金属配合物低维晶体

仪器信息网金属配合物低维晶体专题为您整合金属配合物低维晶体相关的最新文章,在金属配合物低维晶体专题,您不仅可以免费浏览金属配合物低维晶体的资讯, 同时您还可以浏览金属配合物低维晶体的相关资料、解决方案,参与社区金属配合物低维晶体话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

金属配合物低维晶体相关的资讯

  • 化学所在金属配合物低维晶体方面取得新进展
    p & nbsp & nbsp 低维有机晶态材料具有规整度高和结构缺陷少的特点,是揭示材料本征特性和构筑高性能光电器件的最佳选择之一,近年来在有机半导体电子学和纳米光子学等方面取得重要应用。考虑有机分子的组装特点,通常使用具有较强分子间作用力的平面型有机分子来制备高规整度的低维晶体。相比较,钌、铱等过渡金属配合物虽然被广泛用于多种光电领域,但因其溶解性较差和分子结构非平面型的特点,相关低维晶态材料的可控制备鲜有报道。 /p p style=" text-align: justify " & nbsp & nbsp 在国家自然科学基金委和中国科学院先导项目支持下,中科院化学研究所光化学实验室姚建年/钟羽武研究团队近年来在光功能金属配合物的设计合成与光电性能方面开展了系统性工作(J. Am. Chem. Soc.2015, 137, 4058 Angew. Chem. Int. Ed.2015, 54, 9192 & nbsp Coord. Chem. Rev.2016, 312, 22 & nbsp Sci. China Chem.2017, 5, 583)。在此基础上,他们近期选取两种结构和溶解度相似的金属铱、钌光功能配合物作为能量给、受体,制备了双组份均匀掺杂或异质结纳米棒晶体,实现高效三线态能量转移和微纳尺度下多级组装过程的原位观察(J. Am. Chem. Soc.2018, 140, 4269-4278)。 /p p style=" text-align: justify " & nbsp & nbsp 最近,科研人员通过溶液再沉淀法成功制备了甲基化苯基吡啶金属铱配合物的高质量一维管状微纳晶体,并进一步通过晶体掺杂,得到了两种不同铱配合物的二元能量转移晶体,实现聚集发光淬灭(ACQ)受体的光放大和微纳尺度温度响应功能。研究表明,当受体的掺杂量为0.2%时,此类晶体可以实现接近80%的三线态能量转移效率和800倍以上的受体磷光放大。在常温时,晶体表现出受体的红色磷光,固态量子产率达到40%。随着温度的降低,晶体的激子能量转移受到抑制,给体的绿色发光重新被激活,实现微纳尺度下发光颜色变化的原位调控与温敏监测。该工作表明了过渡金属配合物在低维晶体制备与光功能方面的独特应用,并为三线态激子能量转移的机制研究提供重要信息(Angew. Chem. Int. Ed.2018, 57, 7820-7825)。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/e32021df-136a-457d-afb5-bfd3ccfeb16d.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图:基于金属配合物低维晶体的光放大与温度响应 /p p br/ /p
