表 1 利用维氏硬度HV计算材料的断裂韧度Kc[1]注: ϕ = 3, β2 = 0.059[15], Φ = -1.59-0.34ξ-2.02ξ2+11.23ξ3-24.97ξ4+16.32ξ5, ξ = lg(c/a). E是材料的弹性模量. Hv可以在每个载荷下多次测量取平均值,作为某一载荷下的Hv.图 1 维氏硬度压痕裂纹模式示意图图 2 典型硬脆材料的维氏硬度压痕裂纹[1, 15, 16]作者简介刘明,福州大学机械工程及自动化学院教授,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员,ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学材料科学与工程学院本科、硕士,2012年12月获肯塔基大学(美国)材料科学与工程专业博士学位,法国巴黎高科矿业工程师学校材料研究所博士后,华盛顿州立大学(美国)博士后。2015年4月入职福州大学机械工程及自动化学院机械设计系力学教研室,获评福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn QQ:290716672 微信:hasanzhong参考文献[1] M. Liu, D. Hou, Y. Wang, G. Lakshminarayana, Micromechanical properties of Dy3+ ion-doped (Lu Y1-x)3Al5O12 (x = 0, 1/3, 1/2) single crystals by indentation and scratch tests, Ceramics International, 49 (2023) 4482-4504.[2] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 2 (1983) 221-223.[3] Z. Laiqi, H. Yongan, H. Lei, L. Jun-pin, Determination of empirical equation of fracture toughness for Mo5SiB2 alloy by indentation method, Trans. Mater. Heat Treat., 38 (2017) 178-183.[4] M. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett., 6 (1987) 355-356.[5] D. Shetty, I. Wright, P. Mincer, A. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci., 20 (1985) 1873-1882.[6] B.R. Lawn, M. Swain, Microfracture beneath point indentations in brittle solids, J. Mater. Sci., 10 (1975) 113-122.[7] K. Tanaka, Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model, J. Mater. Sci., 22 (1987) 1501-1508.[8] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture, J. Mater. Sci., 10 (1975) 2016-2024.[9] A.G. EVans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59 (1976) 371-372.[10] K. Niihara, R. Morena, D. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1 (1982) 13-16.[11] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64 (1981) 533-538.[12] C. Terzioglu, Investigation of some physical properties of Gd added Bi-2223 superconductors, J. Alloys Compd., 509 (2011) 87-93.[13] J. Lankford, Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method, J. Mater. Sci. Lett., 1 (1982) 493-495.[14] J.E. Blendell, The origins of internal stresses in polycrystalline Al2O3 and their effects on mechanical properties, Massachusetts Institute of Technology, 1979, pp. 1-47.[15] M. Liu, Z. Xu, R. Fu, Micromechanical and microstructure characterization of BaO-Sm2O3–5TiO2 ceramic with addition of Al2O3, Ceramics International, 48 (2022) 992-1005.[16] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.

房屋裂纹相关的方案

  • 磨削裂纹发生的原因
    磨削裂绞是淬火后未回火的零件,或含残余奥氏体多的零件磨削时出现的现象,这种裂纹不在磨削中发生,而在磨削后发生。磨削裂纹具有独特的形状,它与淬火裂纹不同,所以可立即进行区别。
  • 稳压器筒体焊接见证件裂纹探析
    通过金相、扫描电镜、光谱分析等方法对筒体焊接见证件的裂纹进行综合分析,确定该裂纹为冷裂纹且产生在热影响区。主要原因是见证件没有进炉后热而采用红外线电加热器的后热方式,电加热片与焊接见证件没有紧密贴合,焊缝中的扩散氢没有完全逸出。
  • 16MnR钢埋弧焊接头的焊缝裂纹分析
    针对焊接生产中16MnR钢埋弧焊焊缝出现的裂纹缺陷进行分析表明,有裂纹的焊缝区域颜色为红褐色,裂纹扩展方向与焊缝金属的结晶方向一致,这种焊缝裂纹是由于焊接过程中焊缝局部进入大量Cu造成的。由于Cu的熔点较低,焊缝金属凝固时Fe领先结晶,低熔点Cu最后凝固,被富集到晶界处,在焊接应力的作用下,仍处于液态的晶界金属被拉开,形成沿晶界分布的热裂纹,断口呈沿晶脆断特征,其实质是铜渗透裂纹。埋弧焊过程中铜质导电嘴与坡口表面局部接触起弧熔化,Cu进入焊缝中是引起焊缝热裂纹的根本原因。

房屋裂纹相关的论坛

  • 【分享】金山灣擬利用地熱調節房屋溫度!

