淋巴细胞微核率

仪器信息网淋巴细胞微核率专题为您整合淋巴细胞微核率相关的最新文章,在淋巴细胞微核率专题,您不仅可以免费浏览淋巴细胞微核率的资讯, 同时您还可以浏览淋巴细胞微核率的相关资料、解决方案,参与社区淋巴细胞微核率话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

淋巴细胞微核率相关的资讯

  • 食品添加剂可致淋巴细胞变异 吃多或患淋巴瘤
    受访专家:   欧阳学农,南京军区福州总医院肿瘤科主任、主任医师,国家中西医结合肿瘤重点学科主任、国家药物临床试验机构(肿瘤专业)主任、全军中医药学会副会长、全军肿瘤专业委员会常委,《临床肿瘤学杂志 》编委、《肿瘤学杂志 》编委,从事肿瘤临床工作近30年。   牵头或参与国际和国内药物临床试验项目20项,与美国 M.d. Anderson 癌症研究中心、加拿大UBC 大学、日本爱知癌症中心、中国医科院肿瘤医院、军事医学科学院等国内外著名肿瘤研究机构保持广泛合作。   “40%—50%的淋巴癌患者病因是病毒感染,但现在九成食品中含有添加剂,这也可能是淋巴瘤发病的重要原因之一。”国家中西医结合肿瘤重点学科主任欧阳学农主任医师日前告诉记者,加工食品中滥用的非法食品添加剂已经成为导致淋巴癌发病重要因素之一。   食品添加剂或可导致淋巴细胞变异   “在长期过量食用食品添加剂的不良影响下,有可能促使淋巴细胞在生长过程中发生变异,增加患上淋巴瘤的风险。”欧阳学农说。   据了解,淋巴癌是发生于淋巴结的恶性肿瘤,除了我们平时所知道的颈部、腋窝、腹股沟等处会长肿块之外,还可能存在于全身各处,比如脑淋巴瘤、肺淋巴瘤、胃淋巴瘤、口腔淋巴瘤等。   “人越年轻,淋巴细胞就越有活力,也就越容易得淋巴癌。恶性淋巴瘤多发生在20岁到40岁的青壮年。”欧阳学农说,淋巴癌的产生原因仍然不明确,与人自身免疫防御系统缺陷、病毒感染、化学物质、射线、基因突变等有关,如今,当人类的食物97%都含有添加剂时,几千种添加剂充斥我们的生活时,对于癌症的重新认识,应当谨慎考虑添加剂这一风险因素。   食品添加剂是人为添加到食品中的天然物质或人工合成的化学物质,在使用标准范围以下,人体的代谢能力可以降解出去,是相对安全的,但是一旦超过标准,过量的添加剂就会沉积在体内伤害各个器官,造成病变甚至致癌。尽管尚未有人类肿瘤的发生和食品添加剂有关的直接证据,但许多动物实验已证实大剂量的食品添加剂能诱使动物发生肿瘤。   “淋巴系统是身体重要的防御系统,就像人体的‘军队’,它可以帮助身体抵抗各种病原体,像细菌、霉菌等,让我们免于疾病的侵害。和这新病原体‘作战’的淋巴细胞容易在食品添加剂的不良影响下,有可能发生变异,直接或间接影响淋巴瘤的形成。”欧阳学农说。   动物实验多证实添加剂有致淋巴瘤作用   “许多动物实验已证实大剂量的食品添加剂能诱使动物发生淋巴瘤。”欧阳学农说。   如亚硝酸钠是食品添加剂亚硝酸盐的一种,国外试验证实,同时服用乙胺丁醇和亚硝酸钠,小鼠淋巴瘤的发生率提高,而单用乙胺丁醇对淋巴瘤发生率无影响。   作为人造甜味剂之一的蔗糖素,常用于食物和饮料。然而,美国食品药品管理局(FDA)在批准蔗糖素的报告中明确指出:在一个老鼠淋巴瘤突变试验中,科学家发现蔗糖素具有轻微的诱变性,根据检测致癌物的一种标准方法——艾姆斯试验结果,蔗糖素被消化时分解的物质也有“轻微的诱变性”。   “一些非法的添加剂致癌作用就更不用说了。”欧阳学农告诉记者,苏丹红作为一种非法食品添加物,对人体具有潜在致癌性,国际癌症研究机构将苏丹红一号归为三类致癌物,主要基于体外和动物试验的研究结果:苏丹红一号在特定存在的条件下,对小鼠淋巴细胞具有致突变作用。   此外,有的食品添加剂本身即可致癌,作为牛奶酸化剂的花楸酸、淀粉变性剂的琥珀酐、面包防硬剂的聚氧化乙烯乙醇硬脂酸等,在动物实验中都具有致癌活性 有的添加剂可在使用过程中,与食品中的存在成分发生作用转化为致癌物质,如能保持肉色鲜嫩的亚硝酸盐,会与蛋白质代谢后产生的胺类物质结合,形成亚硝胺,具有很强的致癌性。其他种类的防腐剂如苯甲酸、苯甲酸钠、山梨酸等,经毒理研证,较多剂量的摄入,也会影响人体的正常机能,削减人的免疫力,这就为人体细胞的变异提供了前提。   加工食品多含添加剂 自己动手最健康   “食品添加剂最主要的作用是为了让快速生产出的食品,看起来更鲜亮、闻起来更香,吃起来可口、保质期更长,同时由于它大多来自边角边料,所以有可能价格更便宜。”欧阳学农说,食品加工商为了让食品在经历漫长的运输和保存之后仍旧色彩诱人、香气扑鼻,绞尽脑汁的合成和添加各种食品添加剂。   如加入次亚氯酸钠可以给切过的蔬菜杀菌,让蔬菜更鲜亮 加入苯甲酸钠可以让碳酸饮料保持新鲜口感 加入碳酸氢钠可以使曲奇饼干膨松可口 加入环己基氨基磺酸钠(甜蜜素)能增加蛋糕和饮料的甜度 加入胭脂红,可以让食物的颜色红亮诱人。   “一个三餐都通过这些食品解决的成年人,每天添加剂摄入量约为10克左右,种类高达六七十种。”欧阳学农说,“要想远离他们,最好自己购买新鲜食品原料,亲自烹饪。”   “购买的食物加工度越高,使用的添加剂也越多。如果一味追求方便快捷,必然要牺牲健康,甚至是生命。”欧阳学农说。   ———————— ■相关链接 ——————————   发热、消瘦、盗汗 或是淋巴瘤症状   淋巴癌临床早期症状不痛不痒、隐匿不易察觉,很多患者会将发烧等症状与感冒病症混淆。因此,有三种常见并发症要注意:   发热,体温长期徘徊在38℃—39℃之间,有持续高热,也有间歇低热,少数有周期热。消瘦,多数病人有体重减轻的表现,在短时期内减少原体重的10%以上。盗汗,夜间或入睡后出汗。   欧阳学农强调,并不是所有的淋巴结肿大都是癌,其中不少是炎症或良性病变等正常反应。此外,直径超过一厘米大小的肿块才有临床检查的意义,所以,发现异常时要警惕,及时就医,但不要过分紧张。   早期的淋巴瘤,通过以放疗为主的治疗手段就能治愈,到了中晚期的时候,需要用化疗为主的手段。欧阳学农主任指出,确诊患了淋巴瘤不必害怕,大量临床实验证实,50%—60%早期患者使用免疫化疗可以被治愈,晚期也有30%—40%的治愈率,疾病能否治愈的关键是首次治疗是否成功。   他提醒,工作压力大的白领、经常熬夜的人、长期过度疲劳者、经常处于电子辐射或射线环境者,都需要定期自查,触摸身体表层是否有肿大的淋巴结。平时,多接受日照,生活规律 尽量不要在新房装修好后即入住 购买新车后,进行甲醛测试,并保持较长时间开窗通风。此外,常吃葡萄、茶叶、海带、大豆、红萝卜、番茄、香蕉、橘子、菠菜等碱性食物,防止酸性废物的累积。
  • 机械力调控B淋巴细胞免疫活化研究获新进展
    p   2017年7月31日,清华大学生命学院刘万里研究组在《eLife》期刊在线发表了名为《蛋白激酶Cβ(PKCβ)和黏着斑激酶协同调控B淋巴细胞的免疫活化对呈递抗原的基质硬度的敏感性》(Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase)的研究论文,报道了机械力感知能力调控B淋巴细胞免疫活化的精细分子机制。清华大学生命学院巴基斯坦籍博士生萨明娜(Samina Shaheen),北京大学、清华大学和北京生命科学研究所联合培养博士研究生项目博士生万政鹏和生命科学学院本科生李宗昱是本文的共同第一作者,刘万里研究员为本文的通讯作者。 br/ /p p   本研究需要大力整合分子免疫学、细胞生物学、生物化学、新型材料科学、高精度活细胞成像和生物物理学等不同学科的交叉优势,涉及基因修饰小鼠脾脏B细胞和自身免疫疾病病人外周血B细胞等实验材料的广泛使用,在研究过程中得到了国内外同行的大力支持。 /p p   B淋巴细胞作为抗体免疫应答过程中的重要参与者,维系着人类的健康,B淋巴细胞的免疫活化进程在其质膜表面的B细胞受体(BCR)识别外来病原体抗原后启动。