成像方法

仪器信息网成像方法专题为您整合成像方法相关的最新文章,在成像方法专题,您不仅可以免费浏览成像方法的资讯, 同时您还可以浏览成像方法的相关资料、解决方案,参与社区成像方法话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

成像方法相关的资讯

  • 质谱成像技术概念及质谱成像方法介绍
    p   现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。 /p p   因此研究人员将目光转向了质谱技术上,以质谱为基础的成像方法不局限于特异的一种或者几种蛋白质分子,可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,不需要对待测物进行标记,分析物可以其最初的形态被检测,同时可对这些蛋白质分子含量进行相对定量,适用于研究生物分子的反应。 /p p   质谱成像(Imaging Mass Spectrometry,IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的 “结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下: /p p style=" text-align: center " img title=" 9a504fc2d56285350618456392ef76c6a6ef63fc.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/640b0273-3ad1-4c6a-b6bf-22df33199709.jpg" / /p p   简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。 /p p   最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(VanderbiltUniversity)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。 /p p   正如数字图像包括三个通道:红、绿、蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后得到一张分子特异性的成像图。” /p p   这种方法可用于小分子代谢物、药物化合物、脂质和蛋白,而且质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体。下面列出五种先进的质谱成像方法。 /p p    strong I. 挑战高分子量蛋白——MALDI质谱分子成像技术 /strong /p p   在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。 /p p   来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,同时可对这些蛋白质分子含量进行相对定量。 /p p   MALDI 质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI 系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/ z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/ z 的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。 /p p   通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如采用4000 像素比200 像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分。然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。 /p p    strong Ⅱ. 无需样品处理 实时成像——电喷雾电离技术 /strong /p p   一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此并不适用于即时成像(bedside applications),比如说要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。 /p p   一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。 /p p   这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。 /p p   DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效液相色谱分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。 /p p    strong Ⅲ. 活体成像——APIR MALDI/LAESI技术 /strong /p p   了解细胞的内部成分是理解健康细胞不同于病变细胞的关键。但是直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。 /p p   来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但活体样本在真空中无法存活。 /p p   实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。而生物样品也可以直接吸收能量的,比如2.94mm波长的光能激活水中氢氧键。 /p p   因此Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmospheric pressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。 /p p   为了捕捉这些中性粒子,Vertes等人采用了第二种方法:LAESI (laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。 /p p   与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。 /p p    strong Ⅳ. 3D成像——二次离子质谱技术 /strong /p p   质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。 /p p   但是一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的Nicholas Winograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。 /p p   SIMS早在用于生物学研究之前就已经应用广泛了,比如分析集成电路(integrated circuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。 /p p   这种技术具有几个优点:速度快(-10,000 spectra per second),亚细胞构造分辨率(-100 nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。 /p p   Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60 磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。 /p p   C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60 ,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。 /p p   这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。 /p p   strong  Ⅴ. 高灵敏度 高分辨率——纳米结构启动质谱技术 /strong /p p   质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。 /p p   来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。 /p p   NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。 /p p   通过这种方法可以分析很多类型的小分子,比如脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。 /p p   由于含氟聚合物不能很好的离子化,因此会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高。 /p p & nbsp /p p & nbsp /p
  • 近红外多维多目标成像方法技术研究及应用项目通过验收
    近日,由浙江大学承担的“近红外多维多目标成像方法技术研究及应用”项目在北京通过了专家验收。   项目组制备了一系列基于量子点—生物分子的发射波长位于近红外“医学光疗窗口”的、可适合于活体多标靶多光谱荧光成像的高性能荧光探针 设计出一种在多维多目标分子成像应用中具有较明显优势的基于软纳米聚合物囊泡的分子荧光探针通用平台 研究出高性能近红外荧光探针试剂盒两套。项目组利用所合成的近红外荧光探针和平台开展了小鼠体内多标靶、多光谱荧光成像研究,并制备了可做小动物多维多目标荧光成像研究的实验装置一套。
  • 研究人员开发出合理化深度学习超分辨显微成像方法
    近年来,以深度学习为代表的计算超分辨方法可在不损失其他成像性能的前提下,提升显微图像分辨率或信噪比,表现出广阔的应用前景。然而,针对生物医学研究必需高保真度、可定量分析的图像要求,深度学习显微成像方法存在三大共性问题:受限于深度学习内秉的频谱频移(spectral-bias)问题,输出图像分辨率无法达到真值(ground truth)水平;受限于超分辨重建、去噪问题的病态性(ill-posed problem)和神经网络模型的不确定性(model-uncertainty),重建或预测结果的真实性无法得到保障;深度神经网络的训练需要大量数据,但高质量训练数据的采集在许多应用场景下极其困难、甚至无法实现。当前,深度学习显微成像方法的研究和发展如火如荼,并表现出超越传统成像性能极限的潜力,但上述问题阻碍了现有深度学习超分辨或去噪方法在生物显微成像实验中的使用。   