有机质谱成像

仪器信息网有机质谱成像专题为您整合有机质谱成像相关的最新文章,在有机质谱成像专题,您不仅可以免费浏览有机质谱成像的资讯, 同时您还可以浏览有机质谱成像的相关资料、解决方案,参与社区有机质谱成像话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

有机质谱成像相关的资讯

  • 2010年全国有机质谱会:大会报告
    仪器信息网讯 2010年11月5日,2010年全国有机质谱学术会议进入大会报告环节。大会邀请的10个大会报告涉及生命科学、食品、环境及能源等领域,其中6个报告关于蛋白质组学及磷酸化蛋白质组学研究,1个报告关于食品中外源性化学物质研究,1个报告关于新药早期临床研究,1个报告关于石油组学研究,1个报告关于MALDI质谱成像技术的新进展。   从大会报告分布的领域可以看出,蛋白质组学尤其是修饰蛋白质组学是目前有机质谱研究的热点及前沿 食品、药物等对于人们生命安全有重大影响的领域也是有机质谱的重要应用领域之一 而有机质谱最早应用的领域石油,在经历了数年的“沉寂”之后,再一次成为推动有机质谱技术发展的推动力。以下笔者对10个大会报告做简短的概述,以飨读者!   蛋白质组学及修饰蛋白质组学研究 厦门大学赵玉芬院士   如今,蛋白质组学研究在全世界各地如火如荼展开,但是据报道,在美国食品药品监督管理局(FDA)批准的蛋白质相关产品中尚无一例能够在临床上通过质谱方法检测蛋白质来诊断疾病的实例。中国科学院北京基因组研究所刘斯奇研究员(孙海丹博士代做报告)在报告中指出,为了使蛋白质组学真正应用到临床,随着质谱技术在扫描速度、质量精度、分辨率、裂解方式及定量动态范围等方面的改进,近几年来,蛋白质组学研究已有了如下改变:(1)从广谱蛋白质定性研究转向定量蛋白质研究 (2)从广谱研究转向以锁定特定目标物的蛋白质组学研究 (3)从蛋白质组研究转向转录后修饰蛋白质组研究。对于蛋白质的定量而言,有标记的定量方法和非标记的定量方法。标记的定量方法是指同位素标记相对和绝对定量(iTRAQ)技术 而无标记的定量方法则包括基于色谱峰面积定量方法、以及利用二级离子信号的强度进行的MRM(多反应监测)检测等。尤其是MRM检测以前在小分子方面应用很多,近几年也被广泛地应用于大分子检测上。去年在加拿大的HUPO会议上就是iTRAQ技术占主流,而在今年悉尼的HUPO会议上铺天盖地的都是MRM和SRM(选择反应监测)技术,由此也可以大家已经把蛋白质定量的焦点转移到MRM及SRM上来。此外,刘斯奇研究员的报告中还提及,目前,世界各地实验室存在同类蛋白质定量不一致的情况,是否是因为制备材料不同、方法不同、仪器不同等原因导致结果不一致?科学家们倡议不同实验室联合,对样品的制备及分析过程实现标准化,以便使得蛋白质研究真正走向临床。 中科院生物物理所杨福全研究员 中科院大连化物所邹汉法研究员   正如刘斯奇研究员报告中所介绍的,目前,修饰蛋白质研究成为蛋白质研究的又一重点。大会报告中5位专家的报告都涉及到磷酸化蛋白质的研究。中科院生物物理所杨福全研究员介绍了目前磷酸化蛋白组学研究进展,其指出,蛋白质磷酸化是一种蛋白质翻译后修饰,磷酸化蛋白质分析的最大挑战是其含量较低及其离子化效率相对低,因此磷酸化蛋白质富集策略在质谱分析中很重要。目前,用于磷酸化蛋白质的富集策略有固定化金属亲和色谱(IMAC)、金属氧化物亲和色谱(MOAC)、化学衍生富集(PAC)等,研究证明单一的富集方法效果不好,而几种富集方法的串联和并联使用的策略,以及色谱预分离-富集串联的策略则有比较好的效果。而在磷酸化蛋白质鉴定和修饰位点分析中,主要的技术手段包括MALDI-TOF-MS和ESI-MS-MS等 而定量磷酸化蛋白质组学技术包括基于质谱技术的定量策略和基于同位素标记的定量策略。 中国科学院北京基因组研究所孙海丹博士 Wisconsin –Madison大学的李灵军教授   厦门大学赵玉芬院士则介绍了基于稳定同位素质谱技术在磷酸化蛋白激酶的反应机理的研究 中科院大连化物所邹汉法研究员介绍其研究的两种磷酸化蛋白质富集材料磷酸酯锆和磷酸酯钛在提高磷酸化蛋白质富集效率方面的作用 Wisconsin –Madison大学的李灵军教授则介绍了通过标记和非标记蛋白质定量方法研究两种环境致病的疾病的研究 北京大学生命科学学院的纪建国教授则介绍了神经性疾病磷酸化蛋白质的动态表达的变化。 军事医学科学院的杨松成教授 北京大学生命科学学院的纪建国教授   在此大主题下,来自军事医学科学院的杨松成教授介绍了MALDI质谱成像的新进展。上个世纪80年代,基质辅助激光解析电离新型离子源发明,1997年,美国Vanderbilt大学Caprioli教授首次报道了利用MALDI质谱成像,直接从大鼠的脑下垂体和结肠组织获得了蛋白质和多肽的生物分子图像,开创了分子成像组织学的新领域。目前,这项技术先前主要应用在蛋白质、多肽研究,现在又扩展到小分子如脂质和药物研究。其与现在广泛使用的放射自显影技术相比,具有不需要标记和探针、质谱成像时非靶向的、质谱成像可检测代谢物与药物、可以对整体动物组织进行成像等优点,其将在生物医学的基础研究中发挥作用。杨松成教授还指出,质谱成像技术除了MDLAI外,还有DESI(解析电喷雾离子化)和SIMS(二次离子质谱),未来质谱成像技术将在仪器和样品前处理技术上改进,并向三位图像发展。   新药早期临床研究 北京协和医院临床药理中心的江骥教授   药物研究一直以来都是质谱的重要应用领域,来自北京协和医院临床药理中心的江骥教授则从新药早期临床研究对质谱技术的需求角度进行了介绍。江骥教授表示,新药研发的成本越来越高,特别是在进入二期和三期临床研究中,费用更是惊人。如果能在一期临床或更早之前就能判断新药的安全性与有效性,则可以大大地节约新药开发成本。因此,“微剂量”或者“0周期临床试验”的临床研究方法被西方国家权威机构所采纳。这种方法的好处是在 不会导致太大安全性问题的前提下可以获得直接来自于人体内药物代谢试验的第一手信息。这对于了解药物在人体内的安全性、有效性以及药物代谢情况,提高研究效率,降低研究风险成本,缩短研究周期具有重大意义。在这种情况下,人们对微量药物探测技术提出了更高的要求,除了同位素标记的正电子发射断层(PET)技术外,高灵敏度的LC-MS/MS及AMS(加速器质谱)成为了必然采用的方法。此外,由于当前的新药开发除小分子化合物外还包括生物制剂和中药制剂,这些则需要用到特殊的电离技术、高分辨质谱技术以及对海量药物代谢数据的处理和分析能力。   食品中外源性化学物质研究 中国检验检疫科学研究院食品安全研究所的杨敏莉博士   食品中外源性化学物质是指在农产品种植、养殖、加工等过程中加入的化学品,或因环境因素引入的有害化学物质,包括农药兽药残留、真菌毒素、包装材料中的有害化学物质、食品添加剂及重金属等。国际和我国对食品中外源性化学物质的限量日益严格,给检测提出了挑战。中国检验检疫科学研究院食品安全研究所的杨敏莉博士介绍了食品中外源性化学物残留确证技术研究、食品中未知添加物质的筛查技术研究、车载气相色谱/质谱仪应用研究、有机质谱痕量分析质量控制技术研究等四方面介绍了有机质谱在食品检测中 的应用。