中国干细胞学会

仪器信息网中国干细胞学会专题为您整合中国干细胞学会相关的最新文章,在中国干细胞学会专题,您不仅可以免费浏览中国干细胞学会的资讯, 同时您还可以浏览中国干细胞学会的相关资料、解决方案,参与社区中国干细胞学会话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

中国干细胞学会相关的资讯

  • 第二届中国干细胞学会年会日程安排
    大会主要内容及日程安排 日期:11月10日(星期四) 地点:北京国际会议中心 时间 演讲人 机构 地点 08:00- 17:00 参会代表报到 3 楼大堂 15:00- 18:00 张贴墙报 墙报展示区 大会主题报告 主席:李凌松 14:00-14:15 李凌松致欢迎词 裴刚会议祝词 徐国彤学会工作总结与展望 14:20-14:45 Hans Keirstead 美国加州大学 14:45-15:10 李凌衡 美国斯托瓦斯研究所 15:10-15:35 徐国良 中国科学院上海生化与细胞研究所 15:35-16:00 程临钊 美国Johns Hopkins医学院 16:00-16:25 丁胜 美国UCSF 16:25-16:30 大会休息 大会报告:胚胎干细胞-iPS细胞特性 主席:周琪 裴端卿 16:30-16:50 周琪 中国科学院动物所 16:50-17:10 裴端卿 广州生物医药与健康研究院 17:10-17:30 高绍荣 北京生命科学研究所 17:30-17:50 邓宏魁 北京大学生命科学院 17:50-18:10 金颖 中国科学院上海健康科学研究所 18:10-18:30 肖磊 浙江大学动物科技学院 19:00 大会全体报告人晚宴:万龙州海鲜酒楼幸福厅(北四环东路中国五矿大厦一楼 电话64989898) 日期:11月11日(星期五) 地点:北京国际会议中心 时间 演讲人 机构 地点 大会报告:干细胞与生殖医学 主席:乔杰 姚元庆 9:00-9:20 宋尔卫 中山大学附属第二医院 9:20-9:40 乔杰 北京大学生殖医学中心 9:40-10:00 冯立新 上海交通大学医学院医学研究院 10:00-10:20 姚元庆 解放军301医院妇产科 10:20-10:30 大会休息 10:30-10:50 卞修武 第二军医大学病理学研究所 10:50-11:10 刘厚奇 第二军医大学 11:10-11:30 洪登礼 上海交通大学医学院 11:30-11:50 刘林 南开大学生命科学院 11:50-12:10 黄建 浙江大学医学院 大会报告:成体干细胞及分子调控 主席:程涛 时玉舫 13:30-13:50 汤其群 复旦大学医学院 13:50-14:10 时玉舫 中国科学院上海健康所 14:10-14:30 程涛 中国医学科学院血液病研究所 14:30-14:50 项鹏 中山大学干细胞与组织工程中心 14:50-15:10 赵春华 中国医学科学院基础医学研究所 15:10-15:20 大会休息 大会报告:干细胞分化与疾病 主席:徐国彤 安松柱 15:20-15:40 徐国彤 同济大学医学院 15:40-16:00 刘祖国 厦门大学医学院 16:00-16:20 洪天配 北京大学第三医院内分泌科 16:20-16:40 马跃 中国科学院生物物理所 16:40-17:00 王媛 上海华东师范大学 17:00-17:20 安松柱 广州源生医药公司 17:20-17:40 机动安排 会后全体参会人员自助餐宴会,时间待通知 日期:11月12日(星期六) 地点:北京国际会议中心 时间 演讲人 机构 地点 大会报告:干细胞组织工程与疾病模型 主席:裴雪涛 曾凡一 9:00-9:20 戴建武 中国科学院遗传发育所 9:20-9:40 裴雪涛 军事医学科学院 9:40-10:00 曾凡一 上海交通大学医学院 10:00-10:20 季维智 中国科学院昆明研究所 10:20-10:30 大会休息 大会报告:干细胞与表观遗传调控 主席:朱大海 陈德桂 10:30-10:50 孙毅 同济大学生命科学与技术学院 10:50-11:10 朱大海 中国协和医科大学 11:10-11:30 陈德桂 中科院上海生化与细胞生物学研究所 11:30-11:50 林戈 中南大学湘雅医学院生殖与干细胞研究所 11:50-12:10 康九红 同济大学生命科学与技术学院 大会报告:干细胞组织工程与骨、软骨疾病 主席:敖英芳 卫小春 13:30-13:50 敖英方 北京大学第三医院 13:50-14:10 卫小春 山西医科大学第二附属医院 14:10-14:30 欧阳宏伟 浙江大学医学院 14:30-14:50 张智勇 第四军医大学 14:50-15:10 大会休息 大会报告:神经干细胞与神经疾病 主席:李华顺 王金环 15:10-15:20 朱剑虹 复旦大学华山医院神经外科 15:20-15:40 景乃禾 中国科学院上海生化细胞研究所 15:40-16:00 王任直 协和医院神经外科 16:00-16:20 徐荣祥 北京军区总医院神经外科 16:20-16:40 章小青 同济大学医学院 16:40-17:00 李华顺 四川大学发育干细胞研究所 17:00-17:20 机动安排
  • 珀金埃尔默携全线细胞学方案点亮2020中国细胞生物学会年会@苏州
