超精密原子

仪器信息网超精密原子专题为您整合超精密原子相关的最新文章,在超精密原子专题,您不仅可以免费浏览超精密原子的资讯, 同时您还可以浏览超精密原子的相关资料、解决方案,参与社区超精密原子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

超精密原子相关的资讯

  • 超冷原子云制冷有望带来新的精密检测设备
    瑞士巴塞尔大学物理学家开发出一种新的制冷技术,用超冷原子气体作制冷剂,把一种膜振动冷却到绝对零度以上1摄氏度之内。这一技术可用于给量子机械系统制冷,有望让量子物理实验系统变得更大,并带来新的精密检测设备。相关论文发表在最近的《自然· 纳米技术》杂志上。   超冷原子气体是目前最冷的物质之一,是用激光束把原子陷落到一个真空室内,使它们运动得越来越慢,由此温度达到绝对零度以上不足百万分之一摄氏度。在这种温度下,原子服从量子物理法则:它们就像一个个小波包那样来回运动,能同时处在多个位置并互相叠加。目前已有许多技术利用了这些特征,如原子钟及其他精密检测仪器。   在新研究中,巴塞尔大学物理系教授菲利普· 图特莱恩领导的研究小组就是用这种超冷气体作为制冷剂,把一块1毫米见方的振动膜冷却到绝对零度以上不足1摄氏度。据物理学家组织网近日报道,该膜是一块50纳米厚的氮化硅膜,上下振动就像一面小鼓的鼓皮。这种机械振动是永远不会完全静止的,它表现了一种热振动,取决于膜的温度。   由于原子极微小,迄今造出的最大原子云也只有几十亿个超冷原子组成,比一粒沙子包含的粒子数还少,所以原子云制冷的力量极为有限。   &ldquo 这里的诀窍是,希望膜以何种模式振动,就把原子的全部制冷力量都集中到这种振动模式上。&rdquo 研究小组成员安德里亚· 乔克尔说,原子和膜之间的相互作用由激光束引起,&ldquo 激光对膜和原子产生了压力,膜的振动改变了光对原子的压力,反之亦然。&rdquo 激光能跨越几米远的距离传递制冷效应,所以原子云无需直接与膜接触。这种连接作用还可以通过两面镜子组成的光学共振器放大,膜在两面镜子之间,就像三明治。在本实验中,虽然薄膜包含的原子数是原子云的10亿倍,研究人员还是观察到了很强的制冷效应。   以往科学家只是理论上提出,可以用光来连接超冷原子和机械振荡。本研究是世界上首次在实验中实现了这一系统,并用它来给振荡物体制冷。研究人员指出,如果进一步改进该技术,还可能把膜振动制冷到量子力学基态。   对研究人员来说,用原子冷却膜只是第一步。图特莱恩说:&ldquo 与光致作用相结合,能很好地控制原子的量子性质,这为量子膜控开辟了新的可能。&rdquo 人们有可能用相对宏观的机械系统来做量子物理实验,以前所未有的精确度检测膜振动,反过来开发出针对微小力和质量的新型传感。
  • 日本团队利用中子射线开发全息成像技术成功获得轻元素的超精密原子三维图像
    p   日本熊本大学近日发布消息称,该大学与多家日本大学和研究机构组成的联合团队利用包含各类波长中子射线的“白色”中子束(所谓“白色”的比喻,是因为白色可见光是由各种不同波长的光波所构成)开发出新型全息显微镜,可用于在原子水平对半导体、传感器等高性能材料中添加的微量轻元素进行精密结构分析。其中子束来自位于茨城县东海村的“大强度质子加速器”(J-PARC)。这项成果的突破点在于: /p p   一是能够分析微量轻元素掺杂物。以往采用的X射线及电子束,对于氢、锂、氧等轻元素的敏感度很低,无法用于成像。而上述轻元素在今后开发新能源材料时,将有重要用途。 br/   二是对破解功能性材料的作用机理具有重大意义。在研发过程中,团队成功对萤石结晶中掺入稀土元素铕(Eu)的情况进行了验证,通过超精密成像,对稀土元素周边的特殊结构成功进行了解析。萤石是放射线传感器中的核心材料。这是世界上首次对这种结构进行解析,这一技术将有望大幅度提高放射线传感器的性能。 /p p   此外,由于利用这种“白色”中子射线对掺杂物进行研究时,只需进行一次拍照即可对100种波长形成全息图,从而极大地缩短了研究周期。今后,通过对各类功能材料调整掺杂物成份,进行成像分析,将可能带来众多其它材料性能的重大突破。 br/   参加这一工作的有熊本大学、名古屋工业大学、茨城大学、广岛市立大学、高辉度光科学研究中心等九个单位的研究人员。 /p
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf

超精密原子相关的方案

超精密原子相关的论坛

  • 【转帖】日本研制出超精密尺子

    日本关西学院大学一个研究团队20日宣布,他们研发出一种超精密尺子,可用于测量纳米级别的尺寸。这个团队来自关西学院大学理工学系。他们研制的这种尺子以硬度仅次于钻石的碳化硅为主要材料。碳化硅质地坚硬,很难加工,研究人员为此专门开发出一种新的加工技术。他们把碳化硅放入超真空环境中加热到约2000摄氏度,再对其表面进行切削。采用这一加工技术,研究人员成功使碳化硅材料表面形成了阶梯状构造,阶梯的每级“台阶”为0.5纳米,相当于尺子的一格刻度。据介绍,研究人员还能把“台阶”的高度做成0.76纳米和1纳米。研究人员表示,这种超精密尺子可广泛应用于超精密仪器、计算机中央处理器、大规模集成电路等诸多涉及纳米技术的领域。新型尺子的耐腐蚀性也比传统的硅制精密尺子更胜一筹。

  • 【建设新闻】西安光机所光机精密装校超净实验室建成投入使用

    [table=660][tr][td]西安光机所光机精密装校超净实验室建成投入使用[/td][/tr][tr][td]来源:机械专家网[/td][/tr][tr][td] 内容摘要:经过几个月的紧张施工,在2010年新年即将到来之际,[color=#000000]西安光机[/color]所光机精密装校超净实验室建设工程顺利完工并通过工程竣工验收正式交付使用。  经过几个月的紧张施工,在2010年新年即将到来之际,西安光机所光机精密装校超净实验室建设工程顺利完工并通过工程竣工验收正式交付使用。随后经过一个多月的设备进场和调试,目前该超净实验室内包括三槽金工零件超声波清洗机、九槽光学元件超声波清洗机、0.5T制纯水设备、各类光学平台、精密测高仪等一大批设备已经安装调试到位,并开始为科研生产任务提供服务。   为适应创新发展工作的急需,2009年9月14日,该所正式启动了总投资达200多万元的系统工程部光机精密装校超净实验室建设工程。此项工程将建设总洁净面积达1500平方米的超净实验室,其中包括千级超净实验室500平方米,十万级超净实验室700平方米,普通洁净区300平方米。整个实验室设计温度范围为20~26度,湿度为40%~50%,噪声要求≤65分贝,洁净室照度要求>300lax。  这次改造建设完成的我所新的光机精密装校超净实验室将极大地提升了所内原有的光机装调的整体环境和平台技术水平,它不仅最大限度地满足了西安光机所正在承担研制的我国神光Ⅲ任务部分项目装调工作的需要,而且还为全所各类重大科研项目的光机精密装校工作提供了最佳的平台和场所,是我所在推进创新能力建设工作中取得的又一项成果。[color=#ec0078]摘自《机械专家网》 ,部分内容进行修改。[/color][/td][/tr][/table]

  • 我国开发出超精密镜面铣磨一体化机床

    我国机械制造企业最近开发出超精密镜面铣磨一体化机床,可将230*1900mm的连铸钢坯表面加工成镜面。人们可在加工后的镜头面上进行夹杂物和金相组织的检测,另外该钢坯在做低倍检验时,可提高检验的准确度。镜面的表面粗糙度Ra0.01-0.02微米范围。

