典型模式

仪器信息网典型模式专题为您整合典型模式相关的最新文章,在典型模式专题,您不仅可以免费浏览典型模式的资讯, 同时您还可以浏览典型模式的相关资料、解决方案,参与社区典型模式话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

典型模式相关的资讯

  • 科研成果应如何转移转化? 中科院十大典型模式一览
    p style=" text-align: left "   经过多年的积极探索和不懈努力,我院下属院所及研究开发机构依托自身学科特色和平台优势,走出了一条各具鲜明特色、成效显著的成果转移转化和资产管理之路,形成了与所在地区产业相匹配的十大典型模式。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/noimg/45ca1991-d96f-4644-8bb6-22d9575d21ac.jpg" title=" 000.jpg" width=" 300" height=" 226" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 226px " / /p p    strong span style=" color: rgb(0, 112, 192) " 1.苏州纳米技术产业平台驱动模式 /span /strong br/ /p p   2006年以来,苏州纳米所科技成果转移转化活动形成了以纳米所公共服务平台、苏州育成中心和STS苏州中心为支撑的三足鼎立格局,在功能发挥上实现了既能各司其职,又互为补充的一种崭新格局。苏州纳米所在资产管理上形成了特色做法:一是设立专门资产管理机构 二是对于地方投资建立的公共服务平台实行独立核算 三是对于院地双方共同投资的资产实行共同管理。 /p p    span style=" color: rgb(0, 112, 192) " strong 2.西安光机所自创基金模式 /strong /span /p p   西安光机所模式最大的特点是“自创基金”引领科技成果转化。西安光机所通过发起成立“西科天使基金”,在项目发展初期就介入孵化过程,为科技创业领军人才创办企业提供第一笔资金支持,有效解决高科技成果产业化的“钱袋子”问题。西安光机所不断完善成果转移转化工作,业已形成了科技与服务(中科创星孵化器)、科技与市场(与企业共建工程中心)以及科技与社会(与民营资本共创研究院等)深度融合的良好局面。 /p p    span style=" color: rgb(0, 112, 192) " strong 3.盱眙凹土中心研发引领特色资源开发模式 /strong /span /p p   2010年6月,中国科学院与盱眙县人民政府联合共建了“中国科学院盱眙凹土应用技术研发与产业化中心”。目前中心在科研成果转移转化中,充分利用已建成应用基础研究、高值化利用研究和凹凸棒石及其产品标准化和分析测试技术研究三个平台,形成从应用基础突破、关键技术发明到高值产品开发,形成了具有自主知识产权的技术成果创新与转移转化的完整链条。 /p p    strong span style=" color: rgb(0, 112, 192) " 4.福建物构所模式 /span /strong /p p   福建物质结构研究所依托其高水平科技创新平台和海西育成中心,立足“注重原创基础研究,加强变革创新,促进成果转移转化”战略定位,创新多元化服务企业模式,通过“全要素投入”与“整体推进”,已在成果转移转化过程中作出了令人瞩目的成绩。 /p p   strong   span style=" color: rgb(0, 112, 192) " 5.合肥物质院自创园区模式 /span /strong /p p   合肥物质院成果转移转化模式可以总结为:自创园区、自主运营、就地转化、资产增值。联合合肥市政府共同设立中科院(合肥)技术创新工程院有限公司,作为合肥物质院科技成果转移转化平台,将社会需要的技术进行孵化和转化 以股东会为最高权力机构,负责公司的重大决策事项 对不成熟项目技术引进到创新院的工程技术中心进行技术的二次熟化,提高科技成果转化率 合肥物质院的成果均以转让方式进入创新院,产权清晰。 /p p    span style=" color: rgb(0, 112, 192) " strong 6.中科大借助资本市场促进成果转化模式 /strong /span /p p   中科大成果转移转化模式可以总结为:积极利用科大品牌借助资本市场促进成果转化。中国科技大学的科技成果转移转化主要由中科大资产经营有限责任公司负责运营和管理,通过全流程全产业链跟踪服务,有效控制和规避投资风险 通过引进战略投资者,突破成熟投资项目的发展瓶颈 通过构筑高校与企业间的“防火墙”,规避高校直接创办和经营企业的风险 争取创投豁免政策,有效化解政策不利影响 坚持持股企业分类管理,持续优化股权结构和资产质量。 /p p   span style=" color: rgb(0, 112, 192) " strong  7.大连化物所知识产权运营模式 /strong /span /p p   大化所在科技成果转移转化中,较为突出知识产权的保护与运营,形成了自身独特的优势与经验。一是凸显知识产权保护与运营的重要地位 二是强化专利群建设,加大知识产权运营成功率 三是精干的知识产权专员队伍,对知识产权工作开展提供有力保障。 /p p    span style=" color: rgb(0, 112, 192) " strong 8.南京先进激光技术研究院孵化共赢模式 /strong /span /p p   成立于2012年的南京先进激光技术研究院,主要承接上海光机所原始科技成果并对这些原始科技成果进行“二次开发”及转化。通过打造强大孵化平台、加强二次开发多方合作、集资组建激光产业基金等方式加强成果转化。同时积极做好对拟入股企业的遴选,及严格履行国有资产对外投资与管理的职责,以保证国有资产保值增值。 /p p    span style=" color: rgb(0, 112, 192) " strong 9.泰州—佛山—河南中心对接模式 /strong /span /p p   泰州中心、佛山中心、河南中心是院地共建平台型产业化中心,中心模式属于分院推进科技成果转移转化的平台模式。其特点在于形成了一套行之有效的“对接+转化”模式,搭建了灵活多样的技术转移转化的桥梁和纽带,并以育成产品为导向,积极共建技术创新平台。 /p p    strong span style=" color: rgb(0, 112, 192) " 10.嘉兴—常州中心援建研发机构模式 /span /strong /p p   嘉兴—常州中心模式属于科学院援建地方建设应用研究机构模式。经过多年的发展成熟,嘉兴—常州中心其特色在于:一是利用好地方事业法人的体制机制,提高地方企业的竞争力 二是建立了政府、中心、企业之间良好的互动关系 三是积极探讨研究院(中心)与地方新型合作关系,兼顾地方大量投入与研究院持续发展的关系。 /p p   (本文作者杨涛、张建成单位:中国科学院南京分院;马锋单位:中国科学院条件保障与财务局) /p
  • 安东帕MCR高端智能型模块化流变仪——带您探究知识的海洋
    流变学是研究物质流动与形变的学科,自上世纪三十年代至今,经过流变学家的不懈努力,已经在全球很多领域发展出成熟的流变测试和分析理论。随着工业技术的不断进步,安东帕的流变学家经过三十多年的辛苦耕耘,并不断革新,向广大用户推出了低中高端系列、技术先进的MCR智能型模块化旋转流变仪。 MCR流变仪行业分布广,高校、科学院、石油石化、食品、化工、航空航天、医学、制药等,从日常生活用品制造业到军工科研机构,到处都有MCR流变仪在使用。 MCR流变仪市场占有率高,在国内用户超过1000个 MCR流变仪拥有众多行业先进技术 MCR流变仪功能最全,指标更宽,能满足流变学测试的所有要求 MCR流变仪系列型号:MCR702、MCR302、MCR102、MCR92、MCR72MCR 流变仪的基本功能 稳态流变测试(旋转模式):黏度、黏度曲线、流动曲线、粘温曲线、屈服应力、滞后环面积、3ITT 触变性等; 动态流变测试(振荡模式):粘弹性数据,如储能模量 G‘、 损耗模量 G“、损耗角正切 Tanδ、复数模量 G*、复数黏度 η*等,可以得到频率扫描、振幅扫描、温度扫描等曲线; 瞬态流变测试:起始流、蠕变、应力松弛等;MCR 流变仪的扩展功能模块扩展的材料性能表征方式熔体拉伸流变夹具扭摆DMTA测试夹具拉伸DMTA测试夹具 淀粉糊化测量模块沥青专业模块大颗粒食品及建筑材料测试界面流变学模块摩擦学测试模块粉体流变学模块 附加参数影响测量模块高压密闭测量系统UV固化测量模块磁流变测量模块 电流变测量模块不动点测量模块 流变与结构分析同步测量流变‐显微可视/偏光/荧光同步测量流变‐SALS同步测量流变-NIR/IR同步测量 流变-拉曼同步测量 流变‐SAXS同步测量流变‐SANS同步测量动态光学流变测量PIV粒子成像测速流变‐介电谱同步测量
  • “全球变化下的典型森林生态系统观测与预警”青年科学家项目启动
    5月31日,由中国科学院植物研究所牵头的国家重点研发计划“地球系统与全球变化”重点专项“全球变化下的典型森林生态系统观测与预警”青年科学家项目启动会在北京召开。   该项目是国家重点研发计划“地球系统与全球变化”重点专项2022年度资助项目。项目依托植物所,联合南京农业大学、厦门大学,汇集国内从事森林结构及功能性状与森林生态系统碳循环过程研究的优势力量,聚焦我国典型森林生态系统,通过样方调查、联网观测、多源遥感观测、模型模拟等多种手段,阐明森林生态系统关键结构与功能性状的耦合机制、空间格局及其对气候变化的响应,模拟未来气候变化下我国典型森林生态系统固碳能力的变化趋势。   会上,植物所、科学技术部高技术研究发展中心基础研究项目二处、中国科学院科技促进发展局地球与资源处相关负责人分别致辞。   项目负责人介绍了项目的整体情况,重点汇报了项目的实施方案及已经取得的进展。项目专家组组长、中国科学院院士于贵瑞建议应加强各任务间的联系与协作,更好地为国家“碳中和”战略提供支撑。专家组成员在肯定项目实施方案与前期工作成果的基础上,从结合目前森林台站网络的观测体系优化实验方案、聚焦具体的森林生态系统功能、深入挖掘观测与模型间的联系等方面提出了意见和建议。   中国科学院植物研究所前身为1928年创建的静生生物调查所和1929年成立的北平研究院植物研究所,1950年合并为中国科学院植物分类研究所,1953年改为中国科学院植物研究所。   研究所以整合植物生物学为学科定位,以植物对环境适应的生物学基础为主要研究方向,以绿色高效农业和生态环境的国家需求为重要研究领域,重点在植物系统发育重建和进化、陆地植被/生态系统与全球变化、资源植物分子与发育生物学、植物信号转导与代谢组学、生物多样性保育与可持续利用等方面开展系统的研究。