    2020年8月4-7日,中国细胞生物学学会2020年全国学术大会暨学会成立40周年庆展将于苏州举行。珀金埃尔默将携全线细胞学方案及新品深度参与本次生命科学领域的重要盛会。届时,珀金埃尔默细胞学明星产品 Opera Phenix 高内涵细胞成像分析系统、Muvicyte活细胞显微成像实时分析系统和VICTOR Nivo 多模式微孔板读板仪及试剂耗材,将会展现在T3展台现场。 另外,在“类器官在生理功能探索、疾病发生研究和精准医疗中的作用”分会场,我们将在8月4日12:00-13:00举办午餐会,期待与您分享珀金埃尔默在此热门应用领域的前沿解决方案。8月5日上午,珀金埃尔默还将在T3展台举办新品揭幕仪式,与您一共揭开Muvicyte活细胞显微成像实时分析系统的神秘面纱。杀伤功能是免疫系统清除异源物的一个重要过程。近年来,随着细胞治疗行业蓬勃发展,尤其是肿瘤免疫治疗取得了极大进展,评价免疫杀伤细胞的有效性尤为重要,其中细胞杀伤实验也成为免疫治疗研究中必不可少的实验方法。今天首先给您推荐的是为本次大会特别录制的细胞杀伤ADCC相关的前沿技术应用,由珀金埃尔默公司资深技术人员精心制作,全程干货,欢迎您观看。如需了解更多详情,欢迎于大会期间光临我们的午餐会和展台,与我们的技术专家现场交流。在机体抗击异源物,如病毒感染的途径中,由抗体依赖的细胞介导的细胞毒作用(Antibody-dependent cell-mediated cytotoxicity,ADCC)是一种细胞介导的免疫防御机制,在靶细胞膜表面抗原结合了特异性的抗体的情况下,激活免疫系统的效应细胞裂解靶细胞。从相互作用的角度来看, ADCC的发生是由分子水平的相互作用(结合)介导的细胞水平的相互作用(细胞杀伤),是重要的体外互作研究模型。此外,抗体Fab段介导的靶蛋白识别是抗原特异的,而Fc段和Fc受体之间的相互作用则是非抗原特异的。因此,ADCC融合了固有免疫和适应性免疫,是非常强大的免疫调节反应。除了控制感染外,作为抗体的核心作用机制(Mechanism of Action,MOA)之一,ADCC也是抗体药物有效性和安全性的重要检测指标。而且,基于不同作用机制的抗体药物对ADCC活力的需求也可能会差异很大。特别是肿瘤治疗靶向类抗体药物,如著名的HER2靶向抗体赫赛汀,是需要通过ADCC发挥抗癌作用的。相比下,目前火热的免疫检查点抑制剂,如PD-1/PDL1抗体则是要弱化其ADCC效应。因此,如何有效地控制ADCC活力成为了抗体药研究的重要方向之一。目前的一个研究趋势就是探究ADCC和一些其他的关键细胞行为,如细胞/抗原吞噬等活动的相互作用。例如,在近期发表在Cell上的一份工作中,研究证明利用小分子药物短程、可逆的阻断抗原内吞,能有效提升抗原在细胞表面的聚集和停留,提升靶向药物的ADCC活力鉴于ADCC的复杂性,作用于抗体、靶细胞(如肿瘤细胞)和效应细胞(如NK细胞)的调控均可能会有效的影响ADCC活力。针对ADCC的特殊性,珀金埃尔默的生命科学产品线提供了涵盖分子互作到细胞互作研究的全面解决方案,助力前沿的ADCC调控研究。在今天的报告中,我们会向大家进一步介绍ADCC的原理和意义,并从抗体互作、免疫细胞活力和肿瘤细胞行为三个方面向大家展示珀金埃尔默细胞学整体解决方案。点击链接完成线上签到,即可于大会期间至珀金埃尔默展台领取精美礼品一份!http://wx.custouch.com/OauthLink/preauth/wx898a40f01b0e70bc?r=http://wx.custouch.com/OauthLink/proxy/app/wx898a40f01b0e70bc?r=https://wechat.custouch.com/question/t/wx898a40f01b0e70bc/5f02be35fdf42c1600ca902d
  • 中国细胞生物学会干细胞分会2011年年会在京举行
    仪器信息网讯 2011年11月10 -12日, 由中国细胞生物学学会干细胞分会主办,北京大学干细胞研究中心承办的中国细胞生物学会干细胞分会2011年年会在北京国际会议中心隆重举行。本届年会非常强调干细胞的临床应用,专门设立了临床疾病的干细胞治疗分会,特别邀请了神经内外科,生殖医学和肿瘤等临床专家到会交流。本届年会包括主题报告和九场大会报告,来自科研院所、医疗机构、高等院校等700余名国内外业内人士参加了本次大会报告。仪器信息网作为合作媒体参加了年会开幕式及主题报告。   大会现场   开幕式由北京大学干细胞中心李凌松主任主持,李凌松主任说:“经过10年的努力,中国干细胞研究的实力显著增强,研究水平已经接近国际前沿,某些研究成果已经得到世界同行的认可。中国的干细胞研究已经由‘国外引进跟踪’”向‘原创性发现’跨越发展,特别是干细胞的临床转化研究,已经发展到一个新的阶段。”   北京大学干细胞中心李凌松主任   随后,干细胞生物学分会徐国彤会长对学会工作进行了总结与展望。徐国彤会长提到:学会过去在组织重要课题的探讨、开展国内外学术交流、普及干细胞科学知识等方面作了大量工作并取得了阶段性成果,未来学会还将在促进我国干细胞研究领域专家的交流与合作,大力推进干细胞基础研究与临床应用的转化方面取得更多成绩。   干细胞生物学分会徐国彤会长   来自美国加州大学的Hans Keirstead先生、中国科学院上海生化与细胞研究所徐国良先生、美国Johns Hopkins医学院程临钊先生、美国UCSF丁胜先生分别作了年会主题报告,就干细胞的临床应用、DNA甲基化在基因表达调控中的作用及其分子机理、干细胞命运调控等方面向与会者作了分享与探讨。    报告人:美国加州大学的Hans Keirstead先生   报告题目:Human Embryonic Stem Cell Derivates for Clinical Application   报告人:美国Johns Hopkins医学院程临钊先生   报告题目:Human Cell Engineering:Cellular Reprogramming and Genome Editing   报告人:中国科学院上海生化与细胞研究所徐国良先生   报告题目:DNA Oxidation towards Totipotency in Mammalian Development   报告人:美国UCSF丁胜先生   报告题目:A Chemical Approach to Controlling Cell Fate   据悉,大会开幕式及主题报告结束后,九场大会报告将陆续举行,内容涉及干细胞研究的各个重点领域。近年来,干细胞研究已经成为生命科学和生物医学界最活跃和最具影响的领域,本次盛会为促进我国干细胞研究领域专家的交流与合作起到了重要作用。   现场观众积极提问