    舊金山灣及其土壤幾乎不變的溫度,將可用作加熱或冷卻大型開發計畫下的房屋。 「沙利文發展商」基伊‧ 洛克透露,在金銀島渡輪碼頭及海灣附近高層住宅的管道將傳送平均溫度介於55至65度的液體。在夏季,管道中的液體將被海水冷卻,抽吸回住宅單位以作冷卻劑;在冬季,該系統將為房子加熱,令單位變暖。 「舊金山港口委員會」展覽總監湯姆‧ 羅克韋爾2月時表示,「探索博物館」若搬回15及17號碼頭,將計畫採用類似技術。 另方面,再生能源計畫經理約翰娜‧ 帕爾汀表示,「舊金山環保局」正調查地源熱泵系統是否能在珍寶島加熱或冷卻房屋。 該技術透過從房屋的地下管道抽吸液體,因此該等地下管道相對地不受空氣中的溫度所影響。 帕爾汀說,該技術同時有望應用在獵人岬造船廠、燭台岬社區、訪谷區及建議中的跨海岸運輸中心一帶。

  • 【原创大赛】焊点根部的微裂纹研究

    【原创大赛】焊点根部的微裂纹研究

    随着便携式电子产品(如手机、笔记本电脑、MP3和PAD等)以及机载电子产品种类和数量日益增多,对电子元器件封装的可靠性和耐久性提出了更为严格的要求。电子产品逐渐向微小型化、高精度装配封装方向发展,所以电子产品电路集成度不断提高,焊点数量不断增加变多,但尺寸却越来越小(如图1-1为硬盘的磁阻磁头的焊点)。 [img=,690,258]https://ng1.17img.cn/bbsfiles/images/2018/10/201810130937026709_6776_2942222_3.jpg!w690x258.jpg[/img] 如果继续使用传统的焊料或者传统的工艺往往会出现一些问题。比如在机械硬盘的磁阻磁头的焊接过程中,在6个焊点的焊接工艺中,使用的焊料是无铅钎料(Sn-Ag-Cu)。但是在8个焊点的磁阻磁头的焊接过程中,采用无铅钎料(Sn-Ag-Cu),经过激光焊接组装后,在焊接的根部往往会出现些微裂纹(图1-2);这些裂纹对磁阻磁头来说,是一个不能允许的缺陷的危害,且它会缩短磁阻磁头乃至这个硬盘的寿命。 [img=,428,425]https://ng1.17img.cn/bbsfiles/images/2018/10/201810130939145659_1310_2942222_3.jpg!w428x425.jpg[/img] 在研究中发现, 8个焊点工艺与6个焊点使用的无铅钎料的成分都是一样的;8个焊点中焊接时激光的功率也只是6个焊点的激光功率大了1/3;但是奇怪的是6个焊点经过焊接后的零部件并没有出现这样的失效模式。对缺陷焊点锡球进行断面(图1-3)制备,在扫描电子显微镜下观察截面微观观察,发现这个微裂存在于磁阻磁头浮动块焊接片所附着的氧化铝层,并集中在焊接片以及内部导线铜焊接柱附近。通过进一步对裂纹尺寸大小的测量,发现氧化铝层表面处的裂纹尺寸较大,而内部铜焊接柱附近裂纹较小。据此观察结果,认为裂纹是从浮动块氧化铝表面生成,并向氧化铝层内部铜焊接柱延伸。 [img=,655,331]https://ng1.17img.cn/bbsfiles/images/2018/10/201810130941217385_8371_2942222_3.jpg!w655x331.jpg[/img] 通过对焊接过程焊点应力分析发现,焊接处应力分布的最大变异值在焊点根部附近(图1-4焊接处应力分布图),这与电子显微镜观察到的微裂纹所在位置一致;且8焊点的应力最大变异值明显大于6焊点的(如表1-1)。 [img=,575,487]https://ng1.17img.cn/bbsfiles/images/2018/10/201810130943150808_8458_2942222_3.jpg!w575x487.jpg[/img] 据此认为8焊点的浮动块氧化铝表面微裂纹的产生与焊接时焊接处应力分布的不均匀性有关。在焊接时,在锡球合金金属层形成过程中,熔融的锡球需要释放出大量的热量,该热量在焊盘附近,因为焊接结构的形成以及焊盘周边材料热传导率的不同,在焊盘附近产生热量集中,从而加剧了热应力分布的不均匀性,导致微裂纹的产生,向氧化铝层内部释放应力。 图1-5是不同熔点锡球材料的相图,相图表明,随着金属铟的添加,锡球的熔点不断降低,且其对应的金属合金相的固化温度显著降低。熔点的降低意味着锡球焊接时所需要施加的能量的降低,而固化温度的显著降低,意味着锡球在融化后的固化过程中,材料自身进行了充分的热耗散,释放了更多的热量,从而降低了锡球固化过程中应力释放的要求,即相应减小了应力分布的不均匀性,从而降低了微裂纹产生的概率。 [img=,637,366]https://ng1.17img.cn/bbsfiles/images/2018/10/201810130945107604_2483_2942222_3.jpg!w637x366.jpg[/img] 实际应用中,采用了含铟的无铅钎料,以减小焊接过程中的微裂纹。本文研究中向无铅[color=black]钎料中添加了[/color][color=black]1%质量含量的金属In,研究表明添加1%质量含量的铟添加既可以消除该无铅钎料激光焊接过程中微裂痕的产生。[/color]