典型模式相关的方案

典型模式相关的论坛

  • 如何将传统的检测行业向互联网+检测的新型模式转型?

    互联网,大家都十分熟悉的名词,如今的各行各业都想尽办法跟互联网挂钩,都希望能从中分得一杯羹。然而作为一些传统的工业行业,比如检测行业,想要融入到互联网也还是比较艰难的。但是,由于检验检测属于高技术服务业、生产性服务业、科技服务业,能够在调整优化产业结构、推动经济提质增效升级发挥了重要作用,所以,政府要求检验检测行业能够在《中国制造2025》中发挥极致的功效。那么检测行业的专业人士,势必要去寻找如何向互联网+检测的模式转变。那么问题来了,想要向互联网+检测模式转型,不了解互联网+检验检测服务模式是什么,不了解为什么要向互联网+检测转型,那肯定是没有办法成功转型的,下面我就这几点详细的描述一下。首先、需要了解为什么要向互联网+检验检测服务模式转型:现代检验检测活动是商品交换活动中供需双方出于各自利益需要,或产品质量判定,依托技术机构按相关标准、方法对产品进行检验、测试的活动。目前,国内大部分检验检测机构因兼有公益性特质,普遍以政府监管的单向模式开展检验检测业务。但是随着市场经济的不断发展和人们对产品质量意识不断加强,以及物联网、云计算、虚拟制造等新技术及互联网思维的大规模应用,催生出更广阔的检验检测市常探索基于互联网思维的检验检测服务模式,将是加快检验检测认证现代市场体系建设,创新服务手段的有益尝试;也是加快政府职能转变和改革,开展检验检测认证机构的整合改革的重要手段。互联网+检验检测服务模式创新是落实《中央编办、质检总局关于整合检验检测认证机构的实施意见》的内在需求;是检验检测机构确立自身市场主体意识的重要手段,提升核心综合竞争力的必由之路,同时也是检验检测机构实现行业品牌建设创新的现实需要。针对现有检验检测行业发展不能适应市场经济发展新常态、创新能力不足、面临国外检测巨头挑战等问题,基于开放、合作、创新、高效、专注、极致、口碑、快速等互联网思维的检验检测服务模式创新能够使市场在资源配置中起决定性作用和更好发挥政府作用,促进检验检测认证机构能力建设和转型升级,便于为客户提供更加精准、快速、便捷的检验服务。其次、需要了解互联网+检验检测服务模式需解决的问题:第一、互联网+检验检测服务模式应以用户为核心,让用户全程参与检验检测产品服务的规划、开发,到检验检测的过程。借鉴B2B模式、O2O等模式将传统的检验检测机构-用户渠道升级为去中心化的、用户自组织、自涌现、自生成、信息共享的平台空间。第二、需要关注用户群体的小批量差异化的产品服务需求,并将这种需求转化成实体的产品、服务并实现产品、服务本体低成本扩张的目标。第三、作为互联网思维中的两大特点之一,“数据分析”与“用户核心”同等重要。在跨平台移动检测中,跨区域的不同平台要进行用户数据的交换,在进行数据流分析与快速反应中,商业模式平台、现代检验检测物联网、跨区域平台等要进行用户数据、检验资源信息的交换、核对、更新。上述数据交换的成功实现要求平台具备高稳定性、高可靠性,在这种前提下,应保证各平台对接接口的一致、保证交换数据的可信度,这将是现代检验检测数据处理方面的关键技术所在。了解了以上的信息之后,你可以发现,随着在线销售这种电子商务业务的迅猛发展,将传统的检验检测模式向互联网+检验检测服务模式转变是势在必行的一件事情。那么、互联网+检验检测服务模式创新就应该具备以下特征:1、以用户为核心,让用户全程参与检验检测产品服务的规划、开发,到检验检测的过程。2、专注于产品、服务、管理、资源配置。需要将复杂边际(检测对象、用户需求等差异化)转化为产品服务切入点,制定差异化检验方案,从而建设专一极致、低成本的新型检验检测服务。3、跨平台移动用户数据整合,可以将不同检测机构、区域平台在以往检验检测过程中搜集到的用户信息跨平台整合到一起并且进行分析。4、虚实结合的检验检测流程。可以实现线上线下检测技术相辅相成,这才是互联网思维在现代检验检测技术中的真正体现。5、数据流分析及快速反应。6、精准推送及量身定制。检验检测机构不仅要以可靠、公正服务于客户,更要让客户参与到检验检测活动中来,让客户从参与者变为信息传播者。比如可以为客户量身定制检验报告,根据客户选择或者机构推荐的指标整理出订制的检验菜单;在检测报告上可以看到商品信息,通过手机扫描等方式链接到商品页,为客户带来精准的实时便利。结合以上所必备的特征,四川电子科技大学计算机教授研发了一款为检测认证机构提供基于SaaS的检测认证行业在线交易,在线商城(管理平台)--工蜂云(GonFen),检测检验认证机构可以通过注册上传机构的检测服务,给用户提供包含在线服务呈现,检测项目查询,快捷下单、支付以及检测服务全流程状态查询和管理的一系列的功能,完全跟互联网+检测的模式吻合,以用户为核心,让用户全程参与检验检测产品服务的规划、开发,到检验检测的过程,并且降低了检测机构的成本,那么检测机构就可以适当降低一些检测服务的费用,有检测需求的企业、工厂、电商平台就能够以较低成本获得权威的质量担保。