中国干细胞学会相关的方案

中国干细胞学会相关的论坛

  • 肿瘤干细胞学说

    [align=center]肿瘤干细胞学说[/align][font='times new roman'][size=16px][color=#000000]关于肿瘤起源,目前讨论较多的是肿瘤干细胞学说。肿瘤干细胞学说认为,肿瘤细胞中存在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]一[/color][/size][/font][font='times new roman'][size=16px][color=#000000]小部分[/color][/size][/font][font='times new roman'][size=16px][color=#000000]具有自我更新和分化能力[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的细胞,是[/color][/size][/font][font='times new roman'][size=16px][color=#000000]真正驱动肿瘤发生和发展的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]“[/color][/size][/font][font='times new roman'][size=16px][color=#000000]动力[/color][/size][/font][font='times new roman'][size=16px][color=#000000]”[/color][/size][/font][font='times new roman'][size=16px][color=#000000],在维持肿瘤的恶性增殖、侵袭、耐药、转移、复发等方面起着决定性的作用[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][6, 7][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]且在多种恶性肿瘤中已成功分离出了肿瘤干细胞。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]虽然其在肿瘤组织中数量极少[/color][/size][/font][font='times new roman'][size=16px][color=#000000]([/color][/size][/font][font='times new roman'][size=16px][color=#000000][/color][/size][/font][font='times new roman'][size=16px][color=#000000]1%), [/color][/size][/font][font='times new roman'][size=16px][color=#000000]但是对于肿瘤的预后及治疗意义重大,可能成为肿瘤诊断标志物及治疗靶点。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][8-10][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][10][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ABCG2[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][11][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]LGR5[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][12, 13][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]SOX2[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][14][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]是目前研究相对较多的潜在的肿瘤干细胞标志物。研究显示,与非小细胞肺癌相比,小细胞肺癌的肿瘤干细胞数量明显增加[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][15][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]肿瘤干细胞显示胚胎干细胞的许多特征,具有高度的致瘤性,并经常表现出参与发育和组织稳态的一个或多个高度保守的信号通路的持续激活,包括[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Notch[/color][/size][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Hedgehog[/color][/size][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]W[/color][/size][/font][font='times new roman'][size=16px][color=#000000]nt[/color][/size][/font][font='times new roman'][size=16px][color=#000000]通路,所有这些[/color][/size][/font][font='times new roman'][size=16px][color=#000000]通路[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]SCLC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]中都可能[/color][/size][/font][font='times new roman'][size=16px][color=#000000]表现活跃[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][4][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]为目前已知的肿瘤干细胞标志物,其在小细胞肺癌细胞中也是呈[/color][/size][/font][font='times new roman'][size=16px][color=#000000]高表达[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的。通过[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Western blot[/color][/size][/font][font='times new roman'][size=16px][color=#000000]技术[/color][/size][/font][font='times new roman'][size=16px][color=#000000]可[/color][/size][/font][font='times new roman'][size=16px][color=#000000]检测其在蛋白质水平的表达。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]已有研究表明,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达成正相关,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000]+[/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]的细胞[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI[/color][/size][/font][font='times new roman'][size=16px][color=#000000]1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]表达量明显升高,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI[/color][/size][/font][font='times new roman'][size=16px][color=#000000]1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]双阳性表达在结直肠癌的转移及浸润有着重要的协同作用[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][69][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000],[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Wang[/color][/size][/font][font='times new roman'][size=16px][color=#000000]等人发现[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000]+[/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]细胞及干细胞样球形肿瘤细胞中表达,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]敲低表达[/color][/size][/font][font='times new roman'][size=16px][color=#000000]抑制球形菌落形成,并且降低了[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][26][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。小细胞肺癌细胞的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]表达量降低后,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]表达量也下降,表明[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]存在共表达,但两者之间相互调控机制尚不清楚,需进一步研究。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]是一种跨膜受体蛋白,属于黏附分子家族,是第一个发现并证实是实体瘤干细胞表面标志分子[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][70][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000],研究显示,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]也可能是肺癌肿瘤干细胞的标志物,并可能成为治疗新的靶点[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][71][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]可以作为透明质酸的受体将信号传导入胞内激活下游信号通路如[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Wnt/β-catenin[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][72][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。研究显示,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在肝细胞癌中,肝癌干细胞的干细胞性质与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI[/color][/size][/font][font='times new roman'][size=16px][color=#000000]1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达有关[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][73][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI[/color][/size][/font][font='times new roman'][size=16px][color=#000000]1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]调节[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000]+[/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]肿瘤干细胞诱导结直肠癌的发生的过程,并且增强肿瘤干细胞的耐药[/color][/size][/font][font='times new roman'][size=16px][color=#000000]。在神经胶质瘤中,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]促进肿瘤干细胞标志物[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][74][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]同样影响[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达,而[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Wnt[/color][/size][/font][font='times new roman'][size=16px][color=#000000]通路相互作用,那么,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]可能是通过调控[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Wnt[/color][/size][/font][font='times new roman'][size=16px][color=#000000]通路相互影响。[/color][/size][/font]

