超导实验室

仪器信息网超导实验室专题为您整合超导实验室相关的最新文章,在超导实验室专题,您不仅可以免费浏览超导实验室的资讯, 同时您还可以浏览超导实验室的相关资料、解决方案,参与社区超导实验室话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

超导实验室相关的资讯

  • 走近国家重点实验室——超导的奥秘
    p   科幻电影《阿凡达》不仅为观众带来了极致的3D体验,电影中的恢弘场景也给观众留下了深刻的印象,没错,就是那一座座悬浮的哈利路亚山。根据电影的解释,悬空“托起”这一座座高耸的山,秘密仅来自一种神奇的室温超导矿石。这个充满了神秘色彩的超导世界,为人们勾勒了一个奇幻的遐想空间。  /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/42f9751c-ee72-4f33-988c-681089e868b6.gif" title=" 1.gif" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 实验室研究人员带你走近超导实验室 /span /p p   什么是超导?超导实验又在研究什么?实验室中有哪些进行超导研究的各类“盖世利器”?不妨跟随小编一起走近坐落于中国科学院物理研究所的超导国家重点实验室,在这宛如科幻大片中的实验室里,零距离观看研究人员操作精密的超导仪器。同时中科院物理研究所超导实验室还走出了国际物理学界知名的中国科学家 ——中国科学院院士赵忠贤。1987年,他带领着超导“中国队”独立发现液氮温区高温超导体,并在国际上第一次准确公布了超导材料元素组成为Ba-Y- Cu-O,为中国在国际超导领域的研究赢得了话语权。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/a661e58b-c0ca-4051-9fb8-aca9074f1674.jpg" title=" 2.png" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 自旋分辨角分辨光电子能谱仪的构件介绍 /span /p p   角分辨光电子能谱仪器是超导实验室中的重要仪器设备,它由周密复杂的三部分构成,承担起超导机理研究的重要责任。实验室研究人员打趣地说到,“角分辨光电子能谱仪测量数据的过程就像人在钓鱼”。在这个过程中,角分辨光电子能谱仪器就像一个“鱼竿”,光源是“钓鱼线”和“鱼钩”,被测样品是“鱼塘”,电子是“小鱼”。要想知道“池塘”里有什么“鱼”,就可以把它“钓”出来看。“有了这个先进的角分辨光电子能谱仪,我们就可以知道超导材料的电子结构,这是超导机理研究的重要一环。”通过这台仪器,研究人员做过许多的实验并取得了很多成果,如首次探测到一些铁基超导体的电子结构,超导能隙等相关信息。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/e278b285-fc24-43ff-a811-31723e9664bf.gif" title=" 3.gif" / /p p    span style=" color: rgb(0, 176, 240) " 图为He3冷台,主要是给测试样品进行降温制冷的装置,该冷台可使被测样品的温度降低到 0.8K(-272.35摄氏度)以下。 He3冷台里面有3层循环制冷系统,最外层是液氮循环制冷系统,制冷温度能达到77K 中间层是液氦(He4)循环制冷系统,制冷温度能达到4.3K 最里面那层是He3循环制冷系统,制冷温度能达到0.8K以下。 /span /p p   如今的超导实验室,已经发展为一个具有多方面能力的小型科研基地,这个充满了科幻电影味道、拥有各类高能“玩具”的实验室汇聚了一批中国顶尖的超导科学家,他们在这里孜孜不倦地奋斗,从事着超导研究这项伟大而深远的科研工作,为中国的超导研究立下了汗马功劳。 /p p br/ /p