该课题组之前的工作揭示B淋巴细胞具有灵敏的机械力感知功能,利用B细胞受体(BCR)来精确地识别抗原的理化性状。该论文结合不同刚性抗原呈递基质系统和基于全内反射、共聚焦荧光显微镜的高速高分辨率成像系统,对机械力感知调控B淋巴细胞免疫活化的分子机制进行系统而全面的研究。该论文发现B淋巴细胞感受机械力调控其活化依赖于B细胞受体(BCR)下游信号分子。由佛波酯(PMA)诱导的蛋白激酶Cβ(PKCβ)激活可以绕过B细胞通常需要的酪氨酸激酶(Btk)和磷脂酶Cγ2(PLCγ2)信号分子来区分底物刚度。然而,这一过程依赖于由蛋白激酶Cβ(PKCβ)介导的黏着斑激酶(FAK)激活,进而表现出黏着斑激酶(FAK)介导的B细胞扩散和粘附反应的增强。黏着斑激酶(FAK)失活或缺陷将导致B细胞丧失鉴别基底刚性的能力,而粘附分子可以大大增强B细胞的这种能力。最后,该研究利用类风湿性关节炎患者的样品进行研究,发现与健康人相比,类风湿性关节炎患者的B细胞对基底刚度表现出不同的活化反应。这些发现更系统的提供了B细胞如何通过蛋白激酶Cβ(PKCβ)介导黏着斑激酶(FAK)激活的方式区分底物刚度并作出不同活化反应的分子解释。这些研究成果为B淋巴细胞的免疫识别、免疫活化和免疫调节研究提供了新的研究思路,帮助人们进一步理解自身免疫疾病,从而对探索相关疾病的致病机理、以及药物疫苗研发等重要工作提供新的理论依据。 /p p   刘万里研究员课题组一直致力于使用新型的高速高分辨率的活细胞单分子荧光成像技术结合传统的分子免疫学、生物化学和生物物理学研究手段,对B淋巴细胞的免疫活化及相关疾病的分子机制进行研究。继2013年在《免疫学杂志》(Journal of Immunology),2015年在《欧洲免疫学杂志》(European Journal of Immunology)和《eLife》上发表B淋巴细胞的免疫活化受到机械力调控的相关论文后,这一新成果是他对该领域的又一贡献。该研究由国家自然科学基金委、科技部和青年千人计划提供经费支持。萨明娜(Samina Shaheen)受到中国政府奖学金项目的支持。(来源:清华大学生命科学学院) /p p   论文链接: a href=" https://elifesciences.org/articles/23060" _src=" https://elifesciences.org/articles/23060" https://elifesciences.org/articles/23060 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/e71fa001-dac6-4706-bca7-5f946b9f1f18.jpg" title=" 1.jpg" / /p p   蛋白激酶Cβ(PKCβ)和黏着斑激酶(FAK)协同调控B淋巴细胞的免疫活化对呈递抗原基质硬度的敏感性 /p p br/ /p
  • 专家共识 | 淋巴细胞亚群检测在血液肿瘤中应用的专家共识
    血液肿瘤是起源于造血系统的恶性肿瘤,其发病机制复杂,环境因素、遗传因素、免疫因素等都被认为与疾病的发生、进展密切相关。淋巴细胞亚群中的T淋巴细胞、B淋巴细胞、自然杀伤淋巴细胞及淋巴细胞功能亚群调节性T细胞是细胞免疫检测的常用指标,广泛用于血液肿瘤患者的免疫状态评估、疾病复发或转移风险预测及治疗指导等。为了更加深刻认识淋巴细胞亚群检测在血液肿瘤中的作用,加强其检测过程的质量管理,促进其规范地应用于临床,由中国医药质量管理协会医学检验质量管理专业委员会牵头组织国内血液肿瘤和临床检验领域多位专家,制定了该专家共识。该共识介绍了淋巴细胞亚群的检测方法,归纳总结了其对血液肿瘤筛查、复发转移预警及预后评估、合并感染风险预警、造血干细胞移植后免疫重建监测与移植物抗宿主病预防、嵌合抗原受体T细胞免疫治疗后监测、用药指导与疗效监测等方面的应用,并对血液肿瘤患者的监测方案与随访时机选择做出了推荐。淋巴细胞亚群检测在血液肿瘤中应用的专家共识中国医药质量管理协会医学检验质量管理专业委员会通信作者:杨再林,E-mail:804728092@qq.com武坤, E-mail:wukun@ydyy.cn 刘耀, E-mail:liuyao77@cqu.edu.cn本文已被本刊录用并于5月9日在中国知网发表,转载、引用请注明出处。知网首发网址:https://kns.cnki.net/kcms/detail/50.1176.R.20230508.1716.002.html原文阅读:淋巴细胞亚群检测在血液肿瘤中应用的专家共识血液肿瘤是起源于造血系统的恶性肿瘤,具有高度异质性。2022版《造血与淋巴组织肿瘤WHO分类》根据肿瘤细胞的来源,将血液肿瘤主要分为髓系增殖和肿瘤、髓系/淋系肿瘤和其他谱系未定白血病、组织细胞/树突状细胞肿瘤、B淋巴细胞增殖性疾病和肿瘤、T淋巴细胞增殖性疾病和肿瘤、NK细胞肿瘤、淋巴组织间质源性肿瘤、遗传性肿瘤综合征8个大类。血液肿瘤的发生、发展和转归与其患者机体的免疫功能,尤其是细胞免疫功能密切相关[1-2]。随着疾病的发生发展,免疫微环境也随之发生相应变化,进而引起外周血中各种免疫细胞亚群的改变。淋巴细胞是构成人体免疫系统的主要细胞,根据淋巴细胞表面的标记物和功能,淋巴细胞可以分为许多不同的群体。临床上常用流式细胞术(FCM)对外周血中的不同群体的淋巴细胞进行鉴别和计数,包括CD3+T淋巴细胞,CD3+CD4+辅助/诱导T淋巴细胞,CD3+CD8+抑制/杀伤T淋巴细胞,CD3-CD19+B淋巴细胞,CD3-(CD16+CD56)+NK淋巴细胞,简称为TBNK,及CD3+CD4+CD25+CD127low/-调节性T细胞(Treg)[3]等。本共识中将TBNK和Treg统称为淋巴细胞亚群。血液肿瘤作为造血干细胞异常的恶性肿瘤,疾病的多种因素会影响免疫细胞的产生、增殖及分化,使外周血的淋巴细胞数量与功能产生异常[4],导致免疫功能失调[5-6],因此对血液肿瘤患者进行规范的淋巴细胞亚群检测十分必要。为了规范淋巴细胞亚群检测中的实验方案、技术操作,使更多相关领域的临床、科研和实验室技术人员认识到淋巴细胞亚群检测在血液肿瘤患者诊断、预后评估、治疗指导中的作用及注意事项,进一步促进其在血液肿瘤中的应用,中国医药质量管理协会医学检验质量管理专委会结合文献学习和多家医疗机构的临床工作实践制定了本专家共识。 1淋巴细胞亚群检测在血液肿瘤中的意义 1.1 血液肿瘤的发生、进展、预后与免疫功能的关系正常情况下,免疫系统对肿瘤细胞有监视和清除作用,维持机体内环境的稳定。免疫功能异常可能会导致细胞免疫和体液免疫失调,从而为肿瘤的发生和发展提供条件[7-9];在病原体感染时免疫系统也会受到影响,当免疫功能下降时,肿瘤发生的风险增加[10-11]。文献报道急性白血病、B细胞淋巴瘤等患者常见外周血T细胞数量及CD4+/CD8+比值下降,并伴免疫功能紊乱[12-13]。Treg的主要功能是抑制自身免疫应答,维持免疫平衡,避免过度的炎症反应和自身免疫性疾病的发生,在免疫系统中发挥重要的负向调控作用。在血液肿瘤中,Treg一方面可以通过抑制对肿瘤细胞的免疫反应来促进肿瘤生长;另一方面也可通过抑制炎症和防止可能导致肿瘤发展的自身免疫反应而发挥保护作用。研究发现,多种类型的血液肿瘤患者Treg数量呈现上升趋势,可能会导致肿瘤免疫逃逸的发生[14-15]。此外,一些淋巴细胞产生的细胞因子,如白细胞介素6、肿瘤坏死因子α等,在血液肿瘤患者中异常表达,进一步说明了机体免疫功能异常和血液肿瘤之间关系密切[16-18]。近年来,一些新型的免疫治疗策略也在血液肿瘤的诊疗中发挥日益重要的作用,例如采用免疫检查点抑制剂、嵌合抗原受体T细胞(CAR-T)治疗、双重特异性抗体治疗等[19-22],这些治疗手段主要是通过增强免疫细胞对肿瘤细胞的杀伤作用,来达到治疗目的。