  • 干细胞科研领域的牛人们

    榜样的力量是无穷的。每个领域都有取得杰出成就的成功人士,他们也是后生崇拜学习的偶像。科研领域也不例外。作为目前最热门的研究领域--干细胞,该领域的大牛都有谁?他们都在做什么?笔者总结了一下这个领域的牛人,分为国际篇、华人篇和国内篇三部分介绍。本文仅代表笔者的个人观点,欢迎补充。一 、国际篇http://www.bioon.com/biology/UploadFiles/201103/2011030320555014.jpg山中伸弥 (Shinya Yamanaka)http://www.gladstone.ucsf.edu/gladstone/site/yamanaka/5年前,提起Shinya Yamanaka,可能只有做胚胎干细胞的人略有耳闻,而现在他的名字在科研领域可谓是家喻户晓。虽然在iPS之前,他也做出了一些重要的工作,如发现Nanog和Eras在小鼠胚胎干细胞中的作用(2003,Cell;2003,Nature),但这些跟iPS相比,再好的工作光芒都会被掩盖,即使是CNS(Cell,Nature,Science)级别的工作。传统的观点认为核移植是获得个体特异的多能干细胞的主要途径,但该方法技术难度高,成功率低,至今没有获得人的核移植胚胎干细胞。笔者至今仍记得2007年初(刚进实验室)看到Shinya Yamanaka于2006年发表在Cell上关于iPS的论文时的兴奋心情。我立刻意识到这项工作的重要性,虽然他们最初的结果并不完美,当时获得的iPS细胞按现在的标准只能算是半成品,因此部分人对这项工作的看法是半信半疑。直到一年后,Shinya Yamanaka和Rudolf Jaenisch同时在Nature上报道获得可以生殖系传递的iPS细胞,基本上打消了人们对这个发现的质疑,而随后越来越多的工作进一步证实这个发现。虽然这两年内他的产出不多(2010年有分量的工作只有一篇PNAS),但仅凭2006年那篇论文已经使他成为诺贝尔奖最热门的候选人。http://www.bioon.com/biology/UploadFiles/201103/2011030320561312.jpgRudolf Jaenischhttp://www.wi.mit.edu/research/faculty/jaenisch.html提到Rudolf Jaenisch,在干细胞领域可谓是人尽皆知。1967年从德国慕尼黑大学获得博士学位,现就职于美国麻省理工学院(MIT)的whitehead 研究所,他是该研究所的创始人之一。Rudolf Jaenisch在一系列领域都做出了有影响的工作,包括基因敲除小鼠、表观遗传学研究、核移植、iPS等,并将这些领域的几乎所有的重要问题都解决,唯一的遗憾是自己开创的领域不多。笔者有幸听过一次他的讲座,也同他有过简短的交谈,给人总体印象是一个典型的德国人,比较严肃。他曾经担任过国际干细胞学会的主席。http://www.bioon.com/biology/UploadFiles/201103/2011030320570463.jpg他的许多学生都成为优秀的科学家,如诺华(中国)生物医学研究有限公司的副总裁李恩;近年内的学生有哈佛大学的Konrad Hochedlinger、Alex Meissner 和Kevin Eggan、斯坦福大学的Marius Wernig以及即将去以色列任职的Jacob Hanna等。他的学生无疑是最成功的"牛二代"。http://www.bioon.com/biology/cell/476456.shtml

  • 【转帖】干细胞研究,没白花钱

    在日前举行的第二次中国科协论坛“2009年中国干细胞研究高层战略研讨会”上,同济大学校长裴刚这样评价近10年来,国家对干细胞投入得到的回报,并没有白花钱。对于关注我国科研成果和科技进步的人来说,这句话对科研投入来说,应该是一个再好不过的答案。  文章、实验室、重大项目、人才队伍,这些往往是衡量某项学科的科研水平在国际上所处位置的重要指标。从1999年12月,干细胞研究被评为世界十大科学研究之首,到今年,我国的干细胞研究已经走过了整整10年的历程。  按照裴刚的统计,生命科学是国家重点支持的领域之一,支持的重大项目比例很高,在国际上发表文章的数量接近10%。我国干细胞领域实验室数量大约是50个,有超过一半的人员和经费用于干细胞研究,这50个实验室均在国际顶级杂志上发表过两篇以上的干细胞研究论文。裴刚说:“中国和美国的实验室数量跟中国和美国发表文章的数量比,还是好一些,我告诉大家我们没白花钱。”  干细胞研究的重要性不言而喻。如果说21世纪是生物学的世纪,那么生物学中最前沿、最热门的一个研究领域应当是干细胞的研究。“干细胞是一类具有自我更新和分化潜能的细胞,包括胚胎干细胞和成体干细胞。”因为干细胞的这种特性,所以对很多疾病,如神经退行性疾病、各种血液干细胞疾病等都有很重要的治疗意义。然而,干细胞的来源却一直是难以解决的问题。  在这个聚集了南开大学校长饶子和,北京大学生命科学学院教授、长江学者特聘教授邓宏魁,中国科学院动物研究所所长孟安明等20多位学者的研讨会上,加快建设大动物实验平台成为多位专家的共识。中国研究干细胞的动物模型,不能仅停留在小鼠等小动物上,今后要举全国之力试验大动物——猪、猴子干细胞。由于大动物在生物学的许多方面和人类更为相近,所以在临床应用上更加关键。从小动物模型到大动物模型,再到临床应用,这是一个发展的过程。中国科学院动物研究所研究员、国家杰出青年科学基金获得者周琪在讨论时说:“无论是技术研究还是产业化应用,建立大动物实验基地、建立中国特色的模式动物都是十分必要的,这是我们进行干细胞研究的基础。”  抓住人才、机制创新,似乎每一个学科在谈到发展战略时,都要说这样的两点,干细胞领域亦不例外。对于国家实验室的模式,专家们也有着更高的期许:开放性的招聘,长期稳定的择优支持,国有评估,开放流动。如何把国家的需求、科研水平的提升、人才的培养和投入经费以及科研机制更好地融合,最终达到发展科技的目的,这并不是一件容易的事情,也是每个科研领域应该深入解决的问题。希望等到下一个十年,回顾干细胞领域的研究成果时,“我们没白花钱”这句话,能以更高的国际地位得到诠释。