同时杨敏莉博士对应用于食品检测的质谱技术提出了需求展望:不同公司检测参数统一、数据库接口开放、更易于维护、电离效率改善、高选择性和灵敏度、复杂基质直接分析。   石油组学研究 中国石油大学(北京)重质石油国家重点实验室的史权教授   质谱技术发展与石油化学有着紧密的联系,1942年美国加州大西洋炼厂购买了一台美国联合电力公司的CEC-21-101型低分辨单聚焦质谱计,这是世界上第一台用于有机分析的商业质谱仪,因此可以说石油化学工业是有机质谱的最早用户。中国石油大学(北京)重质石油国家重点实验室的史权教授介绍到,据文献报道,上世纪八十年代,石油分析遇到的挑战——石油极性大分子的组成分析,当时的技术GC、LC、NMR、MS等技术都不能解决这个问题,石油分析的发展遇到了瓶颈,而此时生命科学研究兴起,同时石油公司也认为该做的研究工作都已完成,从而导致了一大批质谱学家转到了生命科学领域。   但是到了上世纪90年代, FT-ICR-MS(傅里叶变换-离子回旋共振质谱)的分辨率超过了磁质谱,于是有人尝试用该质谱技术用于石油重组分研究,但是在石油分析最关心的杂原子含S、N、O等杂原子烃类化合物的分析还是难有突破。2000年时,诺贝尔奖金获得者发现化石燃料可以在ESI电离源中电离,这给从事石油分析的研究人员带来了信心。随后,科学家们在此基础上,利用FT-ICR-MS做了大量的研究工作,提出石油组学的概念。2007-2009年,世界上各大石油公司如阿美石油、美孚、壳牌、中石化等相继购买了FT-ICR-MS进行石油组分分析。目前,我国最高端的FT-ICR-MS 是9.4T FT-ICR-MS。最后,史权教授认为,有机质谱技术将在有机地球化学(石油成因机理、成藏过程)、采油过程化学(石油开发过程中的界面化学)及石油转化化学(石油组学、分子炼油)等三方面发挥重要作用。   注:有关2010年全国有机质谱会的后续报道,敬请关注仪器信息网资讯栏目!
  • 促有机质谱发展 2018全国有机质谱学术会议顺利召开
    p style=" white-space: normal line-height: 1.5em " strong & nbsp & nbsp & nbsp & nbsp 仪器信息网讯 /strong & nbsp 2018年9月27日,由国家大型科学仪器中心主办,中国科学院生物物理研究所协办,河南大学承办的“2018 年全国有机质谱学术会议”在“八朝古都”河南开封召开。 此次会议传承了历届有机质谱学术会议的传统, 展现了我国有机质谱相关领域最新的研究进展,是我国有机质谱领域的一次学术盛会,来自全国各地的高等院校、科研机构的专家学者和相关企业技术代表近300人参加了本次会议,仪器信息网作为本次会议的支持媒体将对会议进行相关报道。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/33cd6b53-6183-4df9-8736-7bb55413489f.jpg" title=" 图片 1.png" alt=" 图片 1.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 会议现场 /p p style=" white-space: normal line-height: 1.5em "   在大会开幕式上,河南大学副校长孙君建、大会主席中国科学院生物物理研究所杨福全致辞。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/7d1f00e1-0268-4b49-b0ff-20e52045e49a.jpg" title=" 图片 2.png" alt=" 图片 2.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 河南大学副校长 孙君健教授 /p p style=" white-space: normal line-height: 1.5em "   孙君健致辞中表示,作为本次会议的承办单位,河南大学非常欢迎来自全国各地的代表来到开封,并祝愿本次会议顺利召开。他介绍了百年老校河南大学的学科建设以及发展情况。全国有机质谱会议有着优良的传统,涉及多学科、辐射学术界和产业界,参会代表既有来自各学科的领域专家也有业界的技术代表,他表示,相信通过会议的召开,与会代表互相交流、思想碰撞,一定会产生更多的思想火花,并推动整个中国有机质谱的发展。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/f59be612-ae24-407e-8b36-63a6f109bc22.jpg" title=" 3.png" alt=" 3.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 大会主席中国科学院生物物理研究所 杨福全研究员 /p p style=" white-space: normal line-height: 1.5em "   杨福全在致辞中说到,本次有机质谱会议汇集了来自两岸三地的质谱专家,是真正意义上的全国有机质谱会议。他首先向自全国各地、以及港澳台地区远道而来的代表表示了热烈的欢迎。同时,他表示有机质谱会议传承至今离不开老一辈质谱专家的坚持和奉献。本次会议在开封举行,对于促进有机质谱技术在河南大学、在河南推广有着积极的意义。 /p p style=" white-space: normal line-height: 1.5em "   在简短的开幕式后,会议进入大会报告环节,由台湾中山大学谢建台教授、香港浸会大学蔡宗苇教授、清华大学瑕瑜教授、中国农业科学院蜜蜂研究所李建科教授、中国科学院化学研究所聂宗秀研究员、中国石油大学重质油国家重点实验室史权教授、北京协和医学院张金兰研究员等分别带来精彩报告。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/7a2191f3-4b94-43c7-b766-48de291b095f.jpg" title=" 4.png" alt=" 4.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " & nbsp 台湾中山大学谢建台教授 br/ /p p style=" white-space: normal text-align: center line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong 报告题目:应用高性能小型化质谱仪于蔬果表面上农残的快筛 /strong /span /p p style=" white-space: normal line-height: 1.5em "   谢建台教授介绍了团队关于质谱技术在面对日益严峻的食品安全领域挑战时所做的相关研究工作。现在食品安全的检测要求越来越多,传统的农残分析技术难以满足大量的样品测试的需求。