  • 关于实验室模拟报告和典型报告

    一、模拟报告指的是机构为了确保对拟申请的参数的掌握程度,通过开展一整套完整的模拟试验(可以从收样开始,经过样品处理、试验检测、原始记录等环节,直到报告出具),最后形成模拟实验的结果,即模拟报告。 通常,模拟实验是方法验证的重要环节之一。由于机构对拟申请资质认定的参数都必须开展方法验证,因此,模拟报告原则上是必须覆盖所有拟申请的参数的。 有些地区的市场监管部门对模拟报告提出了十分明确的要求,例如:某省市场监管局要求,每一个拟申请资质认定的参数都应有两份模拟报告,且要求在申请资质认定的时候就要提交(当然,不同地区的要求也会不一样)。 因此,各机构一定要遵循检验检测行业法律法规,以及各个地方的法规和规定。我们强烈建议,机构在对新参数新方法开展方法验证的时候,开展模拟试验,形成模拟实验报告。 二、典型报告是在现场评审中,评审员从拟申请资质认定的参数中抽取并现场查验机构能否正确实施检测参数和方法以后,最终形成的检测报告。 因为,“典型”即意味着抽查一部分有代表性的参数来查验。通常,评审员会从拟申请资质认定的参数的每一个类别/专项、每一个产品下,抽取30%-60%的检验检测参数和方法(不同的地区、时间会有不同的规定,有的还有额外的盲样测试)。然后,检验检测机构现场对这些抽取的参数开展演示实验,审核员现场观察和见证,由此形成的报告即为典型报告。 最后,随着告知承诺制的推广,现场审核变成了事后验证和监管。这对于模拟报告是没有影响的。机构还是必须开展方法验证,并组织模拟试验,出具模拟报告。而典型报告就会跟随事后查验和监管而产生新的形式。例如,有的事后查验,仍然会抽查参数,要求演示试验,并形成典型报告;有的则采取查验机构的方法验证记录(包含模拟报告),和现场提问的方式。这些都取决于不同地区的市场监管部门的资质认定程序的规定了。【声明:向原作者致敬,侵删】

