国家纳米科学中心

仪器信息网国家纳米科学中心专题为您整合国家纳米科学中心相关的最新文章,在国家纳米科学中心专题,您不仅可以免费浏览国家纳米科学中心的资讯, 同时您还可以浏览国家纳米科学中心的相关资料、解决方案,参与社区国家纳米科学中心话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

国家纳米科学中心相关的资讯

  • 国家纳米科学中心建设项目通过验收
    9月25日,国家纳米科学中心建设项目顺利通过由国家发改委委托中科院和教育部组织的验收。   建设国家纳米科学中心是国务院为强化科技前沿布局,抢占未来产业发展制高点做出的战略部署。按照有关批复要求,纳米中心按指标、按概算,高质量地完成了建设任务。基本建设任务全面完成,资金使用合理规范,仪器设备运行良好,档案齐全管理规范。按照国家发展和改革委批复的“边建设边运行”原则,纳米中心围绕纳米科技前沿和国家战略需求,组织和承担国家重大纳米科技项目,在纳米基础研究和重大应用、公共技术平台和基础科研条件建设、纳米标准的研究和制定、国内外学术交流与合作、人才队伍与体制机制建设等方面取得了显著成效。   当天上午,验收会议在国家纳米科学中心隆重举行,验收委员会由国家发改委、教育部、科技部、北京市、国家自然科学基金委、中科院等有关单位的相关领导和纳米领域的专家33人组成,北京大学、清华大学和纳米中心科研人员代表等100余人参加了会议。中国科学院副院长詹文龙首先致辞,会议由中科院基础局局长刘鸣华和计划财务局局长孔力共同主持。   验收会现场   经过认真审议项目建设总结报告和实地考察,验收委员会认为:经过6年来的建设,国家纳米科学中心圆满完成了全部建设任务,发展目标明确,体制机制新颖,科技布局合理,管理科学规范,已逐步成为我国纳米科技创新的重要开放平台、研究中心和人才培养基地,在我国纳米科技发展中发挥了骨干引领和示范带动作用。   中科院常务副院长白春礼致辞   中科院常务副院长白春礼代表中科院对国家纳米科学中心顺利通过验收表示祝贺,对科学家和项目建设人员表示感谢,并对长期支持中科院工作的各有关单位和部门表示感谢。   白春礼指出,纳米中心是中科院与教育部共建,与北京大学和清华大学共管,旨在交叉共享的创新单元。纳米中心认真贯彻落实国家发改委“边建设、边运行”的方针,建设期间,抓住机遇,不断改善科研工作条件。园区从无到有(现园区面积2万多平方米),科研和办公场所先后经历了从地下室、到平房、再到现代化办公大楼的跨跃,面积也从最初计划的1.38万平方米,扩展到目前的2.49万平方米,并且还留有未来发展的空间。纳米中心在进行基本建设同时,积极承担各类科技项目近200项,并取得了一批原创性的工作。特别是在纳米标准制定方面发挥了核心和引领作用,使我国在国际纳米标准领域迅速成为主导国家之一。在国内外合作、队伍建设、人才培养、以及创新文化建设等方面也取得了重要的进展。   白春礼强调,建设国家纳米科学中心是国务院为强化科技前沿布局,抢占未来产业发展制高点做出的战略部署。中科院在近期制定的“十二五”规划中,已把纳米科技列入重点支持的创新领域之一,将进一步有效集成和优化整合资源,促进纳米科技的原始创新和产业化应用,期待各部委和北京市的领导和专家继续对纳米中心的后续建设和发展给予支持和帮助。希望中科院和教育部共同努力,把纳米中心建设成为具有国际先进水平的、面向国内外开放的纳米科学研究公共技术平台和研究基地,成为纳米科技领域国际交流与合作的中心和高级人才培养基地。在国家发展战略指导下,通过“创新2020”规划的实施,希望纳米中心进一步加强科技目标凝练,进一步加强学科交叉融合,进一步加强中科院与北大、清华的联合与合作,力争为我国纳米科技自主创新能力做出新的更大的贡献。   国家发改委綦成元司长在讲话中提出,发改委2004年批复由中科院和教育部共建的国家纳米科学中心,为纳米科学技术研究提供了一个公共平台,促进了我国多学科交叉的前沿研究和高新技术的研发。希望国家纳米科学中心继续发扬创新精神,加强与国内外高校和科研机构的合作,为广大纳米科技工作者创造良好的科研环境,尽快发展成为具有国际先进水平的综合性多学科交叉研究中心,实现基础前沿研究和高技术发展的新突破,在促进我国纳米科技发展上作出贡献。   验收委员会一致同意通过国家纳米科学中心建设项目验收,建议国家相关部门继续支持纳米中心建设与发展。   北京市委常委赵凤桐,中科院纪检组组长、党组成员李志刚,中科院秘书长邓麦村、中国科学技术大学校长侯建国等出席验收会议。   北京市委常委赵凤桐出席会议      中科院副院长詹文龙出席会议并致辞      中科院纪检组长、党组成员李志刚出席会议      中科院秘书长邓麦村(左)、中国科学技术大学校长侯建国出席会议
  • 国家纳米中心携手《科学》杂志发布十大前沿纳米科技难题