中国干细胞学会相关的资料

中国干细胞学会相关的仪器

  • CellCelector全自动无损细胞分离系统,为您的研究提供支持CellCelector Flex仪器是一款多功能、全自动细胞克隆分析及分离系统,用于细胞检测、细胞筛选、挑取和分离单细胞、细胞团、球体、类器官、单细胞克隆以及贴壁细胞。CellCelector具有很高的扫描和细胞挑取速度,可以快速分离转移细胞,与单细胞RNA分析应用兼容,完全适用于活细胞的分离。结合纳米孔板技术,CellCelector可作为高通量单细胞克隆筛选及分离,单B细胞分泌物检测,以及分离稀有单细胞(如CTCs)以进一步分析的有力工具。功能基于图像的分析和分离具有高分辨率光学器件的CellCelector倒置荧光显微镜允许基于形态学属性和荧光信号进行目标细胞检测和识别。高效的成像系统提供了广泛的图像处理选项,因此即使是相似的细胞也可以被区分。高度的灵活性CellCelector 被广泛应用于多种研究领域,如 CTC 循环肿瘤细胞筛选、干细胞研究、细胞系开发和抗体发现,利用三个独特的、可切换的挑取模块实现灵活的多功能性,确保最佳的细胞筛选和分离。温和的挑取技术CellCelector的专利挑取技术的特点是极其温和的细胞转移,从而在挑取后获得高细胞完整性和生长率(包括在单细胞克隆应用中高达95%或更高的存活率)。FlowBox孵育箱:生理条件下的样品处理FlowBox 孵育箱是一种创新设备,将层流细胞培养通风柜与准确的温度、湿度和 CO2 控制相结合,使细胞处于稳定的环境条件下,获得可信任和可重现的实验结果。应用单细胞分离配备单细胞挑取模块,CellCelector可对细胞进行温和、高精度、低体积的抽吸。典型应用领域包括:- 分离循环肿瘤细胞,用于肿瘤应用- 分离单个胎儿细胞,用于基于细胞的无创产前诊断(cbNIPT)- 法医学应用(例如用于遗传分析的精子采集)- 分离精确数量的细胞以作为高质量的参比样品- 分离 100% 纯单个细胞,用于后续单细胞基因分析(单细胞PCR、RNA-seq、NGS)细胞系开发使用CellCelector单细胞克隆技术可加速药物生产的细胞系生成:- 并行分析数千个克隆- 整合了单克隆性证明的一轮单细胞克隆工作流程- 仅选择性分离重要克隆- 靶向选择高产克隆- 超过95%的单细胞生长率,适用于极难生长的细胞系- 节省大量的时间、耗材、培养基和细胞培养容器抗体发现将CellCelector Flex 与独特的纳米孔技术相结合,并将高通量细胞筛选、成像、灵敏的单细胞测定以及精准细胞分离结合,实现了同一天共同处理数千血浆单B 细胞的操作。单细胞分析允许检测具有独特特性的稀有抗体,这些特性在传统筛选方法下很难找到。 单个细胞可立即进行多种测试分析,而不是培养数周以达到测定的最小细胞数量。干细胞干细胞在再生医学领域发挥着重要作用,因为它们的高度自我更新和分化潜力使它们特别适合于广泛的生物医学和制药研究应用。CellCelector Flex 具有专门为贴壁细胞和克隆设计的挑取模块,能够非常温和且高度特异性地分离靶细胞,因此非常适合分离单个干细胞、干细胞集落并进行传代,并且能够分离干细胞集落的特定部分。CellCelector Flex 支持多个干细胞研究:- 新衍生iPS 群体的克隆挑取- 基因组编辑(CRISPR | Cas9)克隆挑取- 分化干细胞集落的分离- 均分克隆并转移到多个目的板(创建复制板)- 从甲基纤维素中扫描和分离造血干细胞集落- 分离干细胞以进行单细胞克隆或异质性研究- HSC 子细胞分离或“ 双细胞分离”- 去除不需要的细胞(例如干细胞培养物中的分化区域)
    留言咨询
  • 仪器简介: WIKIPIDIA细胞为干细胞的原始细胞,能够在很多多细胞生物体内发现,并且他具有通过分化更新自己.并且能分化为很广泛的各种特殊类型细胞. 一般来说干细胞可以无限制的分裂和复制自己,在适当的条件和信号下可以组织功能分化. 干细胞分化为各种细胞是通过胚胎干细胞的囊胚,成年人干细胞在成年人的组织里,脐带血干细胞在脐带血内.基于分化潜能我们可把他们分为: Totipotent, Pluripotent, and Multipotent. 胚胎干细胞是全能的.他们给我们下游带来三个胚层:内胚层,中胚层,外胚层.另一方面,成人未分化的干细胞可发现于全身,他们分为多能型和全能型.可以在骨髓和脐带血中分离用于细胞治疗. 但是,准确知道他们的功能还是要克服众多的因素.主要的困难之一就是对他的研究和利用,必须培养大量的干细胞和保证他们的活力. 干细胞培养环境非常的重要,主要因素包括:培养基,生长因子,细胞因子,生物反应器.当我们培养干细胞用于干细胞治疗,在培养过程中模仿体内条件对于增加字报活力和应变能力是很重要的. 虽然我们培养的同是干细胞,可他们还是有悬浮培养和贴壁培养.