  • 【转帖】典型区域生态环境监测研究

    [b]9.1 万州典型区生态环境监测[/b]  2008年,万州典型区继续开展标准径流场对比试验,跟踪监测不同土地利用模式的土壤水分、土壤养分及水土流失状况。  [b]9.1.1 坡耕地粮经果复合垄作模式试验[/b]  2008年,坡耕地粮经果复合垄作模式营建7年,土壤保水蓄水能力明显增强。由雨日后2天、4天、8天不同土壤层次(0~15厘米、15~30厘米、30厘米)水分含量动态变化监测结果可知:在同一监测日土壤含水量高低顺序为粮经果复合垄作>粮经果复合平作>粮经顺坡平作。与粮经顺坡平作(对照模式)相比,粮经果复合垄作模式使土壤含水量增加,具有明显的保水效益,雨日后2天的土壤含水量平均增幅为17.20%;粮经果复合平作模式平均增幅为6.6%。雨日后2天、4天同一模式不同土层含水量基本保持着表层>中层>底层的规律,不同模式不同土层含水量的变化率为粮经果复合垄作<粮经果复合平作<粮经顺坡平作。  粮经果复合垄作模式实行免耕、少耕、立体种植、秸秆覆盖还田等措施,土壤物理特性与养分状况明显改善,2~0.02毫米土壤颗粒含量小于粮经果复合平作模式,0.02~0.002毫米和<0.002毫米土壤颗粒含量则大于粮经果复合平作模式。  粮经果复合垄作模式土壤养分含量也明显高于粮经果复合平作模式和对照模式。粮经果复合垄作模式土壤中除全钾含量低于对照模式外(果树对钾的需求增加导致钾含量逐年降低),其余养分含量均高于对照模式。从总体上看,不同土地利用模式土壤养分含量表现出粮经果复合垄作模式>粮经果复合平作>对照模式的一般规律。  不论产流降雨量的大小,同一监测日不同土地利用模式减少土壤侵蚀和地表径流的水土保持效果为粮经果复合垄作模式>粮经果复合平作模式>对照模式。侵蚀土壤中有机质、全氮、全磷、全钾、碱解氮、速效磷、速效钾等养分含量为粮经果复合垄作模式>粮经果复合平作模式>对照模式,全钾含量为对照模式>粮经果复合平作模式>粮经果复合垄作模式。降雨侵蚀泥沙中<0.002毫米土壤颗粒含量表现出粮经果复合垄作模式<粮经果复合平作模式<对照模式的趋势,说明粮经果复合垄作模式对水土保持效果明显。  [b]9.1.2 陡坡地植物篱模式试验[/b]  由雨日后2天、4天、8天对不同土壤层次(0~15厘米、15~30厘米、30厘米)水分含量动态变化监测结果可知:同一监测日土壤含水量符合柚—植物篱模式>纯粮顺坡平作模式的规律;同一模式不同土层(表层、底层、中层)含水量规律不定。在柚—皇竹草植物篱模式中,篱带土壤含水量最高,雨日后土壤含水量的变化率较小,篱带上方、下方土壤含水量相近,雨日后土壤含水量的变化率相对较大。  与纯粮顺坡平作模式(对照)相比,植物篱模式中篱带、篱间土壤容重分别增加26.5%和0.7%,孔度分别减少32.8%和17.8%;土壤颗粒组成中0.002毫米的土壤颗粒含量减少4.2%,0.02~0.002毫米的土壤颗粒增加,反映了植物篱技术能够提高土壤保肥能力。  与对照模式相比,皇竹草植物篱模式各层土壤有机质、全氮、碱解氮含量平均增幅分别为27.3%、46.2%和31.5%;篱带、篱间0~30厘米土层全磷含量平均增幅为33.5%;全钾含量平均减幅为3.3%;篱带、篱间各土层速效钾含量平均减幅为27.4%。  试验结果表明,营建植物篱模式能有效减少坡地水土流失。在统计的10次降雨过程中,柚—皇竹草植物篱模式3次没有产流,侵蚀土壤中有机质、全氮、全磷、碱解氮、速效磷、速效钾含量高于对照模式,全钾含量低于对照模式。  [b]9.2 秭归典型区生态环境监测[/b]  2008年,秭归典型区继续开展三峡库首坡地典型径流场水土流失和氮磷养分流失的监测,探讨库首陡坡地典型土地利用方式对水土流失与养分流失的影响和生物防治技术对水土与养分流失的控制效果。  [b]9.2.1 不同土地利用方式下坡面水土和养分流失监测[/b]  2008年发生≥10毫米降雨31次,其中16次产生了明显径流和泥沙流失。脐橙园的径流量、泥沙和坡面氮、磷流失量均明显高于农作坡耕地。  裸地脐橙小区径流系数、泥沙流失量和坡面氮、磷流失总量分别为常规小麦—花生小区的1.1倍、2.6倍、2.7倍和2.0倍。尽管脐橙园植被覆盖稳定,耕翻频次相对较少,但由于脐橙树冠截流冲刷力较强,且施肥量大大高于农作旱坡地而实际利用量并不高,因此脐橙园坡面水土流失和氮、磷流失量高于农作坡耕地,特别是其氮素流失量大大高于农作坡耕地。库区脐橙园主要分布于海拔500米以下河谷地带,与消落区相毗邻,因此应重视水土流失和氮磷养分流失的防治。  [b]9.2.2 生态治理技术控制坡面水土与养分流失效果监测[/b]  植物篱技术对于脐橙园和旱坡地水土流失和坡面氮磷养分流失均有明显的控制效果。与花生—小麦小区(对照)相比,花生—小麦附设香椿植物篱小区和花生—小麦附设等高多年生牧草植物篱小区的径流系数分别降低3.5%和3.8%,泥沙流失量分别减少70%~80%,坡面氮素流失量分别减少27.4%和37.5%,磷素流失量分别减少83.6%和86.6%。与裸地脐橙小区(对照)相比,脐橙套作黄花菜植物篱小区的径流系数一直处于较低水平,2008年同期泥沙流失量和坡面氮、磷流失量分别减少72.4%、49.5%和55.9%。  脐橙园采用套种多年生饲草植物和秸秆覆盖对于水土流失和坡面氮磷养分流失也有一定的控制效果。与裸地脐橙小区相比,脐橙园套种多年生白三叶草小区和脐橙园秸秆覆盖小区泥沙流失量分别减少73.0%和61.5%;橙园套种多年生白三叶草小区坡面氮、磷流失量分别减少24.7%和61.9%,脐橙园秸秆覆盖小区坡面氮、磷流失量分别减少27.4%和58.3%。  在盛果期,脐橙园的不同管理模式对坡面径流系数有一定的影响。与常规脐橙园小区相比,脐橙园套种花生—小麦小区径流系数明显提高,脐橙园套种黄花菜小区的径流系数一直处于较低的水平。脐橙园套种白三叶草、脐橙园地表秸秆覆盖对于坡面径流具有一定的控制效果,但不稳定,可能与覆盖度和降水季节分布动态变化有关。  [b]9.3 地下水和土壤潜育化监测[/b]  2008年,在长江中游四湖地区的洪湖石码头至小港农场一线继续开展地下水动态和土壤潜育化指标监测。  [b]9.3.1 地下水动态[/b]  地下水监测剖面由5组10个地下水长期观测孔组成,距长江堤岸的距离分别为1.5千米、3.0千米、5.0千米、8.5千米、13.0千米,代号分别为A、B、C、D、E,观测孔内径0.11米,承压水观测孔深约35米,潜水观测孔深约5~7米。  各观测孔地下水位年平均值在21.56~22.49米之间,年内最高水位和最低水位分别在22.14~23.33米和20.63~21.70米之间,年内变幅在0.90~2.11米之间。潜水位、承压水位分别在20.90~23.16米和20.63~23.33米之间,跨幅分别达2.26米和2.70米。与前两年相比,B、D观测孔承压水位略高,A、C、E三孔与上年接近;潜水位情况与承压水位相似,C孔比上年略偏低,其他孔与上年接近。  各观测孔潜水、承压水水位月平均值变动范围分别为21.08~22.86米和20.86~23.09米。月平均最高水位多出现在6-9月,其中A、B观测孔出现在7月,C、D、E观测孔出现在8月;最低水位出现在1月和2月,以1月居多;5-11月为高水位期,12月至次年3月为低水位期。较为特别的仍是E孔,其潜水位和承压水位变化趋势很接近,12月以后水位下降趋势明显。从水位动态来看,本年有双峰现象,汛期高峰不明显,在10月形成一个峰值,这一现象可能与秋汛和水库调度有关。