  • 超导与生物电子学中德联合实验室揭牌
    王曦和Andreas Offenhaeusser为联合实验室揭牌 10月21日,中国科学院上海微系统与信息技术研究所、德国尤利希研究中心(Forschungszentrum Jülich)生物与纳米系统研究所(Institute of Bio- and Nanosystems, IBN-2)超导与生物电子学联合实验室揭牌仪式在中科院上海微系统所举行。上海微系统所所长王曦院士、尤利希研究中心生物纳米系统研究所所长Andreas Offenhaeusser教授为联合实验室揭牌。来自美国、德国、日本、印度等国家的超导应用专家及我国知名学者吴培亨院士等专家,以及上海微系统所相关人员参加了揭牌仪式。 超导与生物电子学联合实验室是在中科院副院长江绵恒和尤利希研究中心董事会副主席Achim Bachem的关心和推动下成立的。揭牌仪式上,王曦和Andreas Offenhaeusser分别宣读了江绵恒、Achim Bachem发来的贺信,回顾了上海微系统所与尤利希研究中心的合作发展历程。 上海微系统所与尤利希研究中心在学术交流、人才培养等方面有着长期而紧密的合作。2008年和2010年成功地举办了第一届和第二届双边学术交流研讨会。上海微系统所已派遣七名研究生前往尤利希研究中心开展联合培养。此次成立的国际联合实验室,将推动双方在生物电子学和超导器件、电路及应用等方面开展更加深入的合作。 由上海微系统所主办的第二届超导器件前沿应用研讨会于揭牌仪式后举行。
  • 中美物理学家首次揭示铁基超导三维超导特性
    英国《自然》杂志发表中美物理学家联合研究的最新成果:在具有二维层状晶体结构的铁基超导体中发现超导态的“各向同性”。这是首次在二维层状的超导材料中报道三维的超导特性。该工作由浙江大学物理系长江特聘教授袁辉球利用美国洛斯阿拉莫斯国家实验室强磁场设备完成实验,铁基超导材料样品由中科院物理所王楠林小组提供,浙江大学物理系为论文第一作者单位。   高温超导形成机理是国际公认的一大挑战,科学家寄希望于寻找铜氧化合物超导材料以外的新型高温超导材料,进一步探索其形成机理。袁辉球在铁基超导材料发现后不久就开始关注这类新型超导材料的奇特物性。他通过采用脉冲强磁场等极端实验条件,极大地延伸了铁基超导材料的温度—磁场相图的研究范围,并发现了令人惊异的现象:铁基超导材料(Ba,K)Fe2As2在低温的上临界磁场几乎与外加磁场的方向无关,具有“各向同性”的特征。这是首次在二维层状的超导体中发现了超导态的各向同性,为揭示铁基超导材料的形成机理提供了重要的物理信息。铁基超导材料的这种奇特的超导特性是由其独特的电子结构所决定的。   袁辉球认为,这类铁基超导材料虽具有二维层状的晶体结构,但其电子结构可能更接近于三维,因此,维度的降低并不一定是形成高温超导的必备条件。此外,铁基超导材料也表现出许多与重费米子材料相类似的性质,特别是在磁与超导的相互作用方面,他还推测,铁基超导材料可能是连接低温的重费米子超导与高温铜氧化合物超导的一个重要桥梁。   《自然》杂志评审专家认为,这是超导研究领域一项非常独特而重要的发现,将对研究铁基高温超导形成机理具有重要意义。