1.2 淋巴细胞亚群在血液肿瘤中的临床意义淋巴细胞亚群在血液肿瘤中的临床应用主要包括以下方面。(1)部分血液肿瘤的筛查。血液肿瘤包括多种类型,其中一些类型可表现为特定淋巴细胞亚群的增殖和分化异常,通过淋巴细胞亚群检测可以对这些类型的血液肿瘤进行初筛。如急性淋巴细胞白血病(ALL)、慢性淋巴细胞增殖性疾病(CLPD)等[23]。(2)肿瘤复发及转移预警及预后评估。Treg在多种血液肿瘤中比例增加,可以通过抑制免疫细胞杀伤作用来帮助肿瘤细胞逃脱免疫监视,并且与恶性程度、转移倾向、复发率等预后指标密切相关[24-26]。(3)合并感染风险预警。(4)造血干细胞移植治疗患者的免疫重建评估与移植物抗宿主病(GVHD)预防。Treg可以作为急性和慢性GVHD的生物标志物[27-29]。(5)CAR-T治疗患者的规范化管理和评估。(6)靶向药物、免疫抑制剂和化疗药物的疗效监测,治疗指导[30-31]。 2 淋巴细胞亚群检测的主要方法和结果报告 2.1 外周血淋巴细胞亚群检测的主要方法淋巴细胞亚群主要通过FCM进行检测。根据中华人民共和国卫生行业标准(WS/T 360-2011)《流式细胞术检测外周血淋巴细胞亚群指南》[32],FCM检测淋巴细胞亚群时,可以采用双平台法或单平台法。首选乙二胺四乙酸二钾(EDTA-K2)抗凝真空管进行外周静脉血标本采集,并在24 h内进行检测。送检时间超过30 h应该采用肝素钠或枸橼酸钠抗凝,可在室温下稳定保存至48 h,若用双平台法,应采用同一标本进行白细胞计数和分类,则应该选择EDTA-K2作为抗凝剂。若送检时间超过48 h,应该使用流式细胞检测专用的样本保存液或样本保存管,可稳定保存至14 d。TBNK检测推荐的单抗为CD45、CD3、CD4、CD8、CD19、CD16、CD56,Treg检测的单抗为CD4、CD25、CD3、CD127。CD3+T细胞标记为CD3+,CD4+T细胞标记为CD3+CD4+,CD8+T细胞标记为 CD3+CD8+,B细胞标记为CD3-CD19+,NK细胞标记为CD3-(CD16+CD56)+,Treg细胞的标记为CD3+CD4+CD25+FoxP3+或CD3+CD4+CD25+CD127low/-。T细胞表面CD127的低表达与T细胞质内FoxP3的高表达具有良好的相关性[33-35],且以CD127为标志进行检测方法明显优于以细胞质内FoxP3为标志的检测方法[36-38],因此也可以使用CD127替代FoxP3进行Treg细胞的分析。上机检测前应采用配套的标准微球对仪器进行全程质控。推荐每管获取淋巴细胞数应不小于10 000个,得到的检测数据可通过调整荧光补偿、圈门等将各种不同表型的淋巴细胞亚群区分开[39-41],进而得到各群细胞的相对比例及计算绝对数。推荐同时报告淋巴细胞亚群的百分比和绝对计数结果。2.2 外周血淋巴细胞亚群检测的结果报告通常应报告以下内容:CD3+T细胞、CD4+T细胞、CD8+T细胞、B细胞和NK细胞的相对计数(百分比)和绝对计数(绝对值)、CD4+/CD8+比值、Treg细胞占CD4+T细胞的百分比。2.2.1 外周血淋巴细胞亚群检测的参考区间近年来已有多篇文献发布了我国不同地区、年龄、民族健康人群的TBNK、Treg细胞参考区间[42-46]。在2023年2月中华医学会健康管理学分会发表的《TBNK淋巴细胞检测在健康管理中的应用专家共识》中公布了一项对我国九省(湖北、河南、广东、吉林、山东、山西、江苏、浙江、四川)20~60岁健康成人TBNK淋巴细胞参考区间的研究结果[45- 47],可供参考,见表1。在2017年一项研究中发布了健康成年人外周血Treg细胞参考区间[48],可供参考,见表2。由于Treg在多种疾病的临床治疗与疗效观察方面具有重要探讨价值,近年来许多国内实验室均报告了疾病观察组与健康对照组中外周血Treg细胞占CD4+T细胞的参考区间,如张宁等[49]报道了健康对照组参考区间为(4.52 ± 0.50)%,陈赛英等[50]报道了健康对照组参考区间为(6.85 ± 1.86)%,XU等[51]报道了健康成人的参考区间为(5.52 ~ 7.70)%,QIU等[52]报道了健康对照组参考区间为(5.70 ± 1.43)%。淋巴细胞亚群参考区间的建立受年龄、性别、种族、地域及仪器试剂等众多因素影响[47],建议有条件的实验室可以针对本地区、本实验室检测体系等建立自己的参考区间及评价体系。调查健康人群淋巴细胞亚群的参考范围,建立95%可信区间的参考值区间,应满足每组至少120例健康样本数量[53]。此外,鉴于人员、仪器、试剂、方法、环境等诸多变化因素,实验室应对已建立的参考区间定期进行验证,每次验证应不少于20例健康样本,分布在参考区间外的测定值应不超过10%[32, 53]。若分布在参考区间外的测定值超过10%,则需要重新验证或考虑实验室分析程序、人群差异等其他因素。2.2.2 外周血淋巴细胞亚群检测报告的审核和发布进行淋巴细胞亚群检测的实验室都应该参加国家卫生健康委员会或省市级临检中心组织的室间质评,从而保证本室检测结果的准确性。在检测患者样品前,实验室人员应确认仪器状态正常和室内质控在控。在报告结果时,实验室人员要审核数据采集阈值的设置、抗体的组合方案、与实验结果相关的所有设门等,以排除样本异常和实验操作导致的检测结果异常。实验室人员还应根据检测结果的内部关系初步判断结果的可靠性。例如,数据应满足:CD3+% + CD19+% + (CD16+CD56)+% ≈(100 ± 5)%;CD4+% +CD8+% ≈ CD3+% (变化范围为5%~10%)[32]。若不满足,则需充分检查,必要时重复实验,在排除仪器、样品、操作等问题后如实报告检测结果,并需要重点分析该样本中是否存在异常表型的淋巴细胞,并用该样本制作血涂片镜检及进一步进行免疫分型对异常细胞进行鉴定,并及时与临床进行沟通。目前,由于国内没有针对Treg细胞检测项目的室间质评,因此应进行实验室间比对。 3 淋巴细胞亚群检测在血液肿瘤患者中的应用 3.1 血液肿瘤的筛查当出现以下情况:(1)B或NK淋巴细胞显著增高;(2)CD3+CD4+CD8+T淋巴细胞或CD3+CD4-CD8-T淋巴细胞明显增高;(3)CD4/CD8比值大于10:1或小于1:10;(4)CD3+%+CD19+% +(CD16+CD56)+%明显大于或小于(100 ± 5)%、CD4+%+CD8+%明显大于或小于CD3+%(变化范围为5%~10%),在排除标本、仪器、设门、试剂及反应性改变等因素后,需要考虑标本中存在异常淋巴细胞,并结合临床进行血液肿瘤的筛查。血液肿瘤常见的淋巴细胞亚群改变见图1,血液肿瘤淋巴细胞亚群筛查与随访路径见图2。注:A表示T淋巴细胞群比例增高;B表示B淋巴细胞群比例增高;C表示NK细胞群比例增高;D、E表示同一患者T、B、NK三群淋巴细胞比例之和小于95%,存在不表达CD3、CD19、CD16和CD56的淋巴细胞;F表示CD4+T、CD8+T淋巴细胞群比例大致正常;G表示CD4+T淋巴细胞群比例降低,CD8+T淋巴细胞群比例增高;H表示CD4+T淋巴细胞群比例增高,CD8+T淋巴细胞群比例降低;I表示中CD4+CD8+T淋巴细胞群比例增高;J表示CD4-CD8-T淋巴细胞群比例增高。图1 血液肿瘤常见的淋巴细胞亚群改变注:A表示T淋巴细胞群比例增高;B表示B淋巴细胞群比例增高;C表示NK细胞群比例增高;D、E表示同一患者T、B、NK三群淋巴细胞比例之和小于95%,存在不表达CD3、CD19、CD16和CD56的淋巴细胞;F表示CD4+T、CD8+T淋巴细胞群比例大致正常;G表示CD4+T淋巴细胞群比例降低,CD8+T淋巴细胞群比例增高;H表示CD4+T淋巴细胞群比例增高,CD8+T淋巴细胞群比例降低;I表示中CD4+CD8+T淋巴细胞群比例增高;J表示CD4-CD8-T淋巴细胞群比例增高。注:MICM表示形态学、免疫学、细胞遗传学及分子生物学分型。