此外培养模式和生物反应器也应根据客户的研究需求做相应的调整.因此百特伦的策略是不仅提供生物反应器,控制器,软件,和不同客户根据不同需求的培养容器.而且提供基本的支持为他们提供有效的干细胞研究. 这种反应器可以培养各种细胞用于细胞治疗,在体外的各种干细胞如:成人干细胞与胚胎干细胞,分化的胰岛细胞,软骨细胞,肌细胞,神经和神经质细胞,免疫细胞中的树突状细胞,淋巴细胞,巨噬细胞,和肿瘤细胞.同时他也可以用于细胞构建和分化.例如: 在所需要的安全环境下进行培养基的选择,细胞播种,细胞增殖. 另外,可以给反应器安装显微镜观察生物活细胞的图像,同时蠕动泵均在安全箱内,可以给罐体输送培养基,维生素,生长因子,细胞因子,营养素及其他各种必须的添加剂和控制,供气设备可以提供多种微环境必须的多种气体如:氧气,二氧化碳,氮气等. 另外他还配有四个蠕动泵在设备的左边,是用于接配合罐体内PH,DO,TEMP,FOAM的电极的检测.通过他科学家就可以做微生物发酵和动物细胞的发酵,在生物反应器外的箱体内. 活细胞成像系统被安装在安全箱内,这样就便于观察活细胞的图像,同时不会造成污染.他可以提供三种类型的图像,如光学图像,共焦图像,全息图像.用户可以根据价格和自己的要求来配制.如果用户需要还可以将图像传到电脑,用分析软件来进行细胞的计数和特殊计数.此外他还提供适时活细胞图像,及时跟踪活细胞的数量和其他方面的变化.从而达到控制细胞培养的目的.技术参数: 胚胎干细胞培养基和常规动物细胞培养一样,要加入适量FBS(或者无血清)一些抗生素到基础培养基中(如:DMEM,IMDM,MEMa和RPMI1640)例如:造血干细胞培养.白细胞介素-3,白细胞介素-6,干细胞因子,血小板生成素,FL3,EPO,GM-CSF可被单独使用或混合使用完全依据于培养类型不同分化水平.因此研究者可以通过我们的混合罐来完成培养基的优化.因此达到细胞培养和分化研究的目的. 混合培养基可以先在一个独立的生物安全室中大的混合容器中完成,这样就可以在里面的生物安全室.给小体积的罐子添加不同数量的培养基中小体积的混合罐体被安置在相同温度的细胞培养盒内. 在二级混合罐中研究者可以通过蠕动泵做连续或定期的添加少量的细胞因子,生长因子,和营养给培养盒,以达到培养和分化研究的目的.由于初级混合罐比较大,而且蠕动泵连接次级混合罐,添加数量可以调节,所以一些研究者宁愿在次级培养盒中混合培养基而非分开俩次.百特伦的反应器就可以做到这一点.而且还不会有污染发生.这样可以减少时间和成本而提供最优化的不受污染的培养基.另外他对培养基进行优化不仅只用一个培养盒而且还可采用多个细胞培养盒,提供多种类型的培养基. 干细胞培养最基本的条件是要考虑到是贴壁培养还是悬浮培养.初始接种密度.和另外一些常规细胞培养必须的要素如:培养基,营养素,PH一般7.4,温度37度,融氧,二氧化碳或氧气压力,抗生素,生长因子,荷尔蒙.另外,对于干细胞分化保证一致性非常的重要.通常有培养基的影响和细胞与细胞间的影响.物理刺激对于最终分化和适应性也是非常重要的.尽量作到最优化以适应移植. 考虑到目前规模培养干细胞一般小于10ML,这对于现有的生物反应器是做不到的.但是我们百特伦的生物反应器不仅可以适合做10ML的培养,而且可以做小于1ML规模的培养.其他的各种培养方法也可以完全被百特伦适应.即使是非常小的规模培养,百特伦的ALL-IN-ONE电极通过ISFET都可检测TEMP,PH ,DO,而且可以作到适时检测,所以他完全可以检测到必须的每个参数. 这种生物反应器可以培养绝大多数细胞在适宜的条件下用于细胞治疗, 例如:大多数成人干细胞,胚胎干细胞,分化的细胞,免疫细胞和肿瘤细胞. 同时他还可以用于培养基的配制,细胞接种,细胞增殖,细胞分化,细胞构建等在生物安全柜内. 在安全柜内还可以配备显微镜用于细胞观察.也可加入蠕动泵,以用于注入培养基,维生素,生长因子,细胞因子,营养素和其他必须物质.来进行大规模培养和细胞构建.同时配备的供气系统可满足微环境内气体如:氧气,二氧化碳,氮气等的需求. 所有的配制都一样,只是TOTICELL配备了一个外围培养基混合装置.没有电极和蠕动泵.然而,小的混合罐也可以被放入到生物安全柜内.混合仓内不仅可以配备极谱型DO电极和凝胶型PH电极,而且可以放入ISFET微型传感电极. 另外,多个小生物反应器还可以被安装在生物安全柜内,通过磁力或摇摆来搅拌.同时可以最多接32个传感器检测PH,DO,TEMP来控制生物反应器.可以连接16个变速泵和24个定速泵.而且一个气体混合个连接24个分支.都能提供氧气,二氧化碳,氮气和空气.生物安全柜还可以作为二氧化碳培养箱.常规的用培养皿培养细胞我们同样可以用ISFET传感器检测PH,DO,和温度. 在细胞治疗方面MultiCell生物反应器可以进行细胞构建,分化例如:培养基的配制,细胞接种,细胞增殖,总之可以给各种细胞提供最适合的环境生长. 