超导实验室相关的方案

超导实验室相关的论坛

  • 疑似石墨室温超导性发现:或颠覆现有超导技术

    2012年10月02日 08:59 新浪科技 http://i2.sinaimg.cn/IT/2012/1002/U5385P2DT20121002084835.jpg  悬浮中的超导体:物理学家们对于超低温超导,即所谓“标准超导”背后的原理已经基本搞清,但是对于“高温超导”领域,比如室温环境下如何实现超导的原理仍然知之甚少  新浪科技讯 北京时间10月2日消息,最近科学家们在室温超导研究方面取得了一项发现,这一结果如果得到证实,将大大加快无损远距离输电和磁悬浮列车的研制的进程。  尽管物理学家们已经搞清楚了在超低温超导,即所谓“标准超导”,比如零下275摄氏度低温环境下实现超导背后的原理,在“高温超导”领域,比如在高出绝对零度140度的环境下如何实现超导的原理仍然知之甚少。研究人员们仍然不清楚为何这些“温暖”的物质可以实现零电阻导电,科学家们也无法知道在相对高温的环境下,如室温环境下物质是否可以实现超导。而这正是此次的这项发现所要解答的。  根据一份发表在《先进材料》杂志上的文章,价格便宜且容易获取的石墨粉似乎显示出超导特性的信号。并且这一切并不需要价格昂贵的低温冷却设备——让石墨粉显示超导性所需的材料仅仅是一盆水即可。  德国来比锡大学的帕布罗·艾斯奎纳兹(Pablo Esquinazi)和其它物理学家最先于2012年发表在arXiv网站上的一篇文章中探讨了石墨的超导性。这些石墨材料中的一部分表现出约瑟夫逊效应,也就是在隔绝两块超导体之间的障碍中形成电子隧道的现象。这一效应说明这些石墨样本中包含具有超导特性的区域。  艾斯奎纳兹表示:“基于这项工作,以及在过去3年间我们所做的工作,我们坚信这其中蕴藏着超导区域的可能性是存在的。”为了验证这种想法,研究人员用水处理石墨粉:他们将其与水混合23小时,将其取出过滤,并在100摄氏度环境中干燥。随后他们将这一经过水处理的石墨粉样本在改变的磁场环境中进行实验,观察其反应。  石墨和其它一些材料在此之前便代表着室温超导研究的希望。在过去也曾有一些文章报告在经过硫或氧处理后的石墨粉中检测到微弱的,间接的超导信号。但是没有任何人,包括报告这些现象的科学家们,没有任何人能够真正制造出一个室温环境下的超导体——一种符合教科书定义的真正的超导体——可以实现零电阻导电的特性。  然而超导体还有其它一些特征:一种材料。当其温度低于某一阈值,并经历某种相变时一般就会显示出超导性。而约瑟夫逊效应也是超导性的另一种信号,除此之外还有麦士纳效应,一般也被称为“反磁性”。当暴露于外部磁场中时,超导体会会推开这一磁场,从而阻止该磁场通过材料体内部。而超导体内部的磁场会比外部磁场更弱一些。这一特性让超导体得以悬浮半空,同时在外部磁场中形成可探测到的变化,同时也提供了一种对于超导性的可探测性信号。  物理学家们此次正是利用了这一特点:他们将经过处理的石墨粉置于变化中的外部磁场,并测量其反磁性特征。结果显示样本的一小部分确实显示出超导性特征,但是这样的比例非常小,大约仅占0.01%。  这样的比例可是一点都不让人感到振奋。艾斯奎纳兹表示:“这样的量实在太少了,这让我们很难进行进一步的研究。然而这一实验中给出了这样一种理念,那就是任何材料都可能在室温下实现超导,尤其是那些便宜而又容易获取的材料,如石墨和水。这一点具有重要意义。”  加州大学圣迭戈分校物理学家伊凡·舒尔(Ivan Schuller)表示:“如果你能制造出一种零电阻材料,而且这种材料的原料非常容易获取,制造出来之后也不需要将其用液氮冷却。超导材料可以改变能量的传导量,将列车悬浮半空,还有其它很多很多事情。”它们迅速且高效的导电能力将让远距离无损输电甚至手持式电子设备从中受益。但是很难想象超导体被应用于电网结构之中,因为当下的超导技术还需要在低温下进行,而电网或是你的电脑是不太可能经常浸泡在液氮之中的。而如果石墨粉这样一种便宜而容易获得的材料果真能在室温下实现超导,那么这将彻底革新我们的现有技术。  舒尔表示:“可以说,这一发现一旦证实,就将是一项重大发现。但问题就在于这究竟是不是真实的。这一点首先需要进行科学的判定。”舒尔认为由于这项发现意义重大,因此它更加需要更多的证据。研究人员目前还尚未能展示出这些样本具备了零电阻的特性,转变温度,甚至是约瑟夫逊效应。这些石墨粉样本所展示出的目前还仅仅是轻微的反磁性而已。  舒尔表示:“这一现象必须在同样的样本中被重现,然后是从实验室的不同样本之间进行验证,再然后是在不同的实验室中进行验证。科学家们必须相互讨论和争论,以便最终确认这究竟是否真实。这就是科学运作的方式。如此一来,或许会有人得出正确的结论。”  著名物理学家,美国斯坦福大学荣誉退休教授特雷多·加布雷尔(Theodore Geballe)同意这样的说法,即:当涉及室温超导问题时,仍然存在诸多的不确定性,仍然有很多工作需要去完成。尽管此次石墨粉材料表现出了初步的超导特性,他的意见是“在它们被证实之前,需要进行确认工作。我希望在本次报告之后就会有所突破,但是我对此一点都不感到乐观。”  事实上,研究人员自己也认为石墨粉室温超导材料的研究还需要更多的证据才能得出结论。艾斯奎纳兹表示:“其它人必须进行相类似的实验并最终证明这一超导现象是确实存在的。这是一项非常精细的实验,信号非常微弱。”在此之后,他本人的研究小组将致力于增加石墨材料中具有超导属性的部分所占比重,并以此实现对其属性性质的分析。他说:“这样一来,如果这些超导材料的性质在室温下表现的足够好,足够稳定,这将是一场革命。我们真的只是刚刚起步。”(晨风)