图2 血液肿瘤淋巴细胞亚群筛查与随访路径3.2 血液肿瘤的复发、转移风险预警及预后评估当血液肿瘤患者外周血中出现CD4+和CD8T细胞减少,CD4+/CD8+比值降低,而Treg细胞明显增加时,提示肿瘤复发和转移的风险增加;CD3+、CD4+、CD8+T细胞的数量和比例与患者的完全缓解(CR)率、无复发生存期(RFS)和总生存期(OS)呈正相关,而Treg的数量和比例与CR率、RFS和OS呈负相关[54-58]。在急性髓系白血病(AML)患者中,NK细胞数量和比例与CR率、RFS、OS呈正相关[59],NK细胞数量减少的AML和多发性骨髓瘤(MM)可能有更差的预后[60-61]3.3 血液肿瘤合并感染风险预警感染是血液肿瘤患者的常见并发症[62],CD4+T淋巴细胞在免疫防御中发挥关键作用。当CD4+T淋巴细胞绝对计数<500个/μL时,血液肿瘤患者机会性感染风险会大幅升高[63]。CD4+T、CD8+T淋巴细胞数量低下的淋巴瘤患者,化疗后感染风险明显升高[64]。初诊时Treg细胞比例升高的血液肿瘤患者,其住院期间感染率明显增加[65]。3.4 造血干细胞移植后免疫重建监测及GVHD预防3.4.1 移植患者免疫重建监测造血干细胞移植(HSCT)后造血能力持久恢复与免疫系统功能调节密切相关,主要表现为免疫细胞数量的增加和细胞功能状态的恢复[66-67]。免疫重建受移植物来源、移植物数量与组分、预处理方案、胸腺功能等众多因素影响,但自体造血干细胞移植和异基因造血干细胞移植(allo-HSCT)患者外周血中TBNK、Treg细胞的重建规律基本相似。NK细胞恢复较快,一般移植后2~3周可恢复。CD3+CD8+T淋巴细胞一般移植后1~3月逐渐恢复,CD3+CD4+T淋巴细胞恢复通常需1年以上。CD3-CD19+B淋巴细胞移植后恢复时间不定,短至3个月,长至1年半以上。Treg细胞在移植早期通常比例非常低,移植晚期逐渐增多。3.4.2 移植患者GVHD预防GVHD是allo-HSCT患者需要面临的重要挑战。发生GVHD的患者,其疾病及移植相关死亡率大幅上升,尽早判断是否发生排异反应及抢先治疗是决定移植成败的关键。高炎症状态是GVHD的主要特点[68-69]。具有负调控炎症反应功能的Treg细胞随GVHD等级的增加呈下降趋势,有望成为预测急性GVHD(发生于移植后100 d内)和慢性GVHD(发生于移植100 d后)的特异性指标[70-71]。同时,植移后NK细胞迅速增加会促使炎症因子的大量分泌,从而促进急性GVHD发生[72-73]。因此allo-HSCT患者在早期植入阶段(输注后2~4周)、移植后早期阶段(输注后1~3月)、移植后晚期阶段(输注后3月以后)都建议行淋巴细胞亚群检测。3.5 CAR-T治疗患者的规范化管理和评估3.5.1 CAR-T细胞增殖监测CAR-T细胞免疫治疗目前已被用于治疗复发/难治性的血液肿瘤。定期监测CAR-T治疗患者体内的CAR-T细胞水平、肿瘤负荷、免疫功能(主要包括淋巴细胞亚群的比例和数量)和相关不良反应(细胞因子释放综合征、神经毒性等),是治疗后病情评估的重要手段[74-75]。患者回输CAR-T细胞后,可通过FCM监测外周血中CAR-T细胞的比例和数量,结果报告中一般包括总CAR-T细胞(占淋巴细胞)、CD4+CAR-T细胞(占T淋巴细胞)和CD8+CAR-T细胞(占T淋巴细胞)的比例和数量。有条件的实验室还可开展荧光定量聚合酶链反应法(qRT-PCR)监测CAR-T细胞增殖水平。多项临床试验数据显示,体内CAR‑T细胞增殖水平与疗效显著正相关[76-78]。3.5.2 淋巴细胞亚群监测淋巴亚群检测也被推荐与CAR-T细胞监测同时进行[75]。有研究通过检测患者CAR‑T细胞回输后第15天的外周血淋巴细胞水平,发现低水平的淋巴细胞数(血液肿瘤患者常伴有免疫功能失衡,细胞免疫功能往往处于免疫抑制状态,对突变细胞的识别和杀伤能力下降[94-95]。检测初诊时患者的淋巴细胞亚群,能有效判断患者免疫功能的初始状态。3.7.3 放化疗、免疫治疗及靶向治疗患者的淋巴细胞亚群监测与随访放化疗、免疫治疗及靶向治疗期间患者可呈周期性改变[96],可通过检测患者每个周期治疗前后的淋巴细胞亚群变化,来评估患者治疗期间免疫功能恢复情况及肿瘤复发和转移的风险。建议有条件的情况下,可在治疗结束后半年内每3个月跟踪检测,半年后每6个月进行随访。3.7.4 造血干细胞移植患者的淋巴细胞亚群监测与随访建议造血干细胞移植后患者的淋巴细胞亚群检测时间可在移植后第14天、第21天、1个月、2个月、3个月、6个月、1年、2年随访[97-101]。3.7.5 CAR-T治疗患者的淋巴细胞亚群监测与随访建议连续监测患者CAR-T细胞回输前1天、回输后第4天、第7天、第14天、第28天外周血淋巴细胞亚群变化情况,及治疗后2个月、3个月、6个月随访。见图3。图3 血液肿瘤淋巴细胞亚群检测与随访路径图 4 结语随着流式细胞术的广泛应用,用于免疫功能评价的淋巴细胞亚群检测在临床已广泛开展,通过TBNK、Treg这些指标,可以评估血液肿瘤患者免疫状况,为疾病诊断、分型,治疗方案的选择、化疗后感染预防,疾病转归等提供实验室依据,以及为血液肿瘤患者的个性化治疗提供参考。机体免疫功能是动态变化的,由于受年龄、药物、感染、营养、生理等众多因素的影响,存在较大的个体差异。不同疾病状态下淋巴细胞亚群检测结果也可能呈现出较大的差异,因此在参考范围的建立、报告结果解读等方面依然存在挑战。针对血液肿瘤患者,临床工作中需要建立患者个体化的淋巴细胞亚群基线水平,动态监测淋巴细胞亚群结果的变化趋势,并结合多种免疫功能检测指标,综合分析患者的免疫状态,为临床决策提供更加全面的参考。淋巴细胞亚群检测在血液肿瘤中具有重要的临床意义和广泛的应用前景,本共识的发布将有助于推动淋巴细胞亚群检测临床实践中的应用,促进血液肿瘤的诊断、治疗和预后评估水平的提高,期望能够为我国血液肿瘤的精准诊疗做出贡献。专家组组长:杨再林(重庆大学附属肿瘤医院)、武坤(昆明医科大学第一附属医院)、刘耀(重庆大学附属肿瘤医院)执笔人(按姓氏汉语拼音排列):陈双(重庆大学附属肿瘤医院)、程沈菊(昆明医科大学第一附属医院)、蒋亭亭(重庆大学附属肿瘤医院)、李轶勋(昆明医科大学第一附属医院)、刘耀(重庆大学附属肿瘤医院)、彭余(重庆大学附属肿瘤医院)、武坤(昆明医科大学第一附属医院)、杨再林(重庆大学附属肿瘤医院)专家组成员(按姓氏汉语拼音排列):陈曼(北京陆道培医院)、陈朴(复旦大学附属中山医院)、池沛冬(中山大学肿瘤防治中心)、蒋能刚(四川大学华西医院)、李力(南部战区总医院)、李珍(南方医科大学南方医院)、李国盛(山东大学齐鲁医院)、李智伟(新疆维吾尔自治区人民医院)、刘耀(重庆大学附属肿瘤医院)、刘艳荣(北京大学人民医院)、马骁(苏州大学附属第一医院)、毛霞(华中科技大学同济医学院附属同济医院)、倪万茂(浙江省人民医院)、冉隆荣(重庆大学附属肿瘤医院)、任方刚(山西医科大学第二医院)、王卉(河北燕达陆道培医院)、王慧君(中国医学科学院血液病医院)、王剑飚(上海交通大学附属瑞金医院)、翁香琴(上海交通大学附属瑞金医院)、吴丽娟(西部战区总医院)、吴雨洁(江苏省人民医院)、武坤(昆明医科大学第一附属医院)、徐翀(上海市临床检验中心)、杨军军(温州医科大学检验医学院)、杨顺娥(新疆医科大学附属肿瘤医院)、杨再林(重庆大学附属肿瘤医院)、岳保红(郑州大学第一附属医院)、张爱梅(中国科学技术大学附属第一医院/安徽省立医院)、张会来(天津医科大学肿瘤医院)、赵明宇(重庆大学附属肿瘤医院)、朱杰(大连医科大学附属第二医院)、朱莉(华中科技大学同济医学院附属同济医院)、朱明清(苏州大学附属第一医院)、朱明霞(北京大学第三医院)、郑金娥(华中科技大学同济医学院附属协和医院)、周辉(湖南省肿瘤医院)利益冲突声明所有作者声明无利益冲突