房屋裂纹相关的资料

房屋裂纹相关的仪器

  • 281M裂纹测深仪是一款高精度便携式裂纹深度测量仪器,主要用于测量各种金属表面裂纹深度。该仪器利用电位法进行深度测量,与其他裂纹检测方法(磁粉、涡流等)结合使用效果更佳。测量原理四个电极中,外侧A和D两个电极向工件持续施加交流电压,内测B和C两个电极用于测量裂纹两侧的微小电位差。此电位差与裂纹深度具有一定对应关系,仪器据此经过内部算法,最终显示出精确深度值。优势 1 与传统手段,如果涡流深度测量相比,可以更加快速直观地显示深度数值。2 可选配不同类型传感器,测量位置不受限。3 测量范围大:0.2-100mm4 测量误差小:20%5 281M使用充电电池,机身外形精巧,集成了电流生成技术、测量算法和微处理器的评测技术等多项功能。281M可以被应用于各种不同的场合,可极为理想地测量钢、奥氏体不锈钢和铝等金属材料裂纹深度。6校准时使用配套的具有不同深度裂纹的试块可提高测量精度。 特点• 磁粉探伤、渗透探伤理想的配套工具。发现裂纹后即可立即测量出裂纹深度数值。• 机身外壳小巧,易于随身携带,电池供电,适合在各种现场情况下使用• 轻量化机身(400克)• 裂纹深度显示单位:mm• 可测量倾斜裂纹深度• 探头不易损设计• 可选配探头:三种探头适合绝大多数工件测量位置与测深范围 多种校准方法最简单的校准方法就是在工件没有裂纹的位置进行零点校准,即可使用。此外,还可以使用与被测量材料完全一致的材料制作裂纹试块,编辑多深度值测量曲线,取值越多测量精度越高。系统基本配置:序号名称数量1281M裂纹测深仪主机1台2探头1个3电池1个4适配器1个5样件1个6操作手册1本7校准证书1个8储运袋1个
    留言咨询
  • 设 备 简 介281M裂纹测深仪是一款高精度便携式裂纹深度测量设备,用于测量各种金属(钢、不锈钢和铝等)表面裂纹深度。该设备利用交流电位法进行裂纹深度测量,该设备与其他有效的裂纹检测方法(磁粉、涡流等)结合使用。应 用 范 围该裂纹检测仪可使用于野外、车间和实验室,其中包括:轴,轧辊,管材,管道,压力容器,能源生产设施,结构件等零件(被测产品表面粗糙度应小于等于10Ra,确保与探头电极的稳定电接触)。本 机 优 势 &bull 电位法的使用,使其比使用超声波和涡流技术更有效地确定裂纹深度; &bull 测量范围大:0.2mm-100.0mm;&bull 材料的电磁特性对测量结果影响小;&bull 探头弹簧加载接触电极使得其可以在曲面上进行精确测量;&bull 使用硬质合金接触电极可显著延长使用寿命;&bull 采用不同电极排布方式,可以测量非平面外形; &bull 配套不同裂纹深度试块确保操作期间设备的准确性。售后服务保修期 货到之日起保修12 个月,终身维护,易损件除外。 售后服务 在设备保修期间,对非人为零件造成的损坏,乙方承诺免费更换.
    留言咨询
  • 丹麦Sciteq公司为全球专业的管材测试仪器制造商,产品涵盖管材物理性能测试需求的各个方面,通过大量开创性的研发设计以及可靠的产品质量,Sciteq成为全球专业的管材测试仪器供应商。SCITEQ RCP小型静态快速应力开裂测试(S4测试)的目的是为了研究供应气体或液体的塑料管在特定温度和内部压力的情况下产生裂纹以及裂纹扩展的性能。该仪器符合ISO 13477标准。SCITEQ RCP的设计专注于其使用速度、精度、坚固结实的构造以及使用的灵活性。管道内置缓冲板防止在裂纹扩展之前管道快速卸压,外部安全笼防止测试管道试样在裂纹边缘爆裂。冲击完毕后可以易于检查裂纹是否扩展或者终止。同样地,在相同压力或环向应力下改变温度进行系列实验,就可以获得RCP的临界温度。 特性SCITEQ RCP系统由三部分组成:汽缸冲击装置和控制面板,对应每种管道尺寸的安全笼和端封套件,以及对应每个SDR(外径厚度比)的工具套件。工具套件包含冲刀、垫块、安全笼间隔块和卸压缓冲板。测量到的特定测试温度和压力显示与控制面板上。特别设计的端封和安全笼易于快速更换测试管道尺寸和SDR规格。高压汽缸驱动装置可确保在冲击点获得最大冲击能量。
    留言咨询