10月6日,中国科学院生物物理研究所李栋课题组联合清华大学自动化系、清华大学脑与认知科学研究院、清华-IDG/麦戈文脑科学研究院戴琼海课题组,美国霍华德休斯医学研究所博士Jennifer Lippincott-Schwartz,在Nature Biotechnology上,以长文(Article)的形式,发表了题为Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes的论文。该研究提出了一套合理化深度学习(rationalized deep learning,rDL)显微成像技术框架,将光学成像模型及物理先验与神经网络结构设计相融合,合理化网络训练、预测过程,从而实现了高性能、高保真的显微图像去噪与超分辨重建,并结合实验室自主研发、搭建的多模态结构光照明显微镜(Multi-SIM)与高速晶格光片显微镜(LLSM),将传统TIRF/GI-SIM、3D-SIM、LLS-SIM和LLSM的成像速度/时程提升30倍以上,实现了当前国际最快(684Hz)、成像时程最长(最长可达3小时、60,000时间点以上)的活体细胞成像性能,首次对高速摆动纤毛(30Hz)中转运蛋白(IFT)的多种运输行为以及完整细胞分裂过程中核仁液液相分离(liquid-liquid phase separation)过程进行快速、多色、长时程、超分辨观测。Nature Biotechnology针对这一工作同时发表了评述文章(Research Briefing)。   具体而言,李栋/戴琼海研究团队提出的合理化深度学习结构光超分辨重建架构(rDL SIM)不同于现有超分辨神经网络模型的端到端(end-to-end)训练模式,而是采用分步重建策略,首先利用所提出的融合成像物理模型和结构光照明先验的神经网络对原始SIM图像进行去噪和高频信息增强,然后通过经典解析算法进行SIM重建以获得最终的超分辨图像。相比于该团队去年在Nature Methods上提出的超分辨重建神经网络模型DFCAN/DFGAN,rDL SIM可将超分辨重建结果的不确定性降低3~5倍,并实现更高的保真度和重建质量;相比于其他去噪算法(如CARE),rDL SIM可恢复出调制在原始图像中的莫尔条纹,并将高频信息增强10倍以上。   此外,针对晶格光片显微镜、共聚焦显微镜等宽场照明或点扫描成像模态,该团队提出了一种可学习的傅立叶域噪声抑制模块(FNSM)。该模块可以利用OTF信息对显微图像中的噪声进行自适应滤除。科研团队以此构建了嵌入FNSM的通道注意力去噪神经网络架构,并基于显微成像数据本身的时空连续性,提出了时空交织采样自监督训练策略(TiS/SiS-rDL)。该策略无需额外采集训练数据、亦无需保证时序数据具有时间连续性,即可实现媲美监督学习效果的去噪神经网络的训练,解决了实际生物成像实验中高质量训练数据难以获取的难题。   合理化深度学习超分辨显微成像方法可适用于包括2D-SIM、3D-SIM、LLSM等在内的多种显微成像模态,提供高分辨率、高保真的显微图像重建性能,相较于传统方法最多可以提升30倍的成像时程和10倍的成像速度。借助rDL成像技术,研究团队开展了诸多过去的成像手段无法开展的超分辨活体成像实验,并与Lippincott-Schwartz、中科院分子细胞科学卓越创新中心研究员朱学良、中科院遗传与发育生物学研究所研究员何康敏探讨了其潜在的生物学意义,包括:对滴落在玻片上的U2OS细胞贴壁生长过程进行双色、长时程(1小时以上)、超分辨(97nm分辨率)观测,清晰、真实地记录了细胞粘附和迁移的动力学现象,且不干扰这一漫长、脆弱的生命过程;对高速摆动纤毛以当前最快的684Hz成像速率进行长达60,000个时间点的连续超分辨观测,且过程中无明显光漂白或细胞活性损伤,并对纤毛摆动模式和频率进行统计分析;对摆动纤毛及纤毛内转运蛋白(IFT)进行超快、超分辨双色成像,揭示了IFT在行进途中碰撞、重组、掉头等多种新行为;通过对cCAS-DNA与ER进行双色、长时程、超分辨成像,观测到cGAS-DNA在保持与ER持续接触过程中的定向运动、转向或扩散等行为,拓展了对膜性细胞器与无膜细胞器相互作用机制的认知;对HeLa细胞分裂过程中的核仁磷酸蛋白(NPM1)、RNA聚合酶I亚基RPA49及染色质(H2B)进行超长时程(12秒采集间隔,2.5小时以上)的三维超分辨活体成像,实现了对完整有丝分裂过程中NPM1与RPA49两种结构形态变化的三维超分辨活体连续观测,揭示了细胞有丝分裂过程中核仁形成以及NPM1、RPA49两种无膜亚细胞结构的相变、互作规律;以10Hz的全细胞体成像帧率对高尔基体进行长达10,000时间点的连续拍摄,并实现了对完整细胞分裂过程内质网、溶酶体、线粒体等亚细胞结构的三色、高速(秒量级)、超长时程(小时量级,1000个时间点)三维观测,探究了细胞有丝分裂过程中细胞器在子代细胞中的均匀分配机制。   李栋/戴琼海合作团队通过人工智能算法与光学显微成像技术的交叉创新,提出了合理化深度学习超分辨显微成像框架,解决了现有深度学习成像方法分辨率损失、预测不确定性、训练集不易采集等难题,可为多种活体显微成像模态提供30倍以上的成像速度与时程的提升,为细胞生物学、发育生物学、神经科学等领域的发展提供了重要的研究工具。同时,该研究团队所坚持和倡导的人工智能算法与光学成像原理交叉创新、软硬结合的研究思路,为现代光学显微成像的发展开辟了新的技术路径。   研究工作得到国家自然科学基金、科技部、中科院、中国博士后科学基金、腾讯“科学探索奖”、清华大学“水木学者”计划的支持。图1.合理化深度学习超分辨显微成像神经网络架构图2.合理化深度学习超分辨显微成像方法应用概览