而利用小型化质谱仪用于蔬果表面农残分析,对于提高农残检验效率、保障食品安全有着良好的应用价值。谢建台在报告中介绍了课题组对此开展的工作情况,包括快速筛查果蔬表面农残、土壤中参与农残检测、现场果蔬表面农残快检以及分子影像测蔬果表面农残分布等。他表示,快而灵敏的化学检测可以协助解决现存的食品安全问题,将帮助人类建设更适合居住的社会。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/d3c8f1c7-dfc0-4d76-b191-1c218a62351f.jpg" title=" 5.png" alt=" 5.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 香港浸会大学蔡宗苇教授 /p p style=" white-space: normal text-align: center line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong 报告题目:质谱成像于环境毒理 /strong /span /p p style=" white-space: normal line-height: 1.5em "   报告中,蔡宗苇教授介绍了其课题组通过使用MALDI质谱成像用于双酚A类似物毒性研究工作。研究表明双酚A(BPA)暴露与多种疾病有关,多国正在逐渐淘汰双酚A而使用其他双酚变体代替,而这些双酚A类似物(BPF/BPS)对人体健康的影响也需要关注。研究利用质谱成像空间定位的优势,可以研究炎症相关脂质空间分布的特异性以及肾脏中特定区域中再筛查出脂质差异表达的亚结构区域特征,最终可用于指导药物开发寻找靶点,对于实际应用有一定意义。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/f3bfaac1-9c1b-4304-a42b-fe778c642fd6.jpg" title=" 6.png" alt=" 6.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 清华大学 瑕瑜教授 /p p style=" white-space: normal text-align: center line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong 报告题目:脂质精确结构分析及应用 /strong /span /p p style=" white-space: normal line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 脂质组学是对整体脂质进行系统分析的一门新兴学科, 通过比较不同生理状态下脂代谢网络的变化, 进而识别代谢调控中关键的脂生物标志物, 最终揭示脂质在各种生命活动中的作用机制。瑕瑜在报告中重点介绍了利用生物质谱技术应用于脂质的精确结构的分析以及相关应用,包括检测脂质的自由基反应以及检测脂质中碳碳双键位置及异构体信息等。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/5c7f26eb-7bb8-4162-9aa9-247c4308bb5d.jpg" title=" 7.png" alt=" 7.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 中国农业科学院蜜蜂研究所李建科教授 /p p style=" white-space: normal text-align: center line-height: 1.5em " strong span style=" color: rgb(31, 73, 125) " 报告题目:工蜂嗅觉识别幼虫机理研究 /span /strong /p p style=" white-space: normal line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 蜂王浆是我国重要的蜂产品之一,对我国国民经济有重要作用。我国特有选育的浆蜂对蜂王浆的产量贡献巨大。李建科在报告中详细介绍了团队利用质谱相关技术关于工蜂嗅觉识别幼虫,从而分泌蜂王浆的相关机理研究工作。并最终探索出与其他蜜蜂品种相比,浆蜂在识别幼虫方面具有的优势的相关机理。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/03ede46c-c802-4a0c-85e5-0ba9bab76692.jpg" title=" 8.png" alt=" 8.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 中国科学院化学研究所 聂宗秀研究员 /p p style=" white-space: normal text-align: center line-height: 1.5em " strong span style=" color: rgb(31, 73, 125) " 报告题目:颗粒质谱与成像 /span /strong /p p style=" white-space: normal line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 在报告中,聂宗秀主要报告了微纳级离子阱质谱相关理论的进展以及构建微纳尺度颗粒质谱装置对多参数进行综合表征。同时,在报告中也介绍了纳米材料颗粒免疫标记质谱成像的方法,及获得的纳米载药体系药物释放。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/e43f0948-b9b7-4e33-ae24-fe39cfed8317.jpg" title=" 9.png" alt=" 9.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 中国石油大学重质油国家重点实验室 史权教授 /p p style=" white-space: normal text-align: center line-height: 1.5em " strong span style=" color: rgb(31, 73, 125) " 报告题目:高分辨质谱应用进展——水溶性有机质(DOM)分析方法 /span /strong /p p style=" white-space: normal line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 水溶性有机质(DOM)具有组成复杂、单体含量极低、色谱难以分离等特点,质谱检测DOM具有重现性低的问题,定量困难,开发对DOM定量分析方法是迫切需要的。史权介绍了课题组利用FT-ICR MS对于DOM分析方法建立的相关研究工作。