淋巴细胞微核率相关的方案

  • T淋巴细胞刺激增殖试剂盒全新升级!
    IPHASE/汇智和源全新升级T淋巴细胞增殖试剂盒,为T淋巴细胞(CD3+T细胞、CD4+T细胞、CD8+T细胞)体外刺激增殖提供简单、高效、便于操作的方法。从单细胞悬液中免疫分选出的高纯度淋巴细胞亚群在体外经信号分子特异性刺激,即可模拟体内淋巴细胞增殖过程,获得数量足够多的淋巴细胞,供细胞免疫研究领域后期使用。
  • 人淋巴细胞因子检测试剂盒
    人淋巴细胞因子检测试剂盒人淋巴细胞因子检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人淋巴细胞因子含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人淋巴细胞因子水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人淋巴细胞因子抗原、生物素化的人淋巴细胞因子抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人淋巴细胞因子呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 人抗淋巴细胞球蛋白(ALG)检测试剂盒
    人抗淋巴细胞球蛋白(ALG)检测试剂盒人抗淋巴细胞球蛋白(ALG)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人抗淋巴细胞球蛋白(ALG)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人抗淋巴细胞球蛋白(ALG)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人抗淋巴细胞球蛋白(ALG)抗原、生物素化的人抗淋巴细胞球蛋白(ALG)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人抗淋巴细胞球蛋白(ALG)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度