  • 美首次观察到超导体中重电子形成过程 有助于解释物质为何具有超导性

    2012年06月29日 来源: 中国科技网 作者: 常丽君 本报讯在 某些超导体中,运动电子的性质极为奇特。它们好像比真空中的自由电子重1000倍,但同时电子运动却是毫无阻力的。据物理学家组织网近日报道,美国普林斯顿大学领导的一项最新研究显示,产生这种现象是由于“量子纠缠”的过程,该过程决定了晶体中运动电子的质量。这一发现有助于人们理解超导性的成因,并有望在提高电网效率、加快计算速度等方面获得应用。相关论文发表在近日出版的《自然》杂志上。 将电子冷却到超低温形成某种固体物质时,这些极轻的粒子就会增加质量,好像变成了重粒。把它们冷却到接近绝对零度时,这种固体就有了超导性。其中的电子尽管很重,却能毫无阻力地流动,不会浪费任何电能。 研究小组还包括洛斯阿拉莫斯国家实验室(LANL)和加州大学欧文分校的科学家,他们利用专门设计的低温扫描隧道显微镜(STM)拍摄晶体中的电子波。晶体经过了处理,表面包含一些原子瑕疵。他们将温度降低到实验需要,观察到了电子波纹,这些波纹围绕着瑕疵之处扩散开来,就像在池塘里投入石头散开的涟漪。 “这是首次获得重电子形成的精确画面。在降低温度时,我们看到晶体中的运动电子演变成了更重的粒子。”领导该研究的普林斯顿大学物理学教授阿里·雅兹达尼说。他们通过直接拍摄的电子波图像,不仅看到了电子质量是怎样增加的,还看到了重电子是由两个纠缠电子构成的复合体。 他们还把实验观察和理论计算数据进行了对比,解释了电子为何会出现这种性质。由于量子纠缠,电子糅合两种截然相反的行为。在晶体中,重电子产生于两个行为相反的电子的纠缠,其中一个被困住绕着一个原子,而另一个在各个原子之间自由地跳跃。 研究人员解释说,量子力学原理控制着微小粒子的行为,形成了量子纠缠,这一过程决定了晶体中运动电子的质量。轻微调整这种纠缠,就能极大地改变材料的性质。而纠缠度是决定重电子形成和进一步冷却时行为表现的关键。调整晶体的成分或结构,就能调整纠缠度和电子重量。如果让电子太重,它们就会被冻成磁化状态,黏在每个原子旁边,以相同的方向自旋。但如果只是轻微调整,让电子获得合适的纠缠数量,这些重电子就会在冷却时变成超导体。“我们的研究证明了,只有当处在‘迟缓’和‘迅速’这两种行为的边界时,才能获得超导性。这是最有利于产生重电子超导性的条件。”雅兹达尼说。 许多磁性材料在它们的成分或晶体结构发生了微妙改变之后,变成了超导体。哈佛大学理论物理学家苏伯·萨奇戴伍说,该实验有助于揭开高温超导的秘密,理解这种磁性和超导性之间的转变,即量子临界点,有助于解释物质为何会具有超导性。(常丽君) 《科技日报》(2012-06-29 二版)