典型模式相关的资料

典型模式相关的仪器

  • FluoTime250将用于时间分辨发光光谱学所需的全部光学元件和电子元件集成到一个紧凑的全自动设备中。PicoQuant基于丰富的脉冲激光源和时间相关单光子计数方面的经验完成了Fluotime250的基础设计。FluoTime250旨在帮助用户快速、可靠地执行常规和复杂测量,而这些性能都得益于全自动硬件组件和向导式的多功能系统软件。再借助自定义模式和集成脚本语言,高级用户可以完全控制光谱仪的各个功能。在其基本配置中,FluoTime250使用电动滤光片轮进行波长选择 。可选配UV / VIS光谱范围的单色仪,将来自PicoQuant的探测器以及各种半导体激光器或LED连接到光谱仪上,还可以通过一系列附件和易于更换的样品架进一步适应您的应用要求。虽然FluoTime 250体积小巧,但是却非常灵敏,它能准确地检测浓度低至10pMol(在coumarin样品上测量)样品的荧光衰减。特点:全自动紧凑型模块化系统基于滤光片技术的发射波长选择,及小型单色仪选项TCSPC和MCS工作模式软件具有测量向导和脚本选项可测寿命范围从皮秒到毫秒 应用领域:FluoTime 250是一款适用于常规和研究应用领域的高性能荧光寿命光谱系统。可用于研究各种样品并进行多种应用,包括:荧光/磷光衰减曲线时间分辨各向异性时间分辨发射谱(需配置单色仪)寿命动力学 产品参数:光学结构l L型工作模式l TCSPC和MCS灵敏度l 低至10pMol(测量coumarin样品,采用400nm激发,500nm探测)荧光寿命范围l 40ps到10μs,采用PMT探测器和TCSPC模式的计数模块;l 10 ps到10 µ s,采用Hybrid系列探测器、TCSPC模式的计数模块和合适的激光器;l 大于几百ms,采用任何探测器和MCS模式的计数模块。激发光源l 波长范围从250nm~1550nm的皮秒脉冲半导体激光器或者LED系列,重复频率高达80MHz,普通激光器驱动器;单色仪l Czerny-Turner,单单色仪结构l 聚焦长度: 150 mm,单出口l 杂散光抑制比典型值1:10-5(单单色仪)探测器l 光电倍增管PMT系列,185~920nm可选l 混合式光电倍增管Hybrid-PMT系列,200~900nm可选l 近红外光电倍增管NIR-PMT系列,950~1400nm可选软件l 操作简单,功能全面,具有分析功能l 在工作区数据归档,数据导出功能和数据运算l 几种典型测量方案的程序向导功能l 能进行全硬件控制的自定义测量模式l 支持远程执行的自动化脚本语言(将自动化功能扩展至第三方设备)l 荧光寿命光谱分析和基于数卷积处理,高至5阶指数的衰减函数,含杂散光校正,寿命分布曲线,各向异性测试分析,全局分析,严密错误分析等功能。
    留言咨询
  • 磁电隔离有源型模拟信号三隔离放大器变送器:ISO EM U(A)-P-O系列ISO EM系列隔离放大器是一种磁电隔离的混合集成电路,该IC在同一芯片上集成了一个多隔离的DC/DC变换电源和一组磁电耦合的模拟信号隔离放大器,它采用磁电偶合的低成本方案,主要用于对EMC(电磁干扰)无特殊要求的场合。特殊使用场合应注意增加电磁干扰抑制电路。
    留言咨询
  • 产品简介:名称:远程/网络模式的超声系统品牌/产地:美国型号: Remote-UT应用:最新推出 的远程/网络模式的超声系统又将大型/多轴、水浸/喷水式超声检测系统带入远程网络模式的时代。 详细介绍: 公司最新推出 的远程/网络模式的超声系统又将大型/多轴、水浸/喷水式超声检测系统带入远程网络模式的时代。该模块将超声部分、运动控制部分以及超声信号采集、分析部分都集成在一个远离扫查运动机构的具有计算机功能的微型模块内,并可将此模块置于超声扫查机构上。所有的超声采集及信号处理工作前端化,后端只需一台笔记 本计算机进行通讯和显示。 继上个世纪末本世纪初数字化超声系统的出现,公司最新推出的远程/网络模式的超声系统又将大型/多轴、水浸/喷水式超声检测系统带入远程网络模式的时代。 不同于目前传统的超声检测系统,超声部分、运动控制部分以及超声信号 采集、分析部分都处在远离扫查运动机构的计算机部分,而且这部分的体积很庞大,连接超声主机与超声传感器之间的超声信号线由于距离问题无法避免超声信号衰减及干扰的问题。这款远程网络模式超声模块是基于现代计算机及数字化硬件技术将数字超声部分(包括)、运动控制部分以及信号处理部分微型化, 并采用嵌入式计算机,使整个超声系统,包括超声部分、运动控制部分和信号处理计算机部分继承成于一个体积只有25x15x7.5cm的模块内,并可将此模 块置于超声扫查机构上。所有的超声采集及信号处理工作前端化,后端只需一台笔记本计算机进行通讯和显示。这样大大避免了以往较长超声信号线的所带来的超声信号衰减与干扰;大大提高超声信号灵敏度与信噪比;更大大简化了后端计算机部分。
    留言咨询