成像方法相关的方案

  • 验证MS成像中的最佳基质涂覆方法
    近年来,MS成像被广泛应用于原研药研究、代谢研究以及其他各种领域。在使用MALDI电离法的MS成像中,除了在众多的基质种类中选择适合目标化合物检测的基质之外,研究所选择基质的涂覆方法也极其重要。喷涂法可有效地从组织中萃取,但存在成分渗出、基质晶体颗粒大、不均匀的问题。另一方面,升华法可实现基质晶体的微小、均匀化,但无法有效地从组织中萃取。因此,开发了升华法与喷涂法相结合的两步升华法(专利:6153139)和使升华的基质再结晶的升华后再结晶法等。在本文中,我们将介绍基质种类和涂覆方法的差异造成的晶体尺寸和形状差异的观察结果,以及证实两步升华法在MS成像中的优势的示例。
  • 使用新型放大增强方法实现生物医学组织样品的高空间分辨率 FTIR 成像
    傅立叶变换红外 (FTIR) 成像是一项成熟的分析方法,可同时获得微米级范围的光谱和空间信息。这一技术已广泛用于多种不同的应用领域,从高分子科学到生物医学成像。近年来,人们越来越关注通过主要使用基于同步加速器的系统,来提高受到衍射极限制约的 FTIR 成像系统的空间分辨率。在本应用简报中,我们展示了一项使用现有物镜实现放大增强的新型方法。最终,我们的 FTIR 系统显示出 1 ?m/像素级别的高空间分辨率成像能力。独特的是,这种构造在设置不同的放大倍率时不需更换物镜,从而保持了常规物镜相对较大的工作距离(约 21 mm)。
  • 高光谱成像技术的水稻叶瘟病斑分割方法及其光谱特性分析
    稻瘟病是我国南北稻作区危害最严重的水稻病害之一,与纹枯病、白叶枯病并称为水稻三大病害。目前稻瘟病的识别主要还是人工通过图片对比或根据文字描述来完成,然而这些识别方法主观性太强,对工人专业素质要求较高,且效率低,往往会引起人为判断的误差,这样就很难准确和及时地对症下药,进而影响防治效果,造成水稻减产。高光谱成像技术是传统成像技术和光谱技术有机结合而成的一项新技术,利用成像技术可以获得农作物的影像信息,利用光谱技术可以获得农作物的光谱信息。

成像方法相关的论坛

  • 英开发质谱成像技术新方法 推动癌组织分析数字化

    原标题:英开发出质谱成像技术运用新方法 推动癌组织分析进入数字时代 在癌症研究领域,质谱成像(MSI)是一种非常有前途的技术,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等问题限制。英国帝国理工学院近日发布新闻公报称,该校研究人员开发出一种新方法,可有效解决上述问题。新方法将改变病体组织的检测方式,从而推动癌症组织分析进入数字时代。相关研究成果刊发在最新一期《美国国家科学院院刊》上。 质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。 新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。研究人员称,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。 与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生选择最有效的治疗方法十分重要。 研究人员指出,自19世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。他们表示,新研究克服了一些质谱成像技术实际应用所遇到的障碍,将成为创建下一代完全自动化的组织学分析手段的第一步。 总编辑圈点 这是用互联网思维改造传统检测方法的一种尝试,它首先选取了质谱成像方法中最容易快速成像的解吸电喷雾电离技术,实现了数据快速采集;其次,通过将质谱成像得到的结果数字化,建立样本库,提高了数据规模,保证了分析精度;最后,与大数据、云计算等结合,可不断提高检测的准确性,为可靠应用提供保证。新思维已经提高了单个样本的检测精度,我们对它在群体和地区性疾病的检测预防方面也应有所期待。