他表示,高分辨质谱是分析DOM分子组成的有效且唯一的手段。 /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/fbc9029b-3b96-4ea0-b3d4-dc945a294429.jpg" title=" 10.png" alt=" 10.png" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 北京协和医学院张金兰研究员 /p p style=" white-space: normal text-align: center line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong 报告题目:基于多组学中药灯盏生脉药效物质基础研究 /strong /span /p p style=" white-space: normal line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 灯盏生脉是目前唯一的具有循环医学证据的卒中二级预防中成药,临床可用于治疗中风后遗症、痴呆等。报告介绍了利用全二维高分辨质谱分析灯盏生脉的成分、对其在大鼠体内成分和代谢物分析以及灯盏生脉靶向代谢组学等相关研究工作,揭示了灯盏生脉神经保护和提高记忆力的作用机制。 /p p style=" white-space: normal line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 国内外仪器公司如岛津、布鲁克、力可、安捷伦、沃特世、爱博才思、华质泰科、毕克气体、东宇机电、普立泰科、绿绵、上海通微等也积极参加本次会议,并展示了最新的有机质谱技术与产品。 span style=" text-align: center " & nbsp /span /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/34bc7ee8-e740-46cd-93cf-907d095852f4.jpg" title=" 未命名_meitu_0.jpg" alt=" 未命名_meitu_0.jpg" / /p p style=" white-space: normal text-align: center line-height: 1.5em " 厂商剪影 br/ /p p style=" white-space: normal text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201809/uepic/43bf8559-eda0-4192-9fd1-b8821e35b20a.jpg" title=" 11.png" alt=" 11.png" / & nbsp /p p style=" white-space: normal text-align: center line-height: 1.5em " 参会代表合影 /p p br/ /p
  • 2008年全国有机质谱学术交流会(三)
    由中国分析测试协会主办、国家生物医学分析中心承办的2008年全国有机质谱学术会议于2008年11月13日至18日在浙江省宁波市隆重召开。15日,来自国内外的各著名质谱公司的学者,做了30分钟的“质谱新技术、新方法及其应用报告”。之前我们报道了赛默飞世尔科技公司、ABI美国应用生物系统公司、安捷伦科技公、Waters公司新技术报告中涉及的一些在三重四级杆质谱方面的创新。本次报道着重介绍一下珀金埃尔默公司、瓦里安公司、岛津公司、日本电子、布鲁克.道尔顿公司、戴安公司在本次有机质谱会上所做的新技术、新方法的一些技术亮点。 珀金埃尔默公司技术报告。报告的内容是使用带捕集阱顶空进样和气质联用仪,根据EPA8260B制定系统的分析方案,测定环境中的挥发性有机物。采用专利的压力平衡进样技术,使用全封闭传输系统,顶空样品在毛细管线中无扩散,规静态顶空进样以保证得到窄的色谱峰形。Clarus 600 GC 降温速度从450度到50度只需要不到2分钟。系统样品制备简单,分析速度快。 岛津公司技术报告。重点介绍MAlDI质谱成像技术,包括样品的采集,制备和数据采集;涉及样品的洗脱、化学处理、喷涂和数据处理等一体化方案。 瓦里安公司技术报告。重点介绍有机质谱在食品安全中的整体解决方案,如测定食品中三聚氰胺整体解决方案;串联质谱在农残中的解决方案;在食品安全中瓦里安能够提供的特色工具。 日本电子技术人员介绍TOF质谱用于石化分析,实验结果显示在测量低沸点组份时场解析的方法没有场离子化的方法有效,因此Blank Tube inlet/FI的方法非常适合在原油和汽油产品的分子量鉴定。 布鲁克.道尔顿公司技术报告。介绍了系列MALDI系列质谱,重点介绍了今年推出的新型超过分辨飞行时间质谱(maXis)。新型质谱通过加长飞行管距离,提高了分辨率,同时通过减少反射次数(只一次反射)以降低离子信号的损失,通过革新离子聚焦和离子冷却系统、温度补偿等手段弥补加长飞行管带来的不利影响;改造之后新型的飞行时间质谱分辨率达40000,质量准确度小于1ppm,采集速度可达每秒20张质谱图。应用在天然产物,蛋白质,未知化合物的定性,药物研发,质量控制等。 戴安公司技术人员报告。主要简绍了使用纳升流速的原因以及纳升级液相色谱现状。戴安公司采用分流的方式在液相色谱中生成10微升以下的可靠流速,采取分流方式的主要是基于降低对色谱泵敏感部件的苛刻需求;在较高的流速下混合,快速改变梯度形状。通过加流速传感器改进传统的分流方式,详细介绍了UltiFlowTM的技术特点。UltiMate3000型液相色谱有新的蓝宝石活塞表面,活塞密封,检测阀和流动池窗,这些都被抛光到接近完美,确保系统在高压下能最佳运转。同时Ultimate3000的泵上具有最有效的密封垫清洗系统,消除盐晶体对泵的磨损。 在此次厂商新方法、新技术交流会上,与会者与厂商就一些技术问题进行了热烈的讨论,以至于主持人不得不数次强调严格限制讨论时间。食品安全、环境问题、药物制备是此次会议讨论较多的问题;顺应形势的发展,厂商提供的服务更加细致和深入,不仅仅提供仪器,而且更加注重于问题的解决,并提供全套解决方案以及售后培训研讨等;例如珀金埃尔默公司提供的挥发性有机物和三聚氰氨总体解决方案,岛津公司提供MALDI在质谱成像从样品采集、化学处理、数据分析处理一体化决方案等;赛默飞世尔、美国应用生物系统公司、安捷伦科技公、Waters公司、瓦里安公司、布鲁可公司、戴安公司、日本电子等也都提出了有针对性的整体解决方案,厂商提供的应用文集是最受观众欢迎的资料,在大会的第一天已经告罄。 会议期间,各厂商还与用户进行了密切的交流,如安捷伦科技公司举办了招待晚宴并简短汇报了公司的发展状况,赛默飞世尔科技公司与用户进行交流并招待晚宴,美国应用生物系统公司与部分专家进行了座谈、沃特世公司也分别邀请参会人员共进晚餐,岛津、布鲁克.道尔顿公司分别与参会人员举行了技术交流。