特别是,在组织工程方面我们的生物反应器可以提升人造血管的的生成.另外百特伦的生物反应器的设计可以完全按照客户的要求来量身定做.目的就是为了给客户以最佳的状态去研究干细胞治疗.基本上TotiCell and PluriCell生物反应器具有相同的主要功能.,有生物安全柜,及相关配件.这个设计完美的循环结构准确的显示了细胞动力学过程.这归功于我们长期不懈的努力.在循环设计里我们可以提供象心跳一样的脉冲形成物理刺激.从而更有利于干细胞的培养.此外除了这种模式还可以添加其他的生物刺激象超声和物理应激等. 多细胞盒在生物安全柜中培养时有俩个概念,一个是完全独立的系统,在每个细胞培养盒建立独立的细胞培养环境,用蠕动泵将培养基注入培养盒.第二种方法是并行系统注入相同数量的培养基到每个培养盒,没有同步蠕动泵. 气体混合机连用结构复杂,费用高.我们可以根据客户需求给每个细胞培养盒单独提供混合气体. 我们可以帮助研究者得到更好质量的产品和高效的生产力.所以百特伦可以提供研究者定制的细胞培养系统. 如有什么问题,请您及时的联系我们, 党先生 Email: 主要特点: 培养罐我们可以提供悬浮和贴壁俩种,可根据客户的特殊需求来设计不同的罐体来适应各种细胞培养.我们的口号是向客户提供个性化的设计,以达到最优化的培养.也有研究者通过设置一个透气膜来使安全培养盒中的氧气和二氧化碳进入罐体.因此,生物安全盒内有能力提供氧气和二氧化碳,并保持一个适当的水平. 细胞培养罐和培养箱均带有独立的温度控制装置,可进行精确的温度控制.同时生物安全室内也可精确控制,协助细胞培养罐和细胞培养箱内的温度控制.从而提供最好的环境下维持精确的温度控制.由于在安全箱内有四种气体可提供,氧气,二氧化碳,氮气,空气.可以直接设置注入气体的数量例如:0.01~21%氧气或0~10%二氧化碳.可以让他们间隔开来单独注入,也可以将他们混合后注入. 小的先进的安全盒完全可以防止污染.从外面可以根据用户调整不同洁净度,从100级~10万级的无菌工作区.同时我们也作好有各种过滤和空气流通.为了优化培养的细胞用于干细胞治疗和细胞治疗,我们设计了适合多种类型细胞培养盒.细胞培养盒主要为贴壁细胞设计,而悬浮细胞主要还是用玻璃容器. 我们为客户提供最佳类型的细胞培养卡匡,适合各种细胞的培养,如细胞培养容积方面,细胞因子和营养,膜型及结构布局,另外细胞种类,最佳的供气设计等. 虽然为同一细胞,但设计还是依据于不同研究目的.是普通培养还是分化培养.例如: 即使是同一细胞可能还要分悬浮培养和贴壁培养.由于有多种类型为承载结构材料或支架,培养的结果也可以不同.此外由于给细胞的刺激不同结果也会不同.因此反应器的设计应该适合每个人的研究. 但是一直没有反应器能满足各种条件的科研需求,因此细胞治疗研究一直停滞不前.通过各种生物反应器的比较研究可以产生重大的成果在学术和商业界.我们的发展策略是我们提供的发酵罐完全按照研究者的要求设计.
    留言咨询
  • 细胞治疗-CAR-T/干细胞完全解决平台 稀有细胞主要有:循环肿瘤细胞CTC、PBMC中的各类免疫细胞、T细胞、CAR-T细胞、循环胎儿细胞、有核红细胞、干细胞等。CyteFinder ⅡCyteFinder II 是高速,完整载玻片成像系统,具有用于液体活检分析和多路复用组织成像的选件。更加详细的资料请查询北京普华量宇科技有限公司官网。 1)高速7通道荧光成像 2)自动化的稀有细胞液体活检选项,具有集成的AI机器学习功能,可进行高灵敏度和高回收率的CTC检测和表征 3)物理方法提取组织微区域/单细胞,保证提取样本的DNA/RNA的完整性 4)数字病理学的组织选项包括高分辨率组织扫描工作流程,审阅,注释和数据共享 5)CytePicker ® 检索模块能够提取单个细胞以进行下游分析细胞治疗-CAR-T/干细胞完全解决平台应用包括: 1)基于CTC的液体活检 2) 稀有细胞(循环肿瘤细胞CTC、PBMC中的各类免疫细胞、T细胞、CAR-T细胞、循环胎儿细胞、 有核红细胞、干细胞等)识别;细胞治疗(干细胞、CAR-T细胞等) 3)多路高分辨率组织成像;病理学(荧光/明场全切片扫描及病理分析等) 4) 发现生物学,包括组织微环境研究 5)T细胞抗原受体的发现 6)免疫细胞表征 7)大体积载玻片成像,用于数字病理学和液体活检分析 8)基于细胞的非侵入性产前检查;孕妇和胎儿健康(循环胎儿细胞、有核红细胞等) 9)活细胞研究(可提取活细胞,进行培养和单细胞测序) 10)肿瘤学(循环肿瘤细胞等,肿瘤代谢) 11)免疫肿瘤学(肿瘤浸润、T细胞激活等,肿瘤微环境/肿瘤免疫微环境,新生物标记物发现) 12)传染病学(感染组织切片扫描分析、感染细胞成像提取等) 13)免疫学(外周血稀有免疫细胞等,免疫细胞耗竭、专职抗原呈递细胞,TCR测序) 14)药物伴随诊断(长时间监测药物疗效)
    留言咨询