  • 【前沿科技】临界高温超导材料具有金属特性

    科学网2007年6月8日讯 高温超导研究的一个终极目标就是要找到在常温下具有超导特性的材料。如果能够实现,人类将在多个领域广泛受益。最近,科学家又朝着这个目标迈进了一步。他们发现,临界高温超导材料具有类似金属的特性。这一成果有望加深科学家对于超导现象和整个超导理论的理解。相关论文发表在5月31日的《自然》杂志上。1911年,利用液氦的低温,科学在-269°C时发现了超导电性现象。具有超导特性的物体自身电阻为零,而且磁场不能穿过。不过,超导现象只能在极低的温度下发生,这大大限制了它在能量传输和医学成像等方面的应用。 1987年,研究人员得到了所谓的“高温超导材料”,它们的临界温度高于77K(-196°C)。这与常温相比还是很低的,到目前为止,高温超导材料的临界温度纪录是138K(-135°C)。高温超导材料的发现大大激发了科学家进一步寻找常温超导材料的热情,不过,由于受一些基础性问题的困扰,相关研究屡屡受挫,其中很重要的一个问题就是超导材料中的电子运动。 在最新的研究中,来自法国国家科学研究中心(CNRS)脉冲磁场国家实验室(National Laboratory for Pulsed Magnetic Fields)的研究人员与加拿大Sherbrooke大学的科学家一道,观测到了临界高温超导体的“量子振动”。他们在极低的温度下(1.5K—4.2K),将实验样品置于62特斯拉(地磁场强度的100万倍)的超强磁场之中,结果发现,磁场破坏了样品的超导状态,而恢复到常态的样本由于受磁场的影响,表现出了电阻的振动。鉴于这种振动正是金属的特性,研究人员认为,他们所研究的临界高温超导样品中电子的运动方式与一般金属类似。 研究人员为了这个结论,足足等了20年。它无疑将加深人们对于临界高温超导电性的认识,此外,新的发现也有助于一些超导理论脱颖而出,为构建新的理论打下坚实的基础。