  • CASA发布《碳化硅金属氧化物半导体场效应晶体管通用技术规范》团队标准【附标准全文】
    碳化硅(SiC)具有宽禁带、耐击穿的特点,其禁带宽度是Si的3倍,击穿电场为Si的10倍;且其耐腐蚀性极强,在常温下可以免疫目前已知的所有腐蚀剂。而金属氧化物半导体场效晶体管(简称:金氧半场效晶体管;英语:Metal-Oxide-Semiconductor Field-Effect Transistor,缩写:MOSFET),是一种可以广泛使用在模拟电路与数字电路的场效晶体管。在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。2020年12月28日,北京第三代半导体产业技术创新战略联盟发布一项联盟标准T/CASA 006-2020《碳化硅金属氧化物半导体场效应晶体管通用技术规范》。该项标准由中国科学院微电子研究所牵头起草,按照CASAS标准制定程序(立项、征求意见稿、委员会草案、发布稿),反复斟酌、修改、编制而成。标准的制定得到了很多CASA标准化委员会正式成员的支持。标准于2021年1月1日施行。附件下载https://www.instrument.com.cn/download/shtml/976637.shtml【相关阅读】企业成半导体刻蚀设备采购主力——半导体仪器设备中标市场盘点系列之刻蚀设备篇超亿采购中磁控溅射占主流——半导体仪器设备中标市场盘点系列之PVD篇上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇第27批国家企业技术中心名单出炉,涉及这些仪器厂商探寻微弱电流的律动:超高精度皮安计模块亮相三家半导体设备商上榜“中国上市企业市值500强”862项标准获批,涉及半导体、化工检测和检测仪器等领域盘点各地十四五规划建议”芯“政策湖北省集成电路CMP用抛光垫三期项目拟购置43台仪器设备
  • 我国科研人员为氧化镓晶体管找到新结构方案
    26日,记者从中国科学技术大学获悉,该校微电子学院龙世兵教授课题组联合中科院苏州纳米所加工平台,分别采用氧气氛围退火和氮离子注入技术,首次研制出了氧化镓垂直槽栅场效应晶体管。相关研究成果日前分别在线发表于《应用物理通信》《IEEE电子设备通信》上。作为新一代功率半导体材料,氧化镓的p型掺杂目前尚未解决,氧化镓场效应晶体管面临着增强型模式难以实现和功率品质因数难以提升等问题,因此急需设计新结构氧化镓垂直型晶体管。研究人员分别采用氧气氛围退火和氮离子注入工艺制备了器件的电流阻挡层,并配合栅槽刻蚀工艺研制出了不需P型掺杂技术的氧化镓垂直沟槽场效应晶体管结构。氧气氛围退火和氮离子注入所形成的电流阻挡层均能够有效隔绝晶体管源、漏极之间的电流路径,当施加正栅压后,会在栅槽侧壁形成电子积累的导电通道,实现对电流的调控。类似于硅经过氧气氛围退火处理可形成高阻表面层,氧化镓采用该手段制备电流阻挡层具有缺陷少、无扩散、成本低等特点,器件的击穿电压可达到534伏特,为目前电流阻挡层型氧化镓MOSFET(金属氧化物半导体场效应晶体管)器件最高值,功率品质因数超过了硅单极器件的理论极限。研究人员表示,这两项工作为氧化镓晶体管找到了新的技术路线和结构方案。