淋巴细胞微核率相关的论坛

  • 【转帖】第四种淋巴细胞—NKT细胞

    第四种淋巴细胞—NKT细胞 通常认为,构成机体免疫系统的淋巴细胞有三种细胞系组成,一是由胸腺产生的T细胞,二是由骨髓分化而来的产生抗体的B细胞,三是自然杀伤(NK)细胞。而新近发现存在第四种淋巴细胞—NKT细胞。1. NKT细胞的发现1986年,克隆成功了NKT细胞的特征性抗原受体基因。将其命名为Va14基因,与其他T细胞抗原受体的(TCR)基因不同,有其独特的结构特征。1987年美国国立卫生研究所的Fawlkes与瑞士的Budd分别领导的两个研究小组报告指出,胸腺细胞中的T细胞通常不能表达受体,仅有部分未成熟T细胞选择表达V-β8.2受体。随后的研究证明这种细胞不是T细胞,考虑是NK细胞的受体,这种细胞集团的数量极少,生理意义不明。1994年,这两个研究小组的研究人员发现,他们报道的细胞为同一细胞,从此NKT细胞的研究引起人们的广泛关注。T细胞识别的抗原是蛋白质,而NKT细胞是别的抗原是α-Gal-Cer即所谓的糖脂质,这是该免疫系统与通常的免疫系统重要的不同点。NKT细胞的分化与T细胞不同的是在胸腺形成前的胎生初期6.5日在胸腺外组织分化。NKT细胞与T细胞比较,机能处于不发达状态。T细胞分化为功能不同的Th1和Th2细胞群,Th1细胞产生INFγ及IL-2,引起迟发行过敏症等细胞性炎症。Th2细胞能产生IL-4和IL-10,参与变态反应及抗体产生等体液免疫反应。而NKT细胞不但能分泌Th1和Th2细胞因子,同时还具有与CD8+伤害性T细胞(cytotox-ic Tlymphocyte,CTL)相同的杀伤靶细胞作用。毫无疑问,NKT细胞在免疫调节系统中占有重要位置。NKT细胞与疾病可能有诸多关系,可能与自身免疫性疾病的发病机制、变态反应的调节、抗肿瘤作用、及抑制寄生虫感染等有关。2. NKT细胞的多样性分化NKT细胞具有T细胞和NK细胞细胞两重性质,既能表达Va14/Ja281特定的T细胞受体又能由CD1介导识别脂质抗原。NKT细胞的分化是否依赖胸腺尚有争议。根据其表达TCR等多种表面抗原的不同,提示NKT细胞存在两个以上细胞群。从CD4/8的表达看,可将其分为(1)CD4-NKT细胞,(2)CD8-NKT细胞,(3)CD4和CD8均不能表达的DN-NKT细胞。第一类的全部和第二类的半数是Va14/Ja281-T细胞。3.人类NKT细胞人末梢血中的DN-NKT细胞V区域,可高度表达Va24/JaQ(这与鼠的Va14/Ja281高度相似)及Vβ11(与鼠Vβ18高度相似)。这种TCR的组合表达可见于DN-NKT细胞和CD4+细胞。而未见于CD8+细胞。小鼠的CD1相当于人的CD1d的Va24/JaQ。此外,人末梢血中1~2%的T细胞能表达抑制性受体,即抑制型NK细胞受体(KIR),而Va24/JaQ+细胞则不能表达。它的NK相关分子是CD16、CD56或CD57,Va24/JaQ+细胞异不能表达这些分子。在小鼠中还可以看到Va24/Ja281+T细胞以外的NKT细胞。人类Va24/JaQ+细胞与KIR+T细胞能形成不同的亚群。且具有不同的功能。4. NKT细胞分化的胸腺依赖性这是目前存在争议的问题,可以肯定地说NKT细胞分化过程中胸腺是有作用的。NKT细胞多见于胸腺及脾脏以外的肝脏和骨髓种,胸腺缺损的小鼠与正常小鼠比较,NKT的分化并不少。将出生三日小鼠的胸腺摘除,虽然NKT细胞的分化显著受到抑制,但此时CD8+NKT细胞的分化未受到影响。由此认为CD8+NKT细胞在胸腺外分化的可能。5. NKT细胞产生细胞因子的意义 NKT细胞是指能够表达NKT细胞标志NKT1.1的T细胞,其机能具有T细胞和NKT细胞双重特征。NKT细胞在TCR和NKR介导下,产生大量的IL-4及INFγ,对肿瘤细胞有细胞伤害作用。 NKT细胞能表达T细胞的TCR与NK细胞的NKR-P1两种受体,特别是NKT细胞多数表达Va14TCR,识别CD1抗原,而NKR-P1识别各种糖链。 NKT细胞,特别是CD4-NKT细胞,对TCR刺激可产生大量IL-4及IFNγ,同时具有ThO型细胞因子产生能力。NKT细胞不但产生IL-4的主要细胞,而且强力产生IFNγ。IFNγ参与自身Th1诱导,具有极强的Th1诱导能力,从而是IL-2产生亢进。它同时还具有Th2细胞分化抑制功能。IL-12能诱导NKT细胞产生IFNγ。IL-12对TCR的刺激是IFNγ的产生显著亢进。综上所述,NKT细胞不但是IL-4和IFNγ的强力产生细胞,同时参与Th1/Th2分化的抑制,而这些作用都不是单纯的。 虽然NKT细胞能大量产生细胞因子,但仅在机体内保持这种功能。当初一度认为,NKT细胞只是IL-4的产生细胞,而不是Th2分化的必需细胞。并不认为在CD1缺损的小鼠中NKT细胞的分化和对TCR刺激使IL-4产生减少,且对Th2分化必需的IL-4及IgE的产生没有多大影响。但给小鼠投于α-GalCer可使NKT细胞活化,IL-4的产生诱导Th2的应答。有报告指出,同样投于α-GalCer,可使NKT细胞产生IFNγ而致IgE产生低下。由此可见,NKT细胞能产生IL-4与IFNγ两种功能相反的细胞因子。这种微妙的协调作用可能是NKT机能表达的重要特征。NKT细胞的活化通常伴有T细胞、B细胞及NK细胞的活化,这对NKT细胞活化后的免疫应答有较大影响。

  • FDA批准Gazyva用于治疗慢性淋巴细胞性白血病

    美国食品药品监督管理局(FDA)近日批准了Gazyva(obinutuzumab)与苯丁酸氮芥联用治疗初治型慢性淋巴细胞白血病(CLL)患者。CLL是一种缓慢加重的渐进性血液与骨髓系统疾病。根据美国国家癌症研究所估计,今年将有15680名美国人被确诊患有该疾病,4580人因CLL死亡。Gazyva有助于免疫系统的某些细胞攻击癌细胞,并且需要与另一种CLL治疗药物——苯丁酸氮芥合用。在对重症CLL患者的治疗过程中,Gazyva在安全性和有效性方面表现出显著改善,此外,FDA还授予此药优先审查和孤儿药地位。FDA药物评价研究中心血液/肿瘤部门主管,Richard Pazdur博士说:“FDA对Gazyva的批准意味着对CLL患者疗法的重要补充,同时也反映了突破性疗法认定的优势,此项认定使我们与企业共同合作,加快重要新药物的开发、评估和上市。”此次批准是基于一项涉及356名受试者的随机、开放性、多中心临床研究,评估了Gazyva-苯丁酸氮芥联用组和苯丁酸氮芥单用组的药效。结果表明,联用组患者的无进展生存期得到显著提高(23个月vs11.1个月)。联用组患者的最常见不良反应包括输液反应、白细胞减少(中性粒细胞减少症)、血小板水平降低(血小板减少症)、红细胞数目降低(贫血)、肌肉和骨骼疼痛、发热等。Gazyva的说明书中含有黑框警告,提示Gazyva与乙肝病毒的再活化及一种罕见病有关,该罕见病(进行性多灶性白质脑病)能损伤大脑白质中覆盖和保护神经的物质,这是此类药物(包括其它单克隆抗体)共有的已知风险。Gazyva由罗氏子公司基因泰克上市销售。转自:http://www.hfoom.com/industry/20131106/376.html

  • 增强光散射分辨率,促进多维流式细胞分析

    多维流式细胞仪可同时进行多参数测量,在特定空间内对细胞群进行分析。若要实现该多维空间的合理使用,每个特定参数需提供额外信息来识别细胞群,并确保其动态范围能够最大限度地加以利用。本研究就白细胞的光信号散射情况进行了详细说明,从而促进了多维流式细胞分析的开展。细胞制备技术的提升对获得高分辨率光散射信号至关重要,可以实现粒细胞、单核细胞、颗粒状和非颗粒状淋巴球的完全分离。对搜集前向散射光的角度进行了改进,以提升白细胞的区分度。尽管正交光散射信号能够区分颗粒状和非颗粒状淋巴细胞,但仍无法利用线性或对数函数的形式将分辨率和动态范围显示出来。而在正交光散射信号中应用多项式函数,则可将白细胞全部以高分辨率显示出来。关联前向和正交光散射信号可实现高分辨率光散射与非线性显示的结合,使细胞群呈现等距分布状态。使用这种方式,可将外周血中性粒细胞、嗜酸细胞、嗜碱粒细胞、单核细胞、颗粒状和非颗粒状淋巴细胞等都显示出来,占据与正交和前向光散射相关的不同位置。出人意料的是,嗜碱粒细胞是处在了颗粒状淋巴和单核细胞附近而非中性和嗜酸性粒细胞。流式细胞术中的人体白细胞光散射特性主要应用于区分淋巴细胞、单核细胞和粒细胞。前向光散射信号与细胞的大小和折光率有关,而正交光散射信号则与细胞的粒度有关。一项对正交光散射信号更进一步的分析显示出了淋巴细胞成分的差异,即非颗粒状淋巴细胞的信号比颗粒状的要低。此外,该方法还显示了白血球的正交光散射信号在不同疾病状态下的变化情况。高分辨率光散射要在最佳角度收集散射参数,并对散射光的收集光路进行优化。改进细胞制备方法对最大限度地实现对细胞群的分离至关重要。改变制备流程可能导致细胞群分辨率的提高或降低。通过光散射,可从测量中排除受损细胞和无核细胞的干扰,从而提高细胞群的分辨率。正交光散射信号的动态范围不允许在相同线性尺度上同时观察淋巴细胞群和中性粒细胞。本研究提供了一种新方法,通过对正交光散射信号进行数字信号处理转换,实现了白细胞群在光散射显示中更加均衡的分布。这种转换提升了淋巴细胞分辨率,实现了细胞的可视化,而动态范围的确定对中性粒细胞的观察也十分重要。因此,重新对细胞群在多维空间进行定位可使细胞群在制备过程中实现完美分离。