超导实验室相关的资料

超导实验室相关的仪器

  • 布鲁克公司直接留言,请将以下链接拷贝到浏览器地址栏(强力推荐) AscendTMAeon 900是一种不用液氮,使用氦再液化技术的超导磁体系统。它提供可以长期、放心的操作,无需用户维护。传统900兆的磁体需要占用两层实验室。凭借在超导材料、连接技术和磁体设计方面的进步,新的紧凑型AscendTM Aeon 900磁体可以放置在单层实验室。现在,研究人员可在有限的核磁共振(NMR)实验室空间里,受益于世界首台单楼层900兆磁体为固体核磁提供的高灵敏度和图谱分散特性。新磁体高度的降低以及最小的漏磁场提供了最大限度的选址灵活性,并降低核磁共振(NMR)实验室准备方面的成本。 布鲁克公司一直在应对潜在液氦短缺和液氦成本增加等问题。今年早些时候,布鲁克公司将此Aeon技术引入400-700兆核磁共振(NMR)磁体,而现在引入到900兆核磁共振(NMR)磁体。 核磁共振 (NMR) 适用于生命科学和材料研究应用的 核磁共振(NMR) 解决方案与分析仪核磁共振波谱仪可用于研究分子结构、各种分子、动力学或分子动力学之间的相互作用、生物混合物的组成或合成解决方案或复合材料。活性分子大小各异——从小型有机分子或代谢物到中型肽或天然产品,直到分子重量达数十 kDa 的蛋白质。核磁共振(NMR) 与其他结构和分析技术相辅相成,例如 X 射线、结晶学和质谱分析法。核磁共振(NMR) 的优点在于其具备独特的能力,允许对液态和固态分子进行无损和定量研究,并允许研究生物体液。Bruker 核磁共振 (NMR) 产品系列包括 Fourier、AVANCE-III HD 和 DNP-NMR 波谱仪,以及 JuiceScreener、WineScreener 和 Metabolic Profiler 等专用系统。
    留言咨询
  • AscendTMAeon 是一种不用液氮,使用氦再液化技术的超导磁体系统。它提供可以长期、放心的操作,无需用户维护。布鲁克公司一直在应对潜在液氦短缺和液氦成本增加等问题。今年,布鲁克公司将此Aeon技术引入400-700兆核磁共振(NMR)磁体。 核磁共振 (NMR) 适用于生命科学和材料研究应用的 核磁共振(NMR) 解决方案与分析仪核磁共振波谱仪可用于研究分子结构、各种分子、动力学或分子动力学之间的相互作用、生物混合物的组成或合成解决方案或复合材料。活性分子大小各异——从小型有机分子或代谢物到中型肽或天然产品,直到分子重量达数十 kDa 的蛋白质。核磁共振(NMR) 与其他结构和分析技术相辅相成,例如 X 射线、结晶学和质谱分析法。核磁共振(NMR) 的优点在于其具备独特的能力,允许对液态和固态分子进行无损和定量研究,并允许研究生物体液。Bruker 核磁共振 (NMR) 产品系列包括 Fourier、AVANCE-III HD 和 DNP-NMR 波谱仪,以及 JuiceScreener、WineScreener 和 Metabolic Profiler 等专用系统。
    留言咨询
  • AMI 公司(American Magnetics instrument)由美国橡树嶺实验室核聚变能源研究分部于1968年出资成立,是设计和生产各种低温—超导磁体组合以及各种可变温插件等试验设备的高新技术企业。作为超导磁体—低温系统的著名制造商,AMI 公司已经在范围内向著名高校,政府实验室以及企业等单位提供了数百套磁体系统,产品优良的品质使得 AMI 公司在同行业中享有很高的声誉。其产品广泛应用于商业、医疗以及科研机构。主要产品包括:■ 各种超导磁体系统■ 低温实验杜瓦■ 可变温插件■ 磁体电源 ■ 大功率电流引线和液面计多矢量轴超导磁体(Multi-Axis Vector Magnetic)多矢量轴超导磁体系统简称 MAxesTM 系统,可以在三个或者两个矢量轴上提供磁场分量,分别对应三矢量轴超导磁体系统(以下简称 MAxesTM-3)和二矢量轴超导磁体系统(以下简称 MAxesTM-2),MAxesTM-3 和MAxesTM-2 超导磁体分别能在空间任意位置和平面内产生任意方向的磁场分量。系统由三个(两个)轴向的超导磁体、低液氦损耗电流引线、 低温杜瓦以及其他相关电子器件组成。MAxesTM系统中螺线管产生的磁场要比劈裂磁体产生的通常是对称的磁场大,通过施加线圈还可以产生低场区域,梯度场或者调制场。矢量场避免了诸如磁光研究中转动样品导致的光路变动问题,也避免了低温研究中转动样品带来的漏热问题。多矢量轴磁体有无液氦和有液氦两种类型,用户还可以在此基础上选择是否带有光学窗口。可配合各种磁体杜瓦和变温插件使用。无液氦超导磁体(Cryogen - Free)新型的超导磁体采取传导制冷的方式直接由GM或脉冲管制冷机制冷,不需要消耗液氦(称之为“cryogen-free”,即无液氦系统)。昂贵的液氦费用一直都是传统超导磁体用户所面临的问题。AMI 公司推出的无液氦超导磁体系统,可配合各种磁体杜瓦以及可变温插件使用。该磁体系统显著的特点是:■ 完全无需液氦,节省实验成本。■ 缩小磁体体积,方便实验设计。