  • 《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    今天到这里来发布一个消息,对坛里各位师生都有用,版主不要认为是广告帖,高抬贵手啊。《核磁共振原理与实验方法》原书由武汉大学出版社出版,ISBN:9787307059894。出版时间:2008-04-01。大32开本,32个印张,精装版,每本定价95元,该书是核磁共振专著。前5章为核磁共振基础知识;第6章是介绍核磁共振谱仪和操作程序;第7和第8章是理论计算方法和表象理论,很有看点;第9章是该书所特有,如想设计新的实验就有必要一读;第10章一维谱,包括谱仪各种指标测试和13C谱编辑;第11章自旋回波和驰豫时间测量;第12 章双共振,重点讨论各种自旋去偶;第13章二维谱,是读者感兴趣的部分; 第14章多量子跃迁,比较专业;第15章供关心固体高分辨的读者一阅;第16章是书中的重点,分析了84个实用脉冲序列,体现了理论与实验相结合的价值。《核磁共振原理与实验方法》适用于从事核磁共振研究的专业人员,应用核磁共振技术做结构分析的相关工作人员,以及大学教师、研究生、科研人。该书2008年出版,很快售罄,一直未再版。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011326_540416_2995925_3.jpg网上对该书需求度很高。现在,两位老师(高汉宾、张振芳)不顾年事已高,重新整理,与时俱进,以数字出版方式,在武汉大学出版社的天线出版网上正式网络出版,出版号: UDPN 978-7-307-01368-1。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011333_540417_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011334_540418_2995925_3.jpg扫一扫同时,两位老师的另一新作《磁共振成像原理》也以数字出版形式出版,出版号: UDPN 978-7-307-01369-8。该书没有纸质出版,数字出版是唯一形式。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011338_540419_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011339_540420_2995925_3.jpg扫一扫该书简介:随着磁共振成像在临床诊断中普遍应用,磁共振影像已为大众所熟悉,希望了解磁共振成像的人与日俱增,为此,需要一本具有一定深度的普及读物供大家阅读和参考。本书从物理角度论述磁共成像原理,全书共分14章。 第一章 磁共振成像概述 第二章 连续与离散傅里叶变换 第三章 离散采样与傅里叶重建像 第四章 稳态κ空间采样 第五章 稳态快速κ空间采样 第六章 κ空间分区采样和回波平面成像(EPI) 第七章 Bloch方程的解与旋密度、T1、T2 的测量 第八章 分辨率、信噪比、对比度 第九章 化学位移谱成像和抑制脂肪信号 第十章 磁场不均匀对图像的影响 第十一章 随机运动、弛豫与扩散 第十二章 运动伪影和速率补偿 第十三章 磁共振血管成像(MRA) 第十四章 磁化率成像与脑功能成像(FMIR)参考文献