    11月24日,国家纳米科学中心携手《科学》杂志向全球发布了十大前沿纳米科技难题,分别是:1.是否可以构建涵盖量子和宏观物理特性的纳米理论,进而能可靠地预测材料在纳米尺度的特性?2.纳米材料的安全性与哪些特性有关?在不同的环境中如何实现对其安全性的有效调节?3.纳米科学如何助力生物学发展?4.纳米技术将为医疗技术带来怎样的变革?5.如何借助可视化技术研究纳米材料的表面和界面?6.纳米技术如何影响不同类型催化剂的制备?7.如何实现原子精度制造的大尺寸化?8.纳米技术将如何提升算力进而助推光电器件的发展?9.纳米技术会对电子行业发展产生哪些影响,未来电子器件的能耗极限在哪里?10. 纳米技术如何助力全球可持续发展?十大前沿纳米科技难题旨在为全球纳米科技领域的科学研究提供指引,为探索纳米科技的知识边界、挖掘纳米科技潜能带来新的启迪;涵盖了从基础理论到前沿应用的纳米理论、纳米安全性、纳米催化、纳米生物、纳米医药、原子精准制造、极限测量及纳米科技对光电技术、电子器件和全球可持续发展的支撑与推动作用等十个纳米科技研究领域。 2023年4月底,国家纳米中心联合《科学》杂志开启了前沿纳米科技难题的全球征集工作。该项工作的目的是深入研究和分析目前纳米科技发展面对的关键问题,国内外纳米科技的发展现状及其在学科支撑、科技进步、社会发展和人类生活改善等方面产生的影响,进一步推动纳米科技的发展,得到了来自中国、美国、加拿大、德国、澳大利亚、新加坡、韩国等二十多个国家从事纳米科技研究的知名科学家和青年学者的积极反馈与响应。本次发布的十大前沿纳米科技问题结合当前国际前沿研究、未来科技发展和人类共同需求,对进一步激发纳米科技工作者的好奇心和自由探索的热情,引领未来纳米科技创新发展新趋势,集中力量攻克纳米科技难题,推动人类进步与社会的可持续发展具有重要意义。《科学》杂志曾于2005年和2021年两次面向全球发布“125个科学问题”,激发了全球科研工作者对未来科技发展的热烈讨论与思考。2022年,“纳米科学与工程”被国务院学位委员会和教育部列为一级学科,人才培养体系和职业教育体系更加完善。纳米科技已成为集交叉性、引领性和支撑性为一体的前沿研究领域。
  • 国家纳米科学中心2000万仪器大单公布
    2013年07月22日,国家纳米科学中心MOCVD纳米材料生长系统(GaN)、激光共聚焦显微镜和热化学气相沉积系统采购项目中标结果公布。   采购人名称:国家纳米科学中心 采购代理机构全称:东方国际招标有限责任公司   采购项目名称:国家纳米科学中心MOCVD纳米材料生长系统(GaN)、激光共聚焦显微镜和热化学气相沉积系统采购项目 招标编号:OITC-G13026280   定标日期:2013年7月22日 招标公告日期:2013年6月27日   中标结果:   包号 设备名称 中标供应商名称 中标金额   1、MOCVD纳米材料生长系统(GaN) AIXTRON LTD 美元1130000.00   2、激光共聚焦显微镜 徕卡仪器有限公司 美元300000.00   3、热化学气相沉积系统 美国汇杰国际公司 美元301000.00   评标委员会成员名单:何其华、戴琳、刘载文、田佩瑶、潘曹峰(包1)、刘宏(包2)、韩昌报(包3)   2013年06月28日,国家纳米科学中心小角X射线散射结构分析仪采购项目中标结果公布。   采购人名称:国家纳米科学中心 采购代理机构全称:东方国际招标有限责任公司   采购项目名称:国家纳米科学中心小角X射线散射结构分析仪采购项目 招标编号:OITC-G13022244   定标日期:2013年6月27日 招标公告日期:2013年6月5日   中标结果:   包号 设备名称 中标供应商名称 中标金额   1、小角X射线散射结构分析仪 北京优纳特科技有限公司 EUR340,000.00   评标委员会成员名单:李银太、张铭、张凤兰、董书魁、魏志祥   2013年04月18日,国家纳米科学中心圆二色光谱测量系统采购项目中标结果公布。   采购人名称:国家纳米科学中心 采购代理机构全称:东方国际招标有限责任公司   采购项目名称:国家纳米科学中心圆二色光谱测量系统采购项目 招标编号:OITC-G13022056   定标日期:2013年4月18日 招标公告日期:2013年3月4日   中标结果:   包号 设备名称 中标供应商名称 中标金额   1、圆二色光谱测量系统 北京东方诺贝科技发展有限公司 日元49,300,000.00   评标委员会成员名单:汤宁、奚文龙、吴金凤、闫树刚、唐智勇   2013年03月11日,国家纳米科学中心四极杆串联静电场轨道阱傅立叶变换质谱采购项目中标结果公布。   采购人名称:国家纳米科学中心 采购代理机构全称:东方国际招标有限责任公司   采购项目名称:国家纳米科学中心四极杆串联静电场轨道阱傅立叶变换质谱采购项目 招标编号:OITC-G13022033   定标日期:2013年3月8日 招标公告日期:2013年2月5日   中标结果:   包号 设备名称 中标供应商名称 中标金额   1、四极杆串联静电场轨道阱傅立叶变换质谱 赛默飞世尔科技(中国)有限公司 USD598,000.00   评标委员会成员名单:邢辉、牛荣华、熊少祥、李亚凤、方巧君