超精密原子相关的资料

超精密原子相关的仪器

  • 超快速原子力显微镜 NanoWizard ULTRA Speed 2630 Hz线速率、10帧/秒高分辨超快速成像最高分辨的定量纳米力学成像与最精密先进光学显微镜的完美结合新一代基于工作流程的软件革新灵活易用的模块化设计与大量模块的卓越拓展性 超快速扫描终极性能NanoWizard ULTRA Speed 2 拥有最新一代Vortis&trade 2控制器、顶尖的基于工作流程的用户界面、先进的扫描器设计以及新的工作模式,从而提供了卓越的高性能和无与伦比的用户有好度。新一代超快速原子力显微镜结合了真正原子级分辨率与10帧/秒的超快速扫描速率。这些技术突破是JPK BioAFM技术团队的技术专家们不断强化与创新的结晶。用户易用性的新高度JPK的工程师团队采用了全新的方法开发了新一代控制软件。新一代V7控制软件基于工作流程,旨在满足每个用户的多种需求。新一代软件可以更容易的控制复杂与长期的实验过程,结合一整套新开发的配件与功能,帮助和加快科学产出。真正原子级分辨率与超高的稳定性NanoWizard ULTRA Speed 2为满足高分辨率应用需求而设计。该系统提供的市面上最低噪音水平和最高稳定性是获得真正原子级分辨率的关键。此外,在超低力下的直接力控制可以防止对样品和探针的损坏。该系统采用最先进的位置传感器技术,可以提供最高的精度和最大的准确度。搭配倒置光学显微镜10帧/秒超快速扫描定义新标准全新的NanoWizard ULTRA Speed 2探针扫描技术可以达到传统原子力显微镜难以企及的速度水平。实时、原位的成像实验现在可以搭配高分辨先进光学系统进行。采用NestedScannerTM技术对大起伏褶皱样品进行高速成像迄今为止,在活细胞、大起伏褶皱样品以及具有陡峭边缘的样品进行最高时间与空间分辨率的动态成像实验一直是一项具有挑战性的工作。基于全新的NestedScannerTM技术,在细胞、细菌或其他褶皱样品的表面可以实现高速的扫描成像,样品最大容许起伏可达8 µ m。搭配先进荧光显微镜的AFM同步触发与样品动态过程实时观察样品的动力学变化通常依赖于改变环境条件来触发反应。全面的环境控制解决方案(温度控制以及气体或液体交换),结合光学显微镜手段,使用户能够以无与伦比的速度进行高级AFM实验。NanoWizard ULTRA Speed 2刷新了显微镜连用方案的标准。高速扫描的技术优势■高分辨观察样品实时的动态过程■NestedScannerTM技术快速扫描褶皱或较高的样品表面■AFM与荧光显微镜连用实现原位的多参数观察■极大提高工作效率,快速观察样品多个位置
    留言咨询
  • 说明:uKSA 系列超高精密电动平移台,按照行程分为50、100、150、200mm等四款产品,是卓立汉光开发的新型电移台,该系列电移台技术指标达到国际水平。 如:闭环分辨率0.1&mu m,每100mm行程,直线度、平直度小于6&mu m。该系列产品配合卓立的控制器,定位于超高精度要求的领域应用,如:超精密的激光 加工、超精密的三维扫描测量等。特点:● 铸钢底座,基准面精密磨削,保证整体性能稳定● 内置进口超高精密光栅尺,闭环分辨率可达0.1&mu m● 采用进口超高等级滚珠丝杠,可实现超高定位精度● 采用进口超高等级交叉滚柱导轨,具有超高运动性能● 标配三相步进电机,有效降低电移台运行时的振动和噪音 电机接线图 光栅尺接线图 配套产品:应用案例: TMC全功能运动控制系统MC6003P系列控制器 选型表:型号uKSA50uKSA100uKSA150uKSA200行程(mm)50100150200滚珠丝杠导程(mm)4电机型号FHB366-D(三相)闭环分辨率(&mu m)0.1最大速度(mm/s)40重复定位精度(&mu m)&le 2&le 2回程间隙(&mu m)&le 1&le 1运动直线度(&mu m)&le 6&le 10运动平直度(&mu m)&le 6&le 10自重(Kg)15182225中心负载(Kg)30
    留言咨询
  • MDX系列小尺寸精密电动位移台 MDP 系列小尺寸超精密电动位移台,产品小巧,精度高。采用日本进口交叉滚柱导轨和C3 研磨级五项步进电机直连丝杠,通过严格装配工艺控制,保证产品组装精度及运动定位精度, 产品结构精巧,同一性好。 MDT 系列小尺寸精密电动位移台,采用高精密交叉滚柱导轨配合滚珠丝杠直联两项步进智能电机,内部集成驱动器和编码器,形成半闭环反馈,电脑USB 直连驱动使用,具有更高的分辨率和定位精度。产品主体材料均采用优质铝合金,零件均使用卓立特 有CNC 加工磨削及三坐标检测技术保证最终产品组装精度及运动定位精度。可满足空间尺寸要求较小、精度要求高的精密光学实 验、精密定位、精密加工及高端设备集成等领域。 MDX 小尺寸精密电动位移台选型表: 型号MDP13-40MDP25-65MDT13-40MDT25-65行程范围(mm)±6.5±12.5±6.5±12.5台面尺寸(mm)40X4065X6540X4065X65主体材料及表面处理铝合金,黑色阳极氧化处理导轨交叉滚柱导轨滚珠丝杠直径Φ6mm X导程1mm分辨率(μm/脉冲)Step:2 Half:1Step:5 Half:2.5最大速度(mm/sec)10定位精度(μm)1030重复定位精度(μm)13回程间隙(μm)26静态平行度(μm)30405080运动平行度(μm)15202530俯仰/偏摆 (″)25/2520/2030/3025/25最大静扭矩(Nm)16mN.m80mN.m中心负载(Kg)3535自重(Kg)0.40.60.50.8限位传感器2个原点传感器1个表面处理阳极氧化(符合RoHS)
    留言咨询