房屋裂纹相关的耗材

  • 化学防护服
    化学防护服 1. 产品简介 化学防护服采用高强度材料为基材,双面涂覆耐腐蚀橡胶材料。结构为连体带帽和带鞋式。在不接触火焰环境中能有效防止有毒介质、生化物质对人体的伤害,具有优异的防毒性能和化学稳定性。 2. 主要技术指标 a. 主体抗毒剂渗透时间:&ge 100分钟 b. 主体抗撕裂强度:&ge 50N c. 主体抗拉伸强度:&ge 80N/cm d. 主体耐热性:120℃× 8小时,不沾、不脆 e. 主体耐寒性:-40℃× 5分钟,折叠无裂纹 3. 注意事项 a. 应与呼吸防护用品配套使用 b. 防护服腰带在使用时必须扎紧,以减少防护服运动时的&ldquo 风箱效应&rdquo c. 每次使用后,应用清水冲洗保洁 d. 避免与明火接触
  • 2200℃超高温陶瓷粘结剂
    2200℃超高温陶瓷粘结剂呈泥糊状,比较容易粘附于材料表面,并能在空气条件下干燥,特别适用涂于熔炼金属的坩埚表面,可以愈合坩埚裂纹。同时,也可涂于我司1800℃高温炉内,来愈合内膛中的裂纹,可非常好的防止炉膛开裂。 产品型号2200℃超高温陶瓷粘结剂主要特点可用于焊接、钎焊、粘合、电机密封、热电偶保护层,及其他在高温工作下材料的粘结。技术参数1、主要成分:氧化锆2、极限温度:2200℃3、纯度:95%4、热膨胀系数:4.1(×10-6/°F)5、导热系数:106、可抗最大压强:6000psi7、可抗最大张应力:3000psi8、介电强度:250volts/mil9、固化时间:2h-4h
  • 牧场防护服
    1.全连体。 2.结实耐用,抗撕裂及磨损,穿着舒适、柔软、轻盈、透气,不起毛,防污染,抗静电。 3.可以渗透空气、水蒸气,却能够将水基液体及浮质排斥在外。 4、白色、无纺布质料。 5、分大、中、小号。

房屋裂纹相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制