国家纳米科学中心相关的方案

  • CEM微波合成技术为纳米科学研究者提供更佳的研究平台
    培安公司版权所有 未经许可 不得复制 纳米科学研究已经发展多年了, 目前仍然是较新的科技领域. 随着该领域的不断发展, 纳米材料应用非常广泛,其中包括显示装置,电伏装置,固态照明及生物医学方面的应用。在纳米材料的合成过程中,其中一个难题就是控制晶体生长的热动力学参数,关键就在于把握好”成核理论”。现在研究者可以透过微波能量的应用,溶剂和反应物的选择,从原子水平控制结晶成长过程。 微波能量可以均匀的把热能分布在分子上,更重要的是,微波可以迅速的对反应物加热。 因为化学反应的热量控制会直接影响到结晶成长,所以微波的”瞬时加热”及”瞬时停止”特性使研究员能够更直接地掌握结晶的成长速度。因为微波本身的特性,利用微波能量合成纳米材料是非常有效的方法。
  • 丁黎明教授自然干燥法成功制出效率23.28%钙钛矿太阳能电池
    中國国家纳米科学中心丁黎明教授团队利用自然干燥法成功制备高效钙钛矿太阳能电池。通过溶液互扩散制备组分梯度铅卤化物薄膜,高通量筛选适合自然干燥的组分。优化后的铅卤化物锂离子电池效率达23.28%,打破自然干燥法效率纪录。
  • 扫描电镜在纳米测量中的成象误差
    本文从扫描电镜二次电子像成像原理出发,分析用扫描电镜测量纳米尺度时可能出现的成像误差。重点分析了《成份边界的成像误差》,并提出了减小成份边界成像误差的方法。分析了《台阶的成像误差》也提出了减小台阶成像误差的方法。同时提请纳米测量者注意《渐变边界的成像误差》。在讨论中提出:在纳米测量中,应尽量避免用边界作为测量的标记点或标记线;纳米标准器具,更应避免用边界作为标记点或标记线;最好用成份细线的中心点或中心线作为标记点或标记线;其次是用小颗粒的中心点,细刻线的中心线作为标记点或标记线。为研究纳米标准器具提出了技术方向。