中国干细胞学会相关的耗材

  • 法国泰科诺 EVA干细胞冻存袋250mL
    法国泰科诺 EVA干细胞冻存袋250mL 随着免疫疗法的快速发展,低温存储的生物制品种类繁多,规格不同,其中250mL的冻存袋在业内是普遍使用的规格。满足细胞培养/扩增、脐带血库、遗传工程、载体生产/冷冻保存等多种需求所需。高品质,性能可靠的冻存袋直接影响最终生物制剂的稳定性,BioCell 250mL 由法国Technoflex泰科诺公司设计,是一款专门针对小剂量细胞冻存的单管路+快拧接头的袋子, EVA材质的袋子,适合于-80℃~-196℃深低温长期存储,无菌包装,袋子在ISO7洁净区生产包装,内颗粒物非常低,且所有产品皆经过了伽马辐照灭菌,使用前需要用夹板器将袋子内部气体全部挤压出,通过无菌接管机进行接管后再进行细胞、血液制品、病毒、质粒等产品的分装。全国总经销:上海朗喜工业科技有限公司 400-1818-529
  • tct检查细胞保存液
    【宫颈细胞保存液技术参数】1、保存细胞的形态结构和数量,常温下标本可保存3周。2、制片后剩余细胞可进一步直接做HPV、DNA、衣原体、淋病及免疫化组织测试。3、15分钟内消除病菌及微生物活性,保证医生健康。4、能分解粘液,红细胞。消化分解黏液能力强:充分消化粘黏液,去除标本中普遍存在的黏液等干扰成份,释放具有诊断价值的细胞,保留有价值的诊断背景,有效提高检出率,检测结果准确。 企 业 简 介 孝感奥华医疗科技有限公司成立于2006年,位于中国孝文化之乡董永故里、中国病理之乡-孝感,占地面积约30亩,专业研发、生产、销售液基细胞学、分子生物学检测设备及配套耗材。公司下设生产部、质检部、销售部、售后服务部、技术部(机械设电子室、理化室)、后勤保障部、财务部、法务部等13个科室及耗材车间、装配车间、注塑车间、机械加工车间、成品库等标准化厂房,建设面积约16000平方米。产品研发、生产、销售、售后实力雄厚,企业已拥有23项国家专利,并被认定为“国家高新技术企业”,产品用户分布各地,正在为近六百家用户服务。公司以“规范、诚信、求精、超越”为经营宗旨,开拓进取,务实创新。产品: 医疗设备:细胞学AZR型制片染色一体机(沉降法)ATP型液基薄层细胞涂片机(离心法)AZP型液基薄层细胞制片机(膜式法)细胞学、病理学图文报告系统诊断试剂:沉降法耗材(一次性使用标本采集刷、细胞保存液、沉降托、沉降仓、液基玻片、一次性吸管、一次性移液针筒)离心法耗材 (一次性使用标本采集刷,细胞保存液,制片夹,一次性吸管)膜式法耗材 (一次性使用标本采集刷,细胞保存液,过滤器,液基玻片)液基非妇科耗材:胸腹水耗材、痰液耗材、脑脊液耗材、尿液耗材、鼻黏液耗材等细胞染色液:巴氏染色液、苏木素-伊红染色液(H-E)医疗设备:组织学ATS-14B自动组织脱水机ATKP-A摊片烤片机ABM-A石蜡包埋机、ABM-B石蜡包埋机、ABM-C石蜡包埋机ARS-16A自动染片机、AFP-A自动封片机孝感奥华医疗科技有限公司专业生产液基细胞设备及耗材系列产品多年,物美价廉,免费售后,欢迎广大客户致电咨询!
  • 华龛生物3D FloTrix® 间充质干细胞无血清培养基
    安全有保障获批FDA-DMP药用辅料资质,登记号为【038476】生产环境符合cGMP标准和管理。规格高无血清、无动物源成分、无酚红、批间差异小无需添加其它生长因子,无需包被或表面处理 。性能优支持多种间充质干细胞大规模扩增培养支持长时间的稳定连续传代培养(大于14天) 支持2D、3D培养模式支持原代分离和传代培养。供货快自主开发产品、产能稳定、现货供应。服务佳深度合作制药客户,助力其加速药物审批。

中国干细胞学会相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制