成像方法相关的资料

成像方法相关的仪器

  • 单像素光子成像教学仪 单像素光子成像教学仪是基于压缩感知理论和光子计数成像技术,利用数字微镜器件完成随机空间光调制目标物进行快速成像的教学仪器。产品利用压缩感知技术信号稀疏的特性,超越传统香农采样定理,可以通过较少的测量值在极弱光条件下还原出高空间分辨率高信噪比的图像。 单像素光子成像教学仪具有丰富的硬件模块,支持学生动手调节和搭建,方便学生了解空间光调制技术及设备使用方法;理解压缩感知原理以及成像方式;知悉光子计数成像特点及噪声处理方法。 配备完整的压缩感知理论教学讲义和实验内容,帮助高校在近代物理实验课、通信类、计算数学等方向开设课程,推动学科建设发展。产品硬件可调,教学功能丰富桌面型设计,使用更加方便完善的配套教学资料 遮光性能优越,具有强光保护自由算法编码,可视化实验效果实验内容仪器调节实验光路搭建和仪器模块连接;单帧图像显示实验;光本底测量实验; 频率位移关系实验含目标靶成像实验;分辨率靶成像实验;自制目标靶成像实验;单像素光子成像调制方法实验不同矩阵调制成像实验;不同算法调制成像实验;实验原理图
    留言咨询
  • 活体成像仪 400-860-8560
    UVP Biospectrum Advanced 900活体成像仪随着科研的深入,生命科学的研究已经发展到在体研究的阶段,德国耶拿公司UVP Biospectrum Advanced 900活体成像仪是一款兼容生物发光和荧光多重成像的非侵入性活体成像仪。生物发光方面,该仪器使用了一个-100度深度制冷的背照式CCD,配合超大光圈的定焦镜头,不仅能实现灵敏度的信号采集,而且将噪音水平控制到极低的水平,从而实现高灵敏度的生物发光检测。荧光成像方面,高强激光光源可以实现从紫外到近红外的全光谱荧光成像,带宽更窄,激光光强更强,既兼容了所有的荧光成像应用,又可以通过近红外降低样品背景,进一步提升了成像效果。 该仪器既可以用于动物活体成像,亦可以用于植物活体成像,模块化设计,及各种配件可以实现生物学、医学、环境生物学等多个领域的各种成像应用扩展,比如高分子材料、纳米靶向材料成像、WB成像等。可以根据客户需求定制化滤光片,匹配个性化的需要。温控板可以让小鼠保持正常生理体温,小鼠成像时的状态与正常生理状态一致,确保结果的准确性。软件使用方便,对于需要多次成像的试验,可通过预设模板的方法进行一键成像。在线气体麻醉系统可以实现在线麻醉,防止体外麻醉对小鼠带来损伤。一次可同时进行多达10只小鼠的成像。软件符合21CFR Part11,可以实现对数据追踪溯源,保证数据的真实性。应用方向:癌症与抗癌药物研究 ,免疫学与干细胞研究 ,细胞凋零 ,病理机制及病毒研究 ,基因表达和蛋白质之间相互作用 ,转基因动物模型构建 ,药效评估 ,药物甄选与预临床检验 ,药物配方与剂量管理 ,肿瘤学应用 ,生物光子学检测 ,食品监督与环境监督等。
    留言咨询
  • 中红外指纹区成像仪 什么是指纹区域目前可用的电磁源、光谱色散器件和探测器使在电磁波谱可见到近红外部分的低成本便携式光谱仪设备的开发成为可能。尽管已经报道了一些应用,但在电磁波谱区域内的有机成分识别是非常具有挑战性的,因为它对应于分子伸缩振动能级的泛音带。因此,该地区有机化合物的光谱特征往往不清楚,很难准确区分复杂混合物的各个成分。准确识别样品成分的理想方法是通过光谱中所谓的“指纹”区域的光谱,即基本分子能量带所在的区域。指纹区域位于大约7m 和20m(500cm -1 至1450cm -1)之间,称为中远红外(MIR),可用于区别不同化合物结构上的微小差异。犹如人的指纹,故称为指纹区。指纹区的红外吸收光谱很复杂,能反映分子结构的细微变化。这个区域的振动类型复杂而且重叠,特征性差,但对分子结构的变化高度敏感,只要分子结构上有微小的变化,都会引起这部分光谱的明显改变。 图通过显示在指纹区域典型有机化合物的吸收特征,而图中左侧所示的近红外谐波区域则没有这种特征。红外光谱指纹区的特点: l 多峰性l 峰特征性l 峰移动性l 精细性红外指纹成像光谱仪INO 在MEMS 开发方面的背景使其在开发在红外指纹光谱区域的微型成像光谱仪器方面处于优势地位。这主要归功于INO 作为微测辐射热计传感器发展的世界领先者的地位。与傅里叶变换红外光谱仪(FTIR)中使用的制冷红外成像阵列相比,微测辐射热计传感器非制冷,体积小, 价格便宜,是小型化,低成本红外光谱成像系统的理想选择。此外,INO 开发了一种在微测辐射热计阵列像素上沉积金黑宽带吸收体的工艺。与标准测辐射热计吸光度相比,金黑吸收器将测辐射热计的吸光度提高了两倍,因此灵敏度提高了2 倍。金 - 黑吸收体还允许前所未有的大波长吸收范围:从电磁波谱的可见光到太赫兹区域。由于几种微机电“MEMS”技术的融合,光谱学世界正在经历变化。 MEMS 微测辐射热计阵列与MEMS 扫描法布里 - 珀罗干涉仪和小型化成像透镜的集成使得能够创建小型,低成本的高光谱成像仪器,可以在电磁频谱的红外“指纹”区域工作。到目前为止,这主要是大型,昂贵的基于傅立叶变换干涉仪(FTIR)的仪器领域。这些仪器通常仅限于实验室环境,由经过培训的专家操作。小型、低成本的成像光谱仪的出现将极大地减少这些设备进入的障碍,使得这些技术在实验室外得到更广泛的应用。随后,在农业和食品质量,先进制造业,生物医学,国防和安全等领域设想开发一系列新应用。
    留言咨询