淋巴细胞微核率相关的资料

淋巴细胞微核率相关的仪器

  • 默克密理博秉承一贯的创新理念,突破流式研发的思维定式,带来了革命性创新一代Muse&trade 智能触控细胞分析仪。内置Pad版触屏式电脑,结合全面的预置细胞分析常规实验方案,为您开创前所未有的流式操作新体验。您只需动动手指,即可实现包括:细胞计数,细胞活性,细胞周期,细胞凋亡等在内的细胞分析常规实验。分分钟让您体验悦动指尖的细胞分析艺术。 除此之外,默克密理博还将为Muse&trade 平台不断开发更多细胞分析的预置实验方案,近期8个预置实验方案即将推出:涉及Caspase 凋亡通路、线粒体损伤、免疫分型、淋巴细胞活力分析、细胞信号通路、DNA损伤等多个研究应用领域。用户将全部免费获得预置实验方案的软件升级。申请试用 | 索取MUSE资料 | 询价 更多详情,请点击此处 默克密理博:新流式,新思维 &mdash &mdash 全新的流式平台,全新的学术思维
    留言咨询
  • 迅数MCN系列红细胞微核智能分析系统专为遗传毒理大数据设计,适用Giemsa染色的哺乳动物骨髓或外周血红细胞微核试验。通过对嗜多染红细胞(PCE)的智能学习,采用随机共振技术,几十秒即可从上百张混有各类细胞的显微影像中抓取2000个PCE细胞并识别微核,自动计算含微核细胞率。显微细胞图像获取 显微图像质量是微核识别精度的保证。高分辨率平场消色差油镜,大面阵高灵敏度CCD,细腻展现各类细胞色泽、轮廓、核质,确保每个视野获得较多的细胞。 自适应随机共振技术 微核试验染色玻片中细胞种类多,其中的“正染红细胞”、“嗜多染细胞”颜色浅,与背景色接近,传统的图像分割、颜色提取技术很难分辨。通过随机共振提高细胞弱色信号强度,再由互信息熵通过双稳态系统输出端处所获得的信息量,实现对弱色细胞的识别和特征提取。 这里,表示是细胞弱色以模式出现的概率,是系统在预先设置的弱色信号的作用下,系统响应以模式出现的条件概率。迅数“随机共振_弱细胞识别系统”构成自动计算嗜多染红细胞在总红细胞中的比例 典型红细胞智能学习记忆,消除染色背景、杂细胞(淋巴细胞、粒细胞等)干扰 分离、提取正染红细胞(图1)、嗜多染红细胞(图2),自动计算两者比例高效微核细胞识别 利用微核的典型特征:嗜色性与核质一致、圆形、光滑、直径为红细胞的1/20-1/5,对已提取的1000-2000个“嗜多染红细胞”快速扫描,找出含微核细胞,并自动计算含微核细胞率。方便快捷的回检验证系统 系统自动识别、提取的PCE、NCE、含微核PCE列阵细胞, 允许用户追溯其来源、图像坐标并放大观察,轻松修正。显微测量、细胞计数 数字测微尺(直线、弧线、曲线、角度、面积)直观测出 显微数据;多功能颗粒计数模块,可用于多孔板克隆计数、 显微细胞总数自动统计。用于彗星参数的测量模糊图像清晰化 自适应增强、边缘锐化、背景平整、滤波、边缘检测、形态学运算等27种图像处理功能,使得更清楚地展现染色体核形、更细微观察染色体数目和结构的改变。详细配置和技术参数,请来电咨询。
    留言咨询
  • MCN S3红细胞微核智能图像分析系统由奥林巴斯CX-31显微镜、显微相机、红细胞微核分析软件、MIC图像分析软件及计算机系统构成,为遗传毒理研究提供完整的显微解决方案。显微成像系统数字成像系统是由配置UIS2无限远光学系统及PLCN平场消色差物镜的奥林巴斯CX-31显微镜、高灵敏显微相机(SONY 2/3英寸CCD芯片)构成。在100倍油镜下,通过C型转接口,将光学图像清晰展现为数字影像,真实还原吉姆萨染色的各类细胞色彩。高效、快速通过对PCE、NCE细胞的深度学习,随机共振处理图像,二十秒得出PCE在总红细胞中占比;六十秒完成从200张不同视野的显微照片中抓取2000个PCE细胞,自动识别、计算微核细胞率,大幅提高镜检效率。软件“化零为整”微核试验是检测某一因子是否对遗传物质产生损伤的实验。根据药剂浓度、种类,实验分为五个组别,分别是低剂量组、中剂量组、高剂量组、阴性/溶媒对照组和阳性对照组,每个组别五只雌鼠和五只雄鼠,总共50组子实验。实验内容繁复,数据复杂,迅数红细胞微核智能分析系统将实验组别化零为整,统一在一个工程文件下,系统管理各组别实验操作流程,使得分析结果一目了然,充分展现了软件的系统性。 自适应随机共振技术通过随机共振提高细胞弱色信号强度,再由互信息熵通过双稳态系统输出端处所获得的信息量,实现对弱色细胞的识别和特征提取。消除染色背景、杂细胞(淋巴细胞、粒细胞等)干扰,自动计算嗜多染红细胞在总红细胞中的比例。从上百张显微图像中快速抓取含微核细胞数据安全与审计追踪1. 多账户管理:由管理员全面管理操作员账号、密码、账户冻结等,避免多个操作员之间的数据泄露或篡改。2. 采用审计追踪技术,由系统内部记录:人员身份、每个操作员的操作流程,包括时间、样本、统计结果有无修改、历史数据有无删除等所有历史档案。显微测量数字测微尺(直线、弧线、曲线、角度、面积)直观测出 显微数据细胞计数多功能计数模块,可用于多孔板克隆计数、显微细胞自动计数。 模糊图像清晰化自适应增强、边缘锐化、背景平整、滤波、边缘检测、形态学运算等27种图像处理功能,使得更清楚地展现染色体核形、更细微观察染色体数目和结构的改变。 仪器主要功能与技术指标一、系统组成红细胞微核智能分析软件;MIC分析软件;加密器1个联想一体电脑(全国联保):双核CPU/4G内存/1T硬盘/21.5"彩显,Windows 7或Windows 10专业显微摄像头、C型转接口奥林巴斯 CX-31显微镜 一台 二、显微镜参数光学系统:UIS2光学系统(无限远校正系统);观察筒:镜筒倾角为30度, 瞳间距48-75mm, 光路选择(50双目/50摄像)调焦:载物台垂直运动由滚柱(齿条—小齿轮)机构导向, 采用粗微同轴旋钮, 粗调行程每一圈为36.8mm, 总行程为25mm, 微调行程为每圈0.2mm, 具备粗调限位器和张力调整环 ;聚光镜:阿贝聚光镜, 内置日光滤色片, 数值孔径1.25(浸油时), 内装式孔径光阑;照明系统:内置透射光柯勒照明, 6V30W卤素灯 100-120V/220-240Vg 0.85/0.45A 50/60Hz;物镜转盘:转换器向内侧倾斜的固定4孔物镜转盘;载物台尺寸:188×134mm, 活动范围为X轴向76×Y轴向50mm, 双片标本夹;目镜:视场数F.N. 20物镜: 平场消色差 4× N.A.0.1, W.D. 18.5mm10× N.A.0.25 W.D. 10.5mm 40× N.A.0.65 W.D. 0.56mm100× N.A.1.25 W.D. 0.13mm三、CCD摄像头参数科研级彩色CCD大面阵相机传感器型号/尺寸:索尼ExView HAD CCD芯片 1.4M/ICX285AQ(C) ;2/3英寸像素:6.45X6.45μmG光灵敏度、暗电流:1240mv with 1/30s ;10mv with 1/30sFPS/分辨率:15@1360x1024曝光时间:0.12ms~240s数据接口:USB2.0 四、微核分析软件1. 快速图像采集CCD连接:实现超大视场显微图像实时动态观察,减少图片拍摄量。CCD调节:具有调节曝光时间,白平衡功能CCD拍摄:显微图像获取,自动保存批量图片2. 细胞特征学习正染红细胞学习:随机选择典型成熟红细胞(NCE),智能学习、记忆细胞特征嗜多染红细胞学习:随机选择典型不成熟红细胞(PCE), 智能学习、记忆细胞特征修正所选细胞:具撤销、清空重选功能3. 试验参数设置:总红细胞观察数、嗜多染红细胞观察数4. 分析参数调节:共振总强度、嗜染扩散度、微核灵敏度5. PCE、NCE分析:20秒完成自动识别、抓取PCE、NCE;自动计算PCE/RBC6. 微核分析:60秒完成抓取PCE、智能识别含微核细胞;自动计算微核细胞率7. 信息回溯:检测出的PCE细胞列阵被数字化定位,记录图片与坐标,可回访验证细胞识别精度8. 数据管理:电子记录:记录操作员的实验数据,保证数据的可访问性、完整性;报告输出:“PDF” 或“EXCEL”格式输出,输出报告数据与电子记录完全一致,不能更改。账户管理:管理员、操作员分级管理,经许可的人员才能登陆;管理员全面管理操作员账号、密码、账户冻结等。审计追踪:记录人员身份、每个操作员的操作流程,包括时间、样本、统计结果有无修改、历史数据有无删除等所有历史档案。 五、MIC显微分析软件1. 图像显示、转换图像显示:实时动态观察,随时捕捉任意视野图像图像观察:具有旋转、放大、缩小、镜像转换、局部观察功能图像编辑:具有对图像任意区域剪切、复制、粘贴及文字输入等功能2. 显微图像处理自适应增强:通过对原图像进行与其特征匹配的分辨增强处理,使图像更清晰,边缘更明显,以便进行图像细微结构的观察与识别。图像调整:图像亮度、对比度、饱和度、RGB三色任意调节,灰度图、负相图的转换图像补偿:通过线性补偿,对数补偿,贝尔补偿等多种数学方法对图像的失真部分进行补偿,使图像更加清晰。图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰。图像平整:通过图像平整处理,使图像背景均匀。图像滤波:高斯滤波、低通滤波、中值滤波等6种滤波方式有效提高图像清晰度。边缘检测:两种检测方式、三种算子结合多种检测选项更精确地提取图像轮廓。形态学处理:腐蚀、膨胀、开启、闭合等非线性数学形态学处理。3. 目标测量标 定:具有对系统在线标定功能,实现精确测量(系统内置默认标定值)测量功能:对颗粒直径、长度、弧度、角度、任意曲线、面积等的在线测量4. 颗粒统计自动统计:自动颗粒计数,并显示每个颗粒的面积、周长、直径、圆度等形态参数区域统计:可选择长方形、圆形、伞形等任意形状区域进行统计直径分类统计:设置直径范围,统计特定大小的颗粒颜色识别统计:根据色度、亮度、饱和度筛选特定颗粒鼠标点击统计:鼠标点击添加或删除颗粒,方便、快捷粘连分割处理:根据用户需求可自动或手动分割相互粘连的颗粒多种统计算法:采用多种分割算法,适合不同背景的颗粒统计多样本统计:对多张显微图像的综合统计参数自动换算:根据统计区域面积、样本稀释度,实现自动换算5. 绘图与标注绘图:对打开的图像可根据需要,绘制直线、矩形、圆形、以及任意曲线文字编辑:对打开的图像进行文字编辑标注:可方便的进行直线和角度的标注6. 报表打印 在线编辑:提供报告编写模板、文本输入、打印预览 报表打印:图片、统计数据自动打印
    留言咨询