有机质谱成像相关的方案

  • SisuROCK 高光谱成像技术检测土壤有机碳(SOC)和总氮(TN)
    土壤有机质,尤其是有机碳和氮,在陆地生态系统中起着重要的作用,通过土壤管理增加土壤固碳可抵消全球化石燃料排碳的5-15%。高光谱成像技术可以将土壤特性测量从点尺度提升至空间尺度,是土壤科学管理、土壤有机质研究的有力工具。加拿大阿尔伯特大学的研究者Sorenson利用Specim SisuROCK高光谱成像系统,采集三种不同轮作土壤剖面(a连续作物、b连续牧草、c作物和牧草混合农业生态轮作)的VNIR-SWIR高光谱数据,结合元素分析仪获取的各土壤样品有机碳(SOC)和总氮(TN)含量数据,基于小波分析与贝叶斯正则化神经网络建立SOC和TN预测模型。结果表明,轮作中添加牧草增加了土壤SOC和TN的含量,但这些变化多集中在表层。这一结果具有重要的土地利用与管理意义,为用户提供决策支持,同时证明SisuROCK高光谱成像技术是研究土壤剖面中有机质空间分布的重要工具。北京易科泰生态技术有限公司长期致力于生态-农业-健康领域仪器的研发、应用与推广,为土壤养分、污染、重金属检测、土壤-植物互作关系研究提供从实验室到野外,从地面到无人机遥感全方位解决方案。
  • 无需基质的鼠脑质谱成像方案
    滨松多孔氧化铝制作的辅助离子化基板DIUTHAME(Desorption Ionization Using Through Hole Alumina MEmbrane),可大幅缩减质谱成像分析时待测样品进行离子化所需的前期处理的时间。只要将本产品放置在待测样品上,就能完成质量分析的前期处理。与目前主要的离子化方法之一基质辅助激光解析电离(Matrix-Assisted Laser Desorption/Ionization、下面简称MALDI)方法相比,它将前期处理时间缩短到十分之一。产品具备方便易用、无基质噪声、高重现性、高空间分辨率。本案例为使用辅助离子化基板进行的鼠脑质谱成像。
  • 无需基质的草莓质谱成像
    滨松多孔氧化铝制作的辅助离子化基板DIUTHAME(Desorption Ionization Using Through Hole Alumina MEmbrane),可大幅缩减质谱成像分析时待测样品进行离子化所需的前期处理的时间。只要将本产品放置在待测样品上,就能完成质量分析的前期处理。与目前主要的离子化方法之一基质辅助激光解析电离(Matrix-Assisted Laser Desorption/Ionization、下面简称MALDI)方法相比,它将前期处理时间缩短到十分之一。产品具备方便易用、无基质噪声、高重现性、高空间分辨率。本案例为使用辅助离子化基板进行的草莓截面质谱成像。

有机质谱成像相关的论坛

  • 【我们不一YOUNG】+ 质谱成像应用于药物的研究

    [back=transparent]质谱成像是以质谱技术为基础的可视化方法,通过质谱离子源直接扫描生物样本,可以在一张组织切片上同时分析数百种分子的空间分布特征,已成为精确解析药物分子及其代谢产物组织空间分布的关键技术之一,[back=transparent]质谱成像[/back]应用于药物ADME的研究。[/back]一般在生活中肾脏是药物排泄的主要器官。但是药物排泄过程的正常与否关系到药效强度、药效维持时间以及毒副作用。所以,这是我们必须要借助一些科学例如高分辨质谱技术来助力药物。近年来,高分辨质谱成像技术的诞生为定位药物组织分布研究提供了全新的技术和思路。本文将主要介绍TransMIT AP-SMALDI 10高分辨率质谱成像系统如何一步步揭秘伊马替尼在小鼠肾脏组织中的空间分布特征。TransMIT AP-SMALDI 10质谱成像系统是目前少有的集高空间分辨率和高质量精度于一体的质谱成像系统。该系统采用常压基质辅助激光解吸电离技术,通过先进的准直光束聚焦实现了5μm的成像分辨率;质谱端搭载Thermo Scientific? Q Exactive?系列质谱仪,保证了离子分析的高质量分辨率和高质量精度。综上所述,研究成功的揭示了伊马替尼在重要排泄器官肾脏中的组织分布特征,同时也获取了组织中各种内源性化合物的空间分布信息,为研究药物分子的累积和排泄机制提供了可靠的科学依据。TransMIT AP-SMALDI 10质谱成像系统集高空间分辨率、高质量分辨率和高质量精度于一身,不仅成为了药代动力学研究的利器,也应用于肿瘤标志物研究、植物次生代谢物研究、药用植物药效成分研究、微生物和单细胞研究等。未来,期待TransMIT AP-SMALDI 10质谱成像系统为我国药物研发人员和各领域科研工作者带来更多的惊喜,加快研究进程,加速成果转化。