典型模式相关的耗材

  • 台式850nm光纤放大器(典型产品 850nm)
    台式850nm光纤放大器(典型产品 850nm) Fiberlabs采用拥有专利的核心氟化物光纤技术,研制出的世界上第一台能够对最难放大 850nm波长信号进行放大。特点信号波长范围(850nm~856nm)带输出隔离器实时监控泵浦电流应用测试测量仪器科学研究实验室研究标准参数 名称AMP-FL8401 波长853 +/-3nm  增益(弱信号) *120dB 控制模式ACC 输出光纤SMF (850nm Band) 接头FC/PC 操作温度0 ~ 40 °C 存储温度-10 ~ 60 °C 尺寸 *288(H) x 260(W) x 350(D) (mm)  重量4 Kg 电源AC 100 ~ 240V (50/60Hz)*1:输入功率: -30dBm@853nm *2:尺寸不包含凸起部分 规格随时可能变更 如需定制服务,请与我们销售联系。
  • 台式SLD光源(典型产品1090nm)
    台式SLD光源(典型产品1090nm) 特点高功率输出:最大功率可达20mW任意的工作波段:600nm~1700nm 可选宽工作带宽:典型60nm, 可达90nm高稳定性和高可靠性应用FBG光纤传感系统光纤陀螺实验室测试无源器件测试、生产气体检测标准参数型号SLD-1090-10输出波段1050nm-1140nm输出功率 >10dBm(>25mw)光谱功率密度-20dBm/nm@1050-1130nm输出通道口数1输出光纤SM6/125mm输出接头FC/APC尺寸*288(H) x 230(W) x 352(D) mm操作温度0-40℃存储温度-10-60℃重量<6kg电源电压AC100-240V(50/60Hz)
  • HTHP原位高温/高压三模式反应池 产品图片
    HTHP原位高温/高压三模式反应池在极端条件下进行的原位分析附件,三种测试模式产品简介 高科技产品和现代工业生产过程需要在极端温度和压力条件下的原位分析。Specac的高温高压池在全世界应用非常稳定,效果出色,能解决非常复杂的实验 Specac高温/高压池有能力再创造这些条件,进行光谱分析样品或模拟实验室的过程。样品池设计用于高光学通量,并允许在多种目的分析配置、透射、反射和双重之间进行简单交换(见图1,2,3)。 图1 投射分析模式 图2 反射分析模式 图3 双重分析模式 主要特征ü 极端条件光谱仪--可编程控制温度最高可达800℃ ,压力范围从真空到1000psiü 多目的分析仪--透射、镜面反射和双重模式ü 优化设计--允许在分析模式之间进行简单交换ü 安全和可靠的结构--坚固耐用的结构、经过安全验证的电子器件以及安全隔膜应用范围ü 组件失效分析ü 分解研究ü 原位反应监测ü 表面反射率测试ü 过程气体分析,催化反应 典型的应用如下:q催化剂和氧化还原反应,在特定温度和特定压力下气体会在固体表面发生反应,我们可以用红外光谱记录整个反应过程。q样品在不同的物理状态下具有多态性。q固体燃料,即煤和油,在加热下挥发的蒸汽可以进行定性和定量分析。 q高温高压对气体/蒸汽的影响。 q高温高压对固体物质的透射和反射产生的影响。特性及操作高温/高压池可以使用透射、镜面反射和双重模式来分析固体样品,以及静态或流动传输模式的过程气体。样品温度可高达800℃,样品池可在真空到1000psi压力下使用。样品池窗片和主体可独立加热和控制到高达200℃的温度,可阻止内部的材料凝结后附着到ZnSe窗片上。水冷上下部分阻止对光谱仪样品仓内的样品过度加热,维持表面在一个安全的温度。可通过更换样品池主体上的光学加压窗片组件并安装到基板上来进行透射(最大样品尺寸13mm)和镜面反射模式切换。简单的重新定位样品支架/加热器组件,将加热的样品放到光束下的器皿中,即可获得分解模式。样品在不同温度得到的气体可以被分析出来。样品池可为气体分析或清洗提供稳定的气流。样品池体积为80ml。样品池温度使用一个可手动或通过计算机编程的专用的控制器来调节。设计结合了一系列重要安全特征。尤其是,样品池的所有的电源供应都符合加拿大标准协会(CSA)规定(30V或更低),温控器在热电偶输入上安装有开路探测可阻止过热。样品池本身安装了一个安全隔板可防止偶然的过压,如有需要,其可以安装到通风橱中或其他地方。标准的样品池是耐用的316不锈钢制成的,如有需要可以拆开进行彻底的清洁。订购信息GS05850高温/高压池 不含反射附件 包括:带ZnSe窗片的光学器件单元和仪器基板、透射/双重样品支架,可 编程高稳定性温控器。 请指定光谱仪制造厂家和型号。GS05855高级高温/高压样品池系统 含反射附件 包括:带ZnSe窗片的光学器件单元和仪器基板、透射/双重样品支架, 反射模式楔形加压窗片组件和反射模式基板,可编程高稳定性温控器。 请指定光谱仪制造厂家和型号。GS05860反射模式套装 包括:可将GS05850 HTHP样品池转化成高级的HTHP样品池(GS05855) 的部件套装GS05865密封套件备件GS05867 ZnSe样品池窗片备件 (经过测试和认证的)GS05868分解盘--备用件(2个)GS05869"安全隔板"备件可选项GS05870 HTHP样品池ESKGS28000 RS232连接包 GS28001 USB连接包GS28002 RS485连接包

典型模式相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制