超精密原子相关的耗材

  • 上海精密AAS原子吸收AA361MC样品杯
    重要提示:本产品网页标价为随机发布参数,产品具体准确价格请联系客服重要提示:本产品网页标价为随机发布参数,产品具体准确价格请联系客服。北京龙天韬略科技有限公司,原子吸收光谱仪/分光光度计自动进样系统配件耗材的设计研发、制造生产、OEM服务、批发零售;全数字化高精度样品杯3D设计、高强度高精度样品管模具、超纯专用全新进口样品管原料、十万级洁净无尘样品管注塑车间、进口高速数字样品管精密注塑机,确保每一个样品管的优良品质,高精度、高纯净、高稳定、抗酸碱、耐酸碱、北京龙天韬略还销售以下型号样品杯AA320NCRTAA361MC 我北京龙天韬略科技有限公司是美国PerkinElmer分销渠道商代理商,HGA石墨管、HGA石墨锥、THGA石墨管、THGA石墨锥、Lumina空心阴极灯、Atomax空心阴极灯、无极放电灯、AA雾化器、样品杯、同心雾化器、雾化室、矩管、中心管、采样锥、截取锥、自动进样针、样品容器、PFA瓶、标准溶液、校准标液、测定标液、质量控制液、干扰检查液、水污染标液、波长校准液、仪器检查标液、清洗标液、内标溶液、消解管等PE全线产品都含PerkinElmer官方正规防伪标签,刮膜扫码,可查询产品真伪北京龙天韬略产品规格齐全 、质量保障、 现货供应 、售后无忧 、期待您来电咨询
  • 超精密压电显微操作器系统配件
    超精密压电显微操作器系统配件使用方便,精确度超级高,是膜片钳实验,体外受精(IVF/ ICSI),转基因工程,胚胎操作,染色体解剖,以及任何需要超精密运动控制的工作的有效用仪器。超精密压电显微操作器系统配件具有非常迅速地移动到预定位置,同时保持精确度不到一纳米的功能!跟我们公司提供的任何NARISHIGE显微操作器相比,精确度的提高超过20倍。与EppendorfTransferMan® NK2,InjectMan® NI2和PatchMan® 系统相比,精确度的提高超过40倍。如果您想要极好的精确度和稳定性,而又不牺牲工作范围和工作速度!超精密压电显微操作器系统配件用操纵杆控制,在所有轴上都可以很容易地操纵MM3A。Kleindiek Nanotechnik MM3A符合人体工程学的直观的用户界面结合了大范围的运动速度,使其成为了显微注射和显微解剖的理想仪器。在神经生物学实验室中,非常适用于膜片钳实验。很容易迅速地安装到位,精细调节以接触神经元的细胞膜时提供纳米级精确度,由于几乎没有漂移(不同于精液压显微操作器,会因为细微的温度变化产生漂移)在整个实验中产生一个稳定的信号,简直是用于电气生理学的最好显微操作器。超精密压电显微操作器系统配件功能:设置简单:无需摆弄繁琐的支架 只需将坚固的磁性显微操作器安装到显微镜平台上,并开始注入!该纳米控制盒和手柄/操纵杆/立方体安装在显微镜旁,接触方便和符合人体工程学。几乎不受振动漂移非常短(1纳米/分钟)(没错,就是1纳米!)亚纳米级分辨率(0.25nm)宽广的工作范围(100cm3)粗调,精细运动集成在一个单元操作速度高(达10mm/秒!)点击显示图表,图表显示了MM3A与Eppendorf TransferMan® NK 2, InjectMan® NI 2 and PatchMan® 系统相比,如何更精确,更紧凑,更快,更轻以及与我们的各种NARISHIGE仪器选项相比,又是如何的。超精密压电显微操作器系统配件控制:下面是MM3A的控制图解。MM3A包含了纳米控制器(NanoController)和手柄(图中所示的最上面两个设备)。根据工厂的标准设置,手柄上的按钮用于粗调模式下移动。这两个操纵杆都可以是精细和粗调模式,取决选择的速度。此外,还可以设置一个原始/停放位置,那么当多次注射时显微操作器可以快速来回移动。为了更简单的高精度控制(如放置一膜片电极),我们推荐立方体,它是有三个高分辨率游标刻度盘的手动控制装置(图中显示的底部设备)。立方体提供了高响应,直观,直线运动控制。