成像方法相关的耗材

  • 核磁共振成像管
    核磁共振成像管(Test tubes for the imaging NMR) 核磁共振成像管,一端封闭,平底,火焰抛光,外观棕色,单支独立薄膜包装,每包10支。订购信息:货号产品描述规格2009040核磁共振成像管,5mm外径,壁厚0.5mm,长度160 mm10支/包2009041核磁共振成像管,10mm外径,壁厚0.6mm,长度160 mm10支/包2009042核磁共振成像管,15mm外径,壁厚0.6mm,长度160 mm10支/包2009043核磁共振成像管,20mm外径,壁厚0.8mm,长度160 mm10支/包2009044核磁共振成像管,25mm外径,壁厚0.8mm,长度160 mm10支/包2009045核磁共振成像管,30mm外径,壁厚1.2mm,长度160 mm10支/包
  • 钙离子成像系统配件
    钙离子成像系统配件是测量显微镜下的生物样本中荧光强度的变化仪器高速钙成像系统,兼具高灵敏度和高速度的优势钙离子成像系统配件有单探测器和双探测器两种配置,分别对应于单发射和双发射实验,并且为比例测量提供特殊的双激发模式。钙成像系统特别适合: 测量或双发射实验 高灵敏度或高速实验 FRET测 无缝对接荧光和电生理学的实验 是测量荧光强度变化的高速钙成像系统,可用于钙离子浓度测,钙离子成像.钙离子成像系统配件基本配置包括可编程控制光源(用于安装到显微镜上)取景器(用于选择测量区域)荧光探测器(基于光电二极管技术)控制单元(具有信号处理功能)对于采集速度大于1KHz的实验,可使用光电倍增管替代光电二极管以满足高速测量的要求,但是这仅适用于单发射钙离子成像系统配件配置方案单通道荧光测光系统配置光源(多色光源rome V)取景器(配带相机和显示器)取景器显微镜适配器探测器配带控制单元一个或多个双发射滤波片立方体一个或多个双发滤波片组件钙离子成像系统配件特色取景器控制测量区域测量区域的大小和位置可通过取景器的视场自由定位视频可视化调节测量区域同时进行样品荧光测量和红光可视化测量区域重叠显示在样品的发射图像上光电二极管探测---高灵敏度且承受过度曝光具有超高灵敏度和极低噪音,量子效率高达97%耐用不怕过度曝光最大采集速率高达1KHz,使用光电倍增管可获得更高的速度控制单元带有荧光探测模块---简化数据采集钙离子成像系统配件应用 测量分子内离子浓度(钙离子,镁离子,钾离子,PH等) FR ET测量 单波长染料 不需要空间分辨率的所有荧光测量
  • 细胞成像培养板
    产品编号 描述30741005 24孔细胞成像培养板, 薄膜平底, TC处理, 带盖, 黑色, 独立包装, 20块/箱30741013 96孔细胞成像培养板, 薄膜平底, TC处理, 带盖, 黑色, 独立包装, 20块/箱30741021 24孔细胞成像培养板, TC处理, 带盖, 黑色, 玻璃底, 独立包装, 20块/箱30741030 96孔细胞成像培养板, TC处理, 带盖, 黑色, 玻璃底, 独立包装, 20块/箱细胞成像培养板为黑色、透明底部,并提供24孔和96孔两种规格。 其中有两种材质的透明底:25μm薄膜和170μm盖玻片。薄膜底具有出色的透光率,即使是UV-A和UV-B紫外光也有高透光率。The autofluorescence of the material is lower when compared to a conventional polystyrene bottom with a significant reductionin background signaling. 而且,薄膜底具有高气体透过性:氧气和空气可直接通过板底透过并均衡。玻璃底非常平坦,满足复杂显微分析需求。产品特性TC处理,促进贴壁细胞生长细胞成像培养板底部低裙边设计,确保物镜可完美检测到培养孔的整个底部两种底部均可实现检测结果的高信噪比

成像方法相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制