国家纳米科学中心相关的论坛

  • 国家纳米科学中心在巯基萘酚自组装单分子膜的二维同分异构现象研究方面取得进展

    国家纳米科学中心在巯基萘酚自组装单分子膜的二维同分异构现象研究方面取得进展

    [img]http://ng1.17img.cn/bbsfiles/images/2006/09/200609240957_27637_1627011_3.jpg[/img] 分子电子学是当今纳米科技领域的研究热点之一。在通常情况下,具有共轭结构的巯基多芳环有机化合物是分子电子学研究的首选材料。通过强的Au-S相互作用,这些分子被发现能够在金表面上形成一层单层。但是,迄今为止,这些分子在表面的吸附构像问题仍然悬而未决。这也是分子电子学研究中必须首先加以解决的基本问题之一。国家纳米科学中心江鹏副研究员与Denis Fichou领导的法国原子能委员会(CEA)、法国国家科研中心、巴黎第六大学联合研究小组合作,对巯基萘酚自组装单分子膜在Au(111)表面的自然组装行为进行了STM高分辨成像研究,首次揭示了巯基萘酚分子在表面存在旋转同分异构现象。由于这一现象所导致的两种共存的有序超晶格结构被清晰地观察到。这一研究发现对分子电子学的研究具有十分重要的意义。该项研究成果被发表在最新一期出版的美国化学会志(J. AM. CHEM. SOC. 2006, 128, 12390-12391 )上。J. AM. CHEM. SOC. 评委给予本项研究高度的评价。他们认为这样一个研究解决了具有简单结构的巯基多芳环有机化合物在金表面的构像问题,为进一步的分子电学特性的研究铺平了道路。 该项研究工作得到中国科学院-法国原子能委员会双边合作计划、国家纳米科学中心以及归国留学人员启动基金的支持。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=27638]JACS 128 12390.pdf[/url]

  • 【分享】B国家纳米科技指导协调委员会首席科学家——白春礼

    【分享】B国家纳米科技指导协调委员会首席科学家——白春礼

    [img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704031249_47637_1627260_3.jpg[/img]白春礼,1953年9月出生。1978年北京大学化学系毕业,1981年获中国科学院硕士学位,1985年获博士学位。现任中国科学院副院长、中国科协副主席。中国科学院院士、第三世界科学院院士。国家纳米科技指导协调委员会首席科学家、中国科学院纳米中心学术委员会主任。近年来,在从事纳米科技研究的同时,白春礼院士积极推动着我国纳米科技事业的 发展,参与国家纳米科技发展规划的制定,并积极推进国内外纳米科技领域的交流与合作。他作为纳米科技领域有影响的代表人物,积极推动社会对纳米科技内涵的全面理解,促进纳米科技研究与产业化在我国的健康发展。获国家专利5项。2002年度评为中国十大科技前沿人物。由于其在纳米科技领域研究和推动国际合作方面的突出贡献,被英国SCI授予国际奖章;2003年由国家主席胡锦涛授予第三世界科学院化学讲演奖。