  • 英开发质谱成像技术新方法 推动癌组织分析数字化

    原标题:英开发出质谱成像技术运用新方法 推动癌组织分析进入数字时代 在癌症研究领域,质谱成像(MSI)是一种非常有前途的技术,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等问题限制。英国帝国理工学院近日发布新闻公报称,该校研究人员开发出一种新方法,可有效解决上述问题。新方法将改变病体组织的检测方式,从而推动癌症组织分析进入数字时代。相关研究成果刊发在最新一期《美国国家科学院院刊》上。 质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。 新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。研究人员称,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。 与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生选择最有效的治疗方法十分重要。 研究人员指出,自19世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。他们表示,新研究克服了一些质谱成像技术实际应用所遇到的障碍,将成为创建下一代完全自动化的组织学分析手段的第一步。 总编辑圈点 这是用互联网思维改造传统检测方法的一种尝试,它首先选取了质谱成像方法中最容易快速成像的解吸电喷雾电离技术,实现了数据快速采集;其次,通过将质谱成像得到的结果数字化,建立样本库,提高了数据规模,保证了分析精度;最后,与大数据、云计算等结合,可不断提高检测的准确性,为可靠应用提供保证。新思维已经提高了单个样本的检测精度,我们对它在群体和地区性疾病的检测预防方面也应有所期待。