光谱学超导磁体(Magneto-Optical Split Coil)光谱学超导磁体由劈裂磁体组成,在磁体部分带有一定数目的光学窗口,用户可以通过光学窗口,将光线以不同的 角度照射到样品表面,从而进行光照条件下样品的电输运特性研究;光照条件下样品的磁学性质研究;光照条件下,施加高压之后样品的物理性质研究等。AMI 公司生产的光谱学超导磁体有以下特点:■ 根据用户实验中要求的光波段的不同,光学窗口会选用相应的透光材料。■ 光学窗口的数量也视用户的实验要求而定,一般为4个,也可以是2个,3个,或者5个,窗口全部经过环氧密封,不存在任何漏热问题。■ 可提供至少 12 T 的磁场,磁场根据用户的实验需求可以水平,也可以竖直。■ 值得一提的是:磁场还可以在(XY)面内,或者(YZ)面内自由旋转(光学二矢量轴超导磁体);磁场也可以在空间内自由旋转(光学三矢量轴超导磁体),此类磁体即光学多矢量轴超导磁体系统。用户定制超导磁体(Custom Magnetic System)在很多情况下,市面上一些标准的磁体并本不能满足特殊实验对测试仪器的需求,特殊的实验需要特殊的磁体。AMI公司有这样一批的工程师——您只需要将您的实验要求告诉他们,如果目前的技术允许,工程师们就能设计制造出上只属于您的磁体,这也是 AMI 公司区别于其它公司的一个本质特征。客户的各种设计要求让 AMI 公司的工程师一天天成长,工程师也帮用户实现了想法,因此,我们欢迎您提出自己的磁体要求,工程师将竭力使您的想法成为现实。下列参数是我们在设计和制造超导磁体中必须知道的参数。■ 工作磁场大小■ 需要的磁场均匀度以及均匀区域尺寸■ 磁体的内孔径 超值性价比超导磁体系统这种磁体可提供垂直方向或者水平方向的磁场,垂直方向比较常用。磁体的孔径范围为 1 英寸到 5 英寸之间;以磁体中心为中心,直径为 1 厘米的球体范围内磁场的均匀性从 1.0% 到 0.01% 可选。标准螺线管磁体可以与可变温插件(VTI)配合使用,温度区间 在 1.5 K 到 325 K 之间,另外,该磁体还可以配合 He3 制冷机或者稀释制冷机使用(如果客户想配合稀释制冷机使用,AMI 的工程师将在您的磁体中加入减场补偿部分)。如果客户需要,AMI 工程师还可以通过设计将飘移场小化。所有的磁体都可以实现无液氦或者液氦循环利用操作。超导磁体应用案例AMI 设计出的磁体应用在很多不同的研究领域中,比如:X射线衍射用磁体系统、中子衍射用磁体系统、与稀释制冷机结合的低温磁体组合,低温STM专用超导磁体系统、用于离子捕获、磁悬浮等。超导磁体配套的部件完整的低温超导磁体系统通常包括以下各组件,客户也可以根据实验要求单购买。■ 超导磁体电源■ 可变温插件(VTI)■ 电流引线■ 实验杜瓦液面计■ 自动填充液氦/液氮设备■ 低温超导磁体控制软件 AMI范围内部分用户(1) MAxesTM systems (for example: magnets used in STM)Argonne National Laboratory Tohoku University University of Maryland Harvard University Gordon Stanford University (2) Cryogen-Free (for example: X-ray ,Neutron Diffraction system)European Synchrotron research facility (ESRF)Argonne National Laboratory (Two)(3) Magneto-optical systemsUniversity of Alberta, Canada.University of Santa Barbara.(4) Large bore systemsUniversity of Houston 9T 5" cold bore system for STM studiesORNL, Oak Ridge 9T 5" cold bore systemORNL, Oak Ridge 9T 5" room temperature bore system for annealing experiments
    留言咨询

超导实验室相关的耗材

  • 超导磁体
    英国牛津仪器公司技术超导磁体:磁体主动屏蔽;磁场稳定均匀;低液氦消耗。
  • Nalgene 6310,6311 实验室用笔;实验室记号笔
    Nalgene 6310,6311 实验室用笔;实验室记号笔?签字笔中的快干黑色墨水为特殊配方,与PolyPaper- 起使用可以提供最佳的防水、防化学性。是在塑料或玻璃材质上书写的理想选择。笔盖上有方便的口袋夹。目录编号6310 产品为细尖笔,目录编号6311 产品为粗尖笔。订货信息:Nalgene 6310,6311 实验室用笔;实验室记号笔目录编号 6310-1000每盒数量4每箱数量12目录编号 6311-1000每盒数量4每箱数量12
  • 实验室管道工程
    大特拥有专业的实验室项目建设团队,从事实验室建设、实验室改造及实验室认证。 大特会根据您的实际需求,提供最实用,性价比最高的设计方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制