  • 2005年度国家自然科学基金委员会专项“纳米科技平台上纳米材料和器件的若干基础研究”研究课题申请指南

    2005年度国家自然科学基金委员会专项“纳米科技平台上纳米材料和器件的若干基础研究”研究课题申请指南 一、总体目标本专项的设立旨在充分利用国家纳米科技平台,实现数据和研究设备的共享;强化国家自然科学基金委员会(以下简称自然科学基金会)“纳米科技基础研究”重大研究计划整体布局的集成,推动学科交叉和合作研究;促进纳米科技的稳定健康发展,提升我国在纳米材料和纳米器件基础研究领域的国际竞争能力。本专项的依托单位是国家纳米科学中心。 二、基本原则本专项将根据自然科学基金会“纳米科技基础研究”重大研究计划申请指南以及其他与纳米科技密切相关的研究课题的总体要求,充分利用国家纳米科学中心各协作实验室相关仪器设备,在纳米科学与技术的关键研究领域开展原创性基础研究。 三、研究领域 1、纳米尺度的相关检测和表征 (1)纳米材料的表面物理化学过程和自组装方法研究 (2)纳米尺度内物理、化学性质的检测和表征 (3)分子纳米结构和单分子检测 2、纳米结构、纳米器件的设计和应用探索 (1) 准一维纳米材料的基本理论和工艺技术研究 (2) 基于新原理的纳米电子器件和纳米光子器件 (3) 纳米材料及器件的设计和数学建模 3、纳米生物和医学器件研究 (1) 用于疾病早期诊断和治疗的纳米材料及相关器件技术 (2) 探索靶向治疗的纳米药物及其载体的定向输送和缓释体系 (3) 单分子和单细胞的探测、表征和传感技术 四、申请本专项研究课题注意事项 1、申请人资格本专项各研究课题申请人必须符合自然科学基金会面上项目申请者资格,承担过或正承担着自然科学基金会“纳米科技基础研究”重大研究计划资助项目以及基金会与纳米科技密切相关的项目。研究课题申请不受自然科学基金会基金申请限项规定的制约。 2、申请者可根据拟解决的具体科学问题,自由确定项目名称、研究目标、研究内容、技术路线。每个课题资助金额原则上不超过10万元,执行期限为2年。 3、本专项经费原则上应使用在国家纳米科学中心协作实验室的大型仪器上开展相关的学术研究和测试等方面的工作,在课题申请书上应明确表示使用大型仪器所在的协作实验室名称。课题经费按照申请内容和使用设备的情况划拨至相关的协作实验室。 4、申请者请于2006年1月10日前提交课题申请。使用统一电子版面上基金项目申请书,申请者可自行在基金会网站上下载,然后安装在个人计算机中,按照帮助文档的说明操作即可。基本信息表中的资助类别选择“专项基金项目”、亚类说明选择“其他”,附注说明填写“纳米科技平台上纳米材料和器件的若干基础研究”,报告正文按照面上项目撰写提纲撰写。一式5份报送国家纳米科学中心。 5、为避免重复资助,项目申请书应明确论述该项申请与其它相关研究项目的联系与不同。 6、自然科学基金会委托“纳米科技基础研究”重大研究计划专家指导组成员、协调工作组成员、本专项负责人和部分特邀专家组成本专项管理领导小组,负责项目评审等工作。评审中坚持择优和重点支持的原则,以到会评审专家投票的方式确定资助课题(赞成票须超过到会专家半数)。 7、在课题执行过程中,各课题负责人和课题组成员应保持稳定,确需变更的,课题负责人须及时提交变更申请及相应变更材料,经专项负责人签署意见后报管理领导小组审定。 8、本专项资助的课题研究所形成的论文、专利和数据库等须标注: “由国家自然科学基金资助,项目批准号90406024”等相关字样。 五、联系方式 联 系 人: 汲志华 王荷蕾 联系电话: 010-82613928,62652123 传 真: 010-62652116Email: jizh@iccas.ac.cn wanghl@nanoctr.cn 通讯地址: 北京中关村北一街2号国家纳米科学中心 邮 编: 100080