有机质谱成像相关的资料

有机质谱成像相关的仪器

  • iMScope QT保留岛津质谱成像的高空间分辨率和光学显微镜融合特点的同时,连接 LCMS-9030,以MALDI-Q-TOF提高成像速度和灵敏度。iMScope QT还可以把显微镜-MALDI单元简单地分离和组装,实现了一台仪器多用途使用,从而完成定性,定量,定位的整体流程。iMScope QT 主要特点:显微镜观察和质谱成像分析的融合。高分辨率光学显微镜完美地融合在成像质谱仪,可对微小区域进行观察和分析,通过叠加光学显微镜图和质谱成像图,更准确地进行定位。高空间分辨率,高速,高精度,高效率的成像分析。使用5 μm空间分辨率,20,000 Hz的激光频率,结合LCMS-9030的快速检测系统,成像分析速度可达到50像素/秒,分析100 x 100像素的图像仅需数分钟即可完成。LCMS-9030高性能的MS/MS分析,可快速提供目标分子的结构信息和高特异性成像数据。一台质谱即可获得LC-MS的定性、定量信息和质谱成像的位置信息。iMScope QT成像单元和LCMS-9030质谱单元可以组装和分离,轻松实现质谱成像分析和LC-Q TOF定性定量分析的切换,同时满足定量成像分析的需求。?
    留言咨询
  • timsTOF fleX 实现 MALDI 引导的空间定位组学高灵敏度:timsTOF fleX 空间定位组学方案,结合特征区域 MALDI 成像和 PASEF 组学分析,能从有限样本中获得高鉴定率。空间分辨率:高空间分辨率的 MALDI 源和平台机械设计获得分子分布图,增加组学空间维度信息。多功能:双离子源设计使您在同一个质谱平台上完成分子空间分布和 ESI 多组学鉴定。microGRID -- 精准、可靠的硬件升级,使高空间分辨成像实验唾手可得实现高空间分辨的成像实验并不是一件容易的工作。布鲁克推出了全新 microGRID 技术 -- 整合了 MALDI 机械平台和 smartbeam 3D 激光器的光束定位系统,进一步提升了质谱成像实验的图像质量,可获得 5 μm 的超高空间分辨率。microGRID 是一款适用于所有 timsTOF fleX 系列质谱仪的选配功能模块,将它整合进布鲁克现有的质谱成像工作流程中,展现出了突破极限的超高空间分辨率。该技术与布鲁克的自动一体化的成像数据采集流程 SCiLS™ autopilot 无缝衔接,使它不仅适用于成像专家,也同样适用于新购入成像仪器的用户及常规的成像数据采集应用。该技术与布鲁克的 SCiLS™ Lab 软件配合使用,可实现对于高分辨成像数据的深度挖掘。从 4D-组学到分子成像的无折中解决方案双离子源设计将无标记分子定位与 PASEF LC-MS/MS 鉴定匹配,解析生物样本的分子变化。 建立在 shotgun 蛋白组学标准上的 timsTOF fleX 将布鲁克一流的 4D-组学分析与尖端的 MALDI 成像技术整合于一个平台,包括高频率的 smartbeam 3D 激光器。配置有双离子源的 timsTOF fleX,把持久稳定的 ESI 分析和组织分子空间分布集成于一体,是进行空间定位组学研究的理想平台。在此之前,没有质谱仪能为组学研究者同时提供这两种能力。 ESI 和 MALDI 的切换操作,只需在软件中开启 smartbeam 3D 激光源,仅需几秒即可完成。简单的切换操作意味着从组学深度鉴定和定量流程到组织高清成像的方便转换,又不影响效率和功能,从而发现真正有用的信息。增加 MALDI 成像新维度,挖掘更多信息由 MALDI 和 ESI 产生的离子,经过同一路径从离子源到达探测器,因此 MALDI 工作流程可以利用 timsTOF HT 的主要优势,包括根据分子碰撞截面 ( CCS ) 来进行捕集离子淌度分离( trapped ion mobility separation,TIMS )。调谐和校准可在 ESI 模式下进行,并用于 MALDI 模式,方便了仪器的优化。TIMS 允许根据离子形状分离分子。离子与气流一起进入双 TIMS 装置,在第一个TIMS 分析器通过电场进行累积。实际分离发生在第二个 TIMS 分离器。通过降低电位以时间和空间的方式释放离子。可变扫描速度和淌度范围适应性可对不同种类分子优化,为用户带来更多灵活性。为组学增加空间维度信息将特征区域 MALDI 成像和深度多组学分析结合现在变得容易可行。MALDI 成像适用于类型广泛的分析物,包括代谢物、脂类或聚糖,并与显微工作流程无缝衔接。针对空间定位组学,MALDI 成像可识别特征区域化合物分布。timsTOF fleX 采用双离子源设计,与可靠的高品质消耗品和用户友好软件一起使用,方便了研究工作,节省了研究人员的时间。使用布鲁克 IntelliSlides™ 预制玻片,使 MALDI 成像和空间定位组学流程在 timsTOF fleX 上完全自动化。分离相近质量或同分异构体离子捕集离子淌度谱( TIMS )有助于复杂样品( 如组织切片 )的分析。通过分离近质量或同分异构的代谢物、脂质、肽段或糖苷,以获得分析物的真实空间定位。高质量分辨率无助于这些问题的解决,timsTOF fleX 提供了唯一的机会来区分同分异构体的分布。碰撞横截面( CCS )是 TIMS 给出的测量结果,提供了从另一角度来验证质谱分析结果。CCS 关联软件智能地将空间 MALDI-TIMS 成像数据与多组学结果相匹配,并使鉴定结果与重要的形态学内容相关联。从色谱分离技术到在像素点的原位分析,一切变得触手可得 … … timsTOF fleX 是一台多功能的质谱仪,用于测量样品的分子情况。timsTOF fleX 建立在布鲁克开创性 timsTOF HT 平台上,功能齐全、速度快、灵敏度高的 ESI 质谱,可用于所有 多组学分析。结合了高空间分辨率的 MALDI 源和平台机械专业设计,用于解析分子分布和带来组学分析的空间维度。将蛋白质组学分析转换为空间蛋白质组学,将脂质组学转换为空间脂质组学,将代谢组学转换为空间代谢组学,并获取数据的组织学背景。与其它学科相结合,从你的分析数据中获取更多信息以达到科研目标。为质谱成像初学者量身打造的自动一体化成像数据采集流程 SCiLS™ autopilot我们提供 “ 购入即用 ” 的成像耗材和软件产品,帮您迅速采集数据,并随后挖掘出组织的分子表型信息。我们推出了基于 IntelliSlides 预制载玻片的自动一体化成像数据采集流程,不仅大大减少了对用户输入的操作要求,还能确保所采集数据的高品质和可重现性。我司还推出了预制的 fleXmatrix 基质,高品质的基质可以保证实验效果并简化基质施加过程。作为质谱成像数据处理的 “ 行业金标准 ”,SCiLS™ Lab 软件可以实现原始数据的可视化以及后续的数据统计分析操作。此外,SCiLS™ Lab 可以与 MetaboScape 软件联用,实现了通过数据库检索信息或 LC/MS 实验结果直接对高分辨的 MALDI 成像热图进行快速分子注释的功能。将这种联用机制应用于空间定位组学工作流程中,可实现生物背景信息与整体组学或单细胞组学信息的有效整合。多组学性能和高灵敏度 MALDI 的结合timsTOF fleX 实现 SpatialOMx无论蛋白组学、脂质组学、糖组学还是代谢组学,timsTOF fleX 都是空间定位组学分析的理想平台。使用专利的smartbeam 3D 技术进行快速、无标记的 MALDI 成像,以绘制样品的分子分布图,并鉴定感兴趣的区域,对它们进一步深入分析。由 PASEF 技术支持的 LC-MS/MS 分析可以进行最高水平的鉴定并得到最可靠的结果。肿瘤远比看到的还复杂癌症的微环境是由健康细胞、肿瘤细胞、结缔组织、血管和炎症在不同时间点以不同的比例组合而成。每一种成分都有其独特的化合物分子标记。研究人员对疾病状态的判断在很大程度上依赖于组织病理学的解释,并在生物分子的背景下创建这些图谱,从而在传统的组学和理解疾病之间架起了桥梁。CCS 关联空间多组学发现差异癌细胞和其它疾病状态具有显著的遗传和表观遗传修饰,影响基因组表达层次。无论你观察的是蛋白质组、脂质组还是代谢组,化合物的空间分布都包含了有价值的解释信息。要了解复杂的样品,除了质量和电荷外,还需要有 timsTOF fleX 的离子淌度功能提供无与伦比的分析深度。近质量干扰可被区分,同分异构体可被分离。这有助于组织中近质量脂质的准确定位。原位 MS/MS 以及 PASEF 技术支持的 4D 多组学研究方案使您能够识别更多感兴趣的分析物。SpatialOMx 的自动分子注释工作流程布鲁克的业界领先的应用软件,现在可以直接对组织中的目标分子注释。只需将数据导入到 SCiLS™ Lab 软件,定义感兴趣的区域,并将峰列表数据导出到 MetaboScape。使用 LC-MS/MS 建立的数据库或成分列表对各个峰进行注释,然后导出注释表并送回到 SCiLS™ Lab 进行可视化。从 SCiLS™ Lab 软件中,可以使用通路和熟悉的命名法而不是分子量可视化实验结果,从而缩短从数据到最终结果的时间。
    留言咨询
  • 卓立汉光所研发的高光谱成像仪主要由光源、光谱相机(即高光谱成像仪)、样品移动台等部件组成。HyperSIS高光谱成像系统工作原理如下(推扫型/推帚型):线光源照射在放置于X-Stage电控移动台上的待测物体(样品),样品上被线光源照射部分的影像通过镜头被高光谱成像仪捕获,在X轴向上被光谱仪分光,Y轴上直接成像,从而得到一维的影像以及光谱信息,由X-Stage电控移动台带动样品连续运行,从而能够得到连续的一维影像以及光谱信息,所有的数据被计算机软件所记录,可以方便的进行后续分析。【HyperSIS-高光谱成像分析仪型号列表】 型号 描述光谱范围(nm)扫描速度** (images/s)备注1HyperSIS-VNIR-QE增强型400-1000 9 系统包含:高光谱成像仪,CCD相机、光源、暗箱、数据采集软件、笔记本电脑 2HyperSIS-VNIR-PS高效型400-100011 3HyperSIS-VNIR-HS高速增强型400-1000334HyperSIS-VNIR-PFH标准型400-1000305HyperSIS-NIR 近红外增强型900-170060 6HyperSIS-SWIR短波红外增强型1000-2500100在整个系统中很重要的是各组件的选择以及电控移动台的配合,所选择的各个组件,均需要根据实际使用需要进行优化选择。系统组件选择需要特别考虑所检测的样品的大小,通常情况下,本系统的设计针对大小不超过200 mm (长)*200 mm (宽)*100 mm (高)的物体。若使用者对于系统外观及内部结构设计有特别需求,我公司也可根据实际需求,对现有设计进行适当更改,以满足使用者自身对系统的特别使用需求。【应用】用于农产品、水果、食品、药品等快速、无损检测分析 农产品检测 水果检测 肉类检测 食品药品检测
    留言咨询