除了用户选择操纵杆外,立方体直接连接到纳米控制(NanoControl)控制电子。 过程移动范围是几厘米,一旦接近目标,超精密压电显微操作器系统的标准精细工作范围为20μm。如果用户想要一个更大的精细模式工作范围,增加助推器设置。NanoControl控制电子的助推器组件将精细模式工作范围扩大了一部。超精密压电显微操作器系统配件规格:尺寸57.1mm x 20.4mm x 25.4mm重量45g移动范围线性轴上的行程范围- 12mm 旋转轴线上的行程范围- 240°操作速度最大可达 10mm/秒精确度0.25nm 分辨率配件 1mm 或2mm移液管的移液管夹持器 pipettes磁性固定板显微镜平台转接板移液管增压和探头连接器纳米控制 用手柄控制电子和Windows98 / NT/ ME /2K / XP软件。详细信息的请查看以下链接,并在Kleindiek网站观看MM3A-LS的视频
  • 上海精密原子吸收石墨炉自动进样器AA361MC样品杯
    重要提示:本产品网页标价为随机发布参数,产品具体准确价格请联系客服重要提示:本产品网页标价为随机发布参数,产品具体准确价格请联系客服。北京龙天韬略科技有限公司,LTC系列分析测试自动进样系统自动进样器专用专用样品杯|样品瓶、样本杯|样本瓶、取样杯|取样瓶、进样杯|进样瓶、试剂杯/试剂瓶、试剂管|试验管、容器杯/容器瓶,应用先进的生产工艺、采用超痕量分析测试专用进口优质超纯洁净材料,在十万级无尘净化车间,高精度自动化生产,北京龙天样品杯有聚PE、聚苯PS、聚丙烯PP、聚四氟PTFE、PFA、PVDF、ETFE、FEP、高硼硅玻璃HBG、石英玻璃QG等多种优质改良材质可选;北京龙天样品杯有0.25、0.5、1.0、1.1、1.2、1.5、1.8、2.0、2.5、3.0、40.、5.0、6.0、7.0、8.0、10.0、11.0、12.0、13.0、14.0、15.0、20.0、30.0、50.0、60.0、80.0、100.0、120.0、150.0、180.0、200.0、250.0mL等超微量、微量、常量、大容量等多种容积可选;根据测试样品性质可选择适合一般水溶液、多数水溶液、有机溶液、强酸强碱、浓酸浓碱、无熔无析等特性样品杯;提供一次性型、经济实惠型、清洗重复使用型样品杯,提供原装进口、进口OEM、龙天国产多价位样品杯产品选择;广泛适合原子吸收FlameAAS光谱仪火焰自动进器、原子吸收GFAAS光谱石墨炉自动进样器、原子荧光AFS自动进样器、电感耦合等离子体发射光谱仪ICP-AES自动进样器、电感耦合等离子体发射光谱仪ICP-OES自动进样器、电感耦合等离子体质谱仪ICP-MS自动进样器、IC离子色谱自动进样器、UV紫外可见自动进样器、HPLC液相自动进器、GC气相色谱自动进样器、EA元素分析自动进样器等自动分析自动进样器配套使用,广泛适用于圆盘/转盘、方盘长方盘、矩阵/XYZ三维等各种样式自动进样器配套使用;厂家直销,批发零售,现货供应,诚征分销北京龙天韬略还销售以下型号样品杯AA320NCRTAA361MC北京龙天石英玻璃样品杯,LTC系列样品杯采用进口优质高纯石英玻璃材料;LTC系列样品杯容量:0.25、0.5、1.0、1.1、1.2、1.5、1.8、2.0、2.5、3.0、40.、5.0、6.0、7.0、8.0、10.0、11.0、12.0、13.0、14.0、15.0等多容积可选;LTC系列样品杯特性:耐腐蚀,耐,使用方便;石英玻璃原料,化学名称:化硅极低的热膨胀系数,高的耐温性,极好的化学稳定性具有良好的耐热性,制品能在100°C以上温度进行消毒,在不受外力的条件下,150°也不变形,,使用温度范围-30~1200°C;在100°C以下能耐酸、碱、盐液及多种的腐蚀北京龙天韬略产品规格齐全 、质量保障、 现货供应 、售后无忧 、期待您来电咨询

超精密原子相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制