国家纳米科学中心相关的资料

国家纳米科学中心相关的仪器

  • 魔技纳米MJ-Works适用多种材料的超快激光微纳加工中心超快激光微纳加工中心,不仅拥有纳米级3D加工能力,还配备了双波长飞秒激光输出,可加工更广泛的材料。可对玻璃、光纤、晶体内部和表面进行改性或刻蚀,也可对金属、合金、陶瓷等硬质材料进行微米级精度的处理,包括打孔、表面结构处理、选择性激光消融、改性等多种功能。MJ-Works同样拥有高精度、超高速度的特点,并且可进行大幅面加工、全自动操控、长时稳定性、简单直观的软件操作以及适配多种材料的特点,适用于微纳光学、生物医学、半导体、光通信等行业的微纳加工领域。 如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。 [企业介绍]魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • 魔技纳米PROME-Uni基于多光⼦ 聚合原理的超⾼ 速度一体化纳米级三维加⼯ 设备自研专利技术,大幅提高加工效率,突破多光子聚合速度限制,适应不同尺度的精密加工需求;拥有多项稳定系统,可长时无需维护,稳定工作;采用模块化的光机电设计,拥有极高的灵活性和可扩展性;为科研和工业领域提供全新的3D加工技术解决方案,适用于微光学器件、微流控芯片、微机械、超材料、微纳传感器件光子芯片集成等领域 主要特点: 如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。 企业介绍 魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • 魔技纳米MJ-Works-Fiber专为光纤应用设计的纳米级三维激光直写设备MJ-Works-Fiber是一款专为光纤传感与光通信应用而生的超高精度加工而设计的高性能3D激光直写设备,配有超清成像及纳米级定位对准系统,可实现在光纤纤芯或光芯片表面及内部进行纳米级3D加工。配备有专门的卷对卷光纤自动输送装置,并配有应力监测,纤芯自动识别、定位及对准,实现高通量精准快速生产。如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。【企业简介】魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询