有机质谱成像相关的耗材

  • 高光谱成像仪定标附件
    这款高光谱成像仪定标附件专业为高光谱成像仪的光谱定标和辐射定标而设计,是定量遥感的理想定标工具。这款高光谱成像仪定标附件适合市面上的所有高光谱成像仪的使用。如下是辐射定标前后的光谱图像供客户参考。
  • TCSI Array® 成像质谱芯片
    【产品介绍】TCSI Array® 质谱芯片是国内第一款针对MALDI成像研究的一次性靶材,可一次性上机实现分子量校准、成像测试过程。检测对象包括穿刺、镜检、术中获得的组织样本和指纹、植物切片等。【产品优势】免基质喷涂,简化实验流程 | 高离子化效率,高保真度 | 含分子量校准位点,分子量精度高 | 适合多种成像平台,可根据用户需求定制和二次开发【产品应用】组织成像和内源性空间代谢组/脂质组分析;指纹成像和爆炸物残留测试;药物分布测试。适配真空环境质谱成像,可根据仪器进行尺寸及其他参数定制。
  • 高光谱成像仪配件
    1.0 二级光谱滤光片 由于光栅本身的分光特性,在宽光谱范围分光时,会产生多级光谱,主要是二级光谱,会对光谱测量产生干扰,为了消除这种干扰,需要在光谱仪内部安装适合的高通滤光片,用来消除多级光谱的影响。根据不同的光谱范围,需要选择不同截至波长的的滤光片;N17E型无需选择和安装此种滤光片。 滤光片需要根据下表对应选择,并被安装在光谱仪内。 滤光片型号 截至波长(nm) 适用的光谱相机型号 OBF450 450 V8E OBF570 570 V10E OBF1400 1400 N25E 2.0 成像镜头 成像镜头是高光谱成像分析系统不可或缺的部分,它被用来将被测物的反射或透射光搜集进入高光谱仪。 ◆ 适合400-1000nm波段的镜头焦距可选:8,9,17,18.5,23,35,50,140mm ◆ 适合900-2500nm波段的镜头焦距可选:15,22.5,30,56mm ◆ 所有镜头均为消像差设计,孔径与光谱仪孔径相匹配。 3.0 X-Z位移平台 X-Z位移平台主要用于样品的位置调节和扫描,其中Z轴位移台为手动,用于样品的位置微调,X轴位移台为电动,用于测试过程中的样品扫描。另可提供多种规格电控旋转平台,详情请咨询。 ◆ Z轴调整范围:± 60mm(型号:TSMV120-1S),手动调节 ◆ X轴行程:300mm(型号:PSA300-X) ◆ 台面尺寸:200mm× 200mm ◆ 可选产品型号规格列表 型号 产品描述 行程范围(mm) TSMV60-1S Z轴升降台,手动 ± 30 TSMV120-1S Z轴升降台,手动 ± 60 PSA200-X X轴平移台,电控 200 PSA300-X X轴平移台,电控 300 PSA400-X X轴平移台,电控 400 PSA500-X X轴平移台,电控 500 PSA1000-X X轴平移台,电控 1000 4.0 校正白板 校正白板主要用于白平衡校正,为进口聚四氟乙烯漫反射材料。 白板型号 规格(mm× mm× mm) CAL-tile200200× 25× 10 5.0 高光谱仪软件(SpectraSENS) SpectraSENS高光谱仪软件为随机配套的光谱及图像采集软件。 ◆ 可进行光谱相机扫描参数设定 ◆ 可实时获取样品光谱及影像信息 ◆ 可存储扫描结果为图像(图片格式) ◆ 可存储扫描结果为光谱曲线(xls、txt等格式) ◆ 可存储全部原始数据(raw格式),并可用ENVI等第三方分析软件调用 6.0 光源 可提供针对不同应用需要的漫射型光源、线光源、强紫外光源等。详情请咨询。

有机质谱成像相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制