淋巴细胞微核率相关的耗材

  • 科研用BD Vacutainer CPT 单个核细胞准备管362753
    BD Vacutainer CPT 单个核细胞准备管标准化一步分离单个核细胞-淋巴细胞免疫功能检测-HLA检测-残留白血病基因检测
  • T细胞分离尼龙毛柱
    尼龙毛柱是免疫学中一种用于分离T细胞的分离柱,在研究体内及体外的免疫系统时,分离淋巴细胞群是一个关键步骤。T细胞尼龙毛分离法利用了尼龙毛对B细胞的亲和力,从而使T细胞在没有严重损伤的情况下达到的足够的纯度。该方法不像流式和磁珠费用昂贵,而且操作简便,所需要的条件也不高,是一种非常实用的方法。 美国Polysciences原装,每盒10个柱子,10ml的柱子预装500mg尼龙毛(已灭菌)。每个柱子处理的细胞量1-2 x 108 。 订购信息:货号产品名称规格PS-21759尼龙毛柱(预装好)Kit
  • 细胞趋化载玻片 80326 80322 80328
    趋化性(Chemotaxis,亦被称为化学趋向性)是趋向性的一种,指身体细胞、细菌及其他单细胞、多细胞生物依据环境中某些化学物质而趋向的运动。这对细菌寻找食物(如葡萄糖)十分重要,细菌以此趋进有较高食物分子浓度的地方,或远离有毒(如苯酚)的地方。在多细胞生物中,趋化性对其发展和其他正常功能一样不可或缺。正趋化性指趋向较高化学物质浓度的运动,而负趋化性则相反。 μ-Slide Chemotaxis 3D适于分析在基质胶中快速或缓慢迁移的非贴壁细胞的趋化性反应,例如淋巴细胞,在间质流的肿瘤细胞和内皮细胞的化学趋向性。? 可进行贴壁或非贴壁细胞的长时间细胞趋化性实验;? 3D的环境更好的模拟体内条件;? 趋化性浓度梯度在基质胶中可快速建立;? 线性浓度梯度可维持长达48小时;? 可于同一玻片上同时进行三组平行对比实验;? 可进行细胞实时成像观察;? 实验可重复性 基本原理: 搭配微量分注器使用于两侧60 μL储液槽中制造出化学物质的线性浓度梯度,此时嵌入在储液槽中间观察管道基质胶中的细胞即处于一稳定的线性浓度梯度培养环境中。实验流程: 应用:? 中性粒细胞,淋巴细胞和单核细胞的趋化性试验;? 肿瘤细胞和内皮细胞在ECM胶中的3D趋化性试验;? 快速或缓慢迁移细胞的趋化性试验;? Cell-to-cell趋化性试验(侵袭试验) 技术特征:? Chamber的几何特征适于3D胶中的细胞;? 可于同一玻片上同时进行三组平行实验;? 即时可用,不需进行组装; ? 有字母和数字标记的小室和储液槽实验步骤 1 ) 实验准备 2)显微视频观察3 ) 数据结果分析 有配套的数据分析可供选择:趋化性成像分析–WimTaxis基于网页的定量成像分析软件,可在相差显微镜中自动跟踪非标记细胞的3D趋化性试验,快速得到结果。 货号产品名称规格(个/盒)80326μ-Slide 细胞趋化载玻片,ibiTreat底部处理1080322μ-Slide 细胞趋化载玻片,Collagen IV底部处理1080328 细胞趋化可粘载玻片10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制