国家纳米科学中心相关的耗材

  • 纳米位移平台
    纳米位移平台,真空纳米位移台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米位移平台,真空纳米位移台,纳米位移台.这款纳米位移平台是美国进口的高速高精度真空纳米位移台,它采用先进技术设计, 具有单轴或精密的双轴配置两种选择, 适合高真空环境和非磁性定位应用.美国进口高精度低价格系列纳米定位台,采用了陶瓷伺服电机驱动,非常适合要求精度达到纳米或压纳米的高精度和高重复精度的应用,例如:精密生命科学仪器、显微成像、纳米准直、微纳加工、光学精确定位等。X-TRIM 系列纳米位移台特色 10nm分辨率非接触线性编码系统双驱动任选:线性伺服或压电驱动高密度滚珠传导增加稳定性超紧凑的单轴或双轴纳米位移台紧凑型封装可真空使用超强工作能力,大吞吐量采用无铁芯直接驱动直线电机,驱动轴位于纳米位移台的中心线, 这种设计消除了非中心驱动导致的偏航,空回等问题.纳米位移台集成了一个高分辨率(12.5nm)非接触式线性编码器,它为闭环的伺服系统工作操作提供了精密反馈, 它的标准配置就可以提供纳米精度的定位.纳米位移平台使用能够了精密的滚珠导向系统确保了位移平台高精度性能和严格的轨迹控制。纳米位移平台也适合OEM使用,它具有较低抛面和较小尺寸,采用模块化设计,用户可堆叠使用创建多轴多部件系统。这款纳米位移平台使用了非接触式直接驱动技术,提供坚固,精确,高速的定位,满足高频率大工作量的需要。纳米定位平台使用了先进的无铁直线电机直接确定技术,确保最优异的纳米级定位性能。这款纳米定位台提供了高速度,高精度,高分辨率,高性能的卓越表现。它与传统的丝杠驱动或压电驱动相比,具有更大的工作效率和吞吐量。参数行程(mm): 25和50mm(单轴或双轴)驱动系统: 无铁芯直线电机或陶瓷伺服电机最大加速度: 由负载决定最大速度: 200mm/s (无负载时)最大推力: 24N最大负载: 2Kg精度: +/-1um/25mmTTL分辨率: 1-100nm/脉冲构造材料: 铝合金主体, 灰色氧化镀膜重复精度: 5倍精度 XT 25 XT 50 XT 2525 XT 5050 Travel Length (mm) 25 mm 50 mm 25 x 25 mm 50x 50 mm Trajectory Control Accuracy Linear Encoder ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m ± 4.0 &mu m Straightness/Flatness ± 1.0 &mu m ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m Yaw/Pitch/Roll 5 arc-sec 5 arc-sec 10 arc-sec 10 arc-sec 2 axis system Orthogonality Standard Grade NA NA 5 arc-sec 5 arc-sec High Precision NA NA 2 arc-sec 2 arc-sec Extra High Precision NA NA 1 arc-sec 1 arc-sec
  • 纳米升降台
    纳米升降台,纳米升降平台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,精通光学,服务科学,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米升降台,纳米升降平台,精密升降台。这款纳米升降台是美国进口的短行程的精密升降台,Elevator Stage,纳米升降平台特别适合竖直的Z轴应用,它具有极佳的上下定位功能,超高分辨率,超高重复精度和机械稳定性。产品特色:这款纳米升降台采用高密度交叉滚珠导向系统用于竖直导向,确保最大的稳定性。单立柱式的X滚珠导向系统提供了适度的高刚性,使得这款纳米定位台具有极小的滞后和相当大的承载能力。纳米升降台应用:这款纳米定位台比较适合对Z轴垂直升降精度较高要求的应用。比如,光学成像系统中焦平面的准直,半导体测试,视频测量等。纳米升降台参数行程:4mm驱动系统:无刷伺服-丝杆驱动最大速度:20mm/s最大负载;10kgTTL分辨率:100nm, 50nm, 25nm, 12.5nm, 10nm, 1nm重复精度:5x分辨率
  • 科德诺思 KNORTH 多壁碳纳米管(MWCNTs)
    北京科德诺思技术有限公司 多壁碳纳米管(MWCNTs)科德诺思提供更多规格的多壁碳纳米管(MWCNTs),支持各学科领域的科研工作者研究。多壁碳纳米管(MWCNTs)基础参数-1外径:5nm-25 nm尺寸:2.5 μm , average length, TEM 25 nm , average diameter, HRTEM比表面积:~300±25 m 2/g多壁碳纳米管(MWCNTs)基础参数-2 适用于 GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法外径:10 nm-20 nm尺寸:5 μm , average length, TEM 15 nm , average diameter, HRTEM比表面积:225±25 m 2/g 订购信息 草铵膦专用净化管货号产品名称描述包装规格OD65192草铵膦净化管符合《GB 23200.108-2018植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法》,适用于蔬菜、水果、食用菌类。50支/盒OD65193草铵膦净化管符合《GB 23200.108-2018植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法》,适用于谷物类、油料作物和植物油、坚果、茶叶、香辛料50支/盒KSCL012多壁碳纳米管填料填料,《GB 23200.108-2018植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法》10g/瓶 单氰胺专用净化管 货号产品名称描述包装规格OD65194单氰胺净化管符合《GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法》,适用于蔬菜、水果、坚果、谷物。50支/盒OD65195单氰胺净化管符合《GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法》,适用于茶叶、香辛料类、食用菌类50支/盒KSCL012多壁碳纳米管填料填料,《GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法》 10g/瓶北京科德诺思(KNORTH)技术有限公司(简称:科德诺思)2020 年在北京成立。公司自主创新研发、生产、销售及技术服务为一体创新型综合服务企业,目前公司拥有三项专利技术。公司研发团队拥有博士后 1 名,博士 2 名,研究生4 名,具有丰富色谱分离技术,实验经验丰富。公司主要提供:标准物质、标准品、对照品、实验室常规耗材、快检耗材及前处理设备、检测服务、质量控制相关技术服务。服务对象: 科研机构、农业、市场监管、高校、第三方检测、企业及质谱公司提供优质完善的前处理解决方案。科德诺思(KNORTH)将不断持续提升产品性能,检测能力、标准物质制备能力及服务能力,为广大分析测试工作者提供前处理整体解决方案。我们期待与更多伙伴合作,实现共赢!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制