金属配合物低维晶体相关的方案

金属配合物低维晶体相关的论坛

  • 【转帖】金属配合物单晶的培养

    方法一:挥发用金属配合物的良溶剂将其溶解在小烧杯中,小烧杯的内表面越光滑单晶性越好,否则晶体形状不好缺陷多就会给后面的收单晶衍射数据带来麻烦,甚至会造成无法解晶体结构,那将是非常可惜的;烧杯用滤纸或塑料薄膜封口防止灰尘落入,同时减慢挥发速度,长出较好晶形的单晶,一般挥发性稍差的溶剂用滤纸,如,水等。静置至发现满意的晶体出现。方法二:扩散用金属配合物的良溶剂将其溶解在小烧杯或广口瓶中,塑料薄膜封口(用针戳3-5个小孔),放于盛有该金属配合物的挥发性不良溶剂(一般用乙醚)的大瓶子中。静置至发现满意的晶体出现。方法三:分层将金属的水溶液放于试管下层,配体的有机溶剂溶液放于试管上层,中间是水和有机溶剂的混合溶剂,封口。操作要小心,最好是用滴管伸进试管靠近液面缓慢滴加。静置至发现满意的晶体出现。以上是我在培养配合物单晶常用的方法,一般是几种方法同时做,不是每种方法都能或总能培养出单晶,更多的是取决于配合物的结晶性好坏。总之就是多试:不同的温度、溶剂、混合溶剂的比例……1.制备结晶,要注意选择合宜的溶剂和应用适量的溶剂。合宜的溶剂,最好是在冷时对所需要的成分溶解度较小,而热时溶解度较大。溶剂的沸点亦不宜太高。一般常用甲醇、丙酮、氯仿、乙醇、乙酸乙醋等。但有些化合物在一般溶剂中不易形成结晶,而在某些溶剂中则易于形成结晶。2.制备结晶的溶液,需要成为过饱和的溶液。一般是应用适量的溶剂在加温的情况下,将化合物溶解再放置冷处。如果在室温中可以析出结晶,就不一定放置于冰箱中,以免伴随结晶析出更多的杂质。“新生态”的物质即新游离的物质或无定形的粉未状物质,远较晶体物质的溶解度大,易于形成过饱和溶液。一般经过精制的化合物,在蒸去溶剂抽松为无定形粉未时就是如此,有时只要加入少量溶剂,往往立即可以溶解,稍稍放置即能析出结晶。3.制备结晶溶液,除选用单一溶剂外,也常采用混合溶剂。一般是先将化合物溶于易溶的溶剂中,再在室温下滴加适量的难溶的溶剂,直至溶液微呈浑浊,并将此溶液微微加温,使溶液完全澄清后放置。4.结晶过程中,一般是溶液浓度高,降温诀,析出结晶的速度也快些。但是其结晶的颗粒较小,杂质也可能多些。有时自溶液中析出的速度太快,超过化合物晶核的形成劝分子定向排列的速度,往往只能得到无定形粉未。有时溶液太浓,粘度大反而不易结晶化。如果溶液浓度适当,温度慢慢降低,有可能析出结晶较大而纯度较高的结晶。有的化合物其结晶的形成需要较长的时间。5.制备结晶除应注意以上各点外,在放置过程中,最好先塞紧瓶塞,避免液面先出现结晶,而致结晶纯度较低。如果放置一段时间后没有结晶析出,可以加入极微量的种晶,即同种化合物结晶的微小颗粒。加种晶是诱导晶核形成常用而有效的手段。一般地说,结晶化过程是有高度选择性的,当加入同种分子或离子,结晶多会立即长大。而且溶液中如果是光学异构体的混合物,还可依种晶性质优先析出其同种光学异构体。没有种晶时,可用玻璃棒蘸过饱和溶液一滴,在空气中任溶剂挥散,再用以磨擦容器内壁溶液边缘处,以诱导结晶的形成。如仍无结晶析出,可打开瓶塞任溶液逐步挥散,慢慢析晶。或另选适当溶剂处理,或再精制一次,尽可能除尽杂质后进行结晶操作。6.在制备结晶时,最好在形成一批结晶后,立即倾出上层溶液,然后再放置以得到第二批结晶。晶态物质可以用溶剂溶解再次结晶精制。这种方法称为重结晶法。结晶经重结晶后所得各部分母液,再经处理又可分别得到第二批、第三批结晶。这种方法则称为分步结晶法或分级结晶法。晶态物质在一再结晶过程中,结晶的析出总是越来越快,纯度也越来越高。分步结晶法各部分所得结晶,其纯度往往有较大的差异,但常可获得一种以上的结晶成分,在未加检查前不要贸然混在一起。7.化合物的结晶都有一定的结晶形状、色泽、熔点和熔距,一可以作为鉴定的初步依据。这是非结晶物质所没有的物理性质。化合物结晶的形状和熔点往往因所用溶剂不同而有差异。原托品碱在氯仿中形成棱往状结晶,熔点207℃;在丙酮中则形成半球状结晶,熔点203℃;在氯仿和丙酮混合溶剂中则形成以上两种晶形的结晶。所以文献中常在化合物的晶形、熔点之后注明所用溶剂。一般单体纯化合物结晶的熔距较窄,有时要求在0.5℃左右,如果熔距较长则表示化合物不纯。不知这些可否对各位朋友有些许帮助?单晶培养的具体操作方法:四条注意事项:1、结晶容器的选择(敞口烧杯,既不能用从未使用过的新烧杯,也不能用很旧的烧杯。可能原因为,烧杯太新,不利于晶核的形成,而太旧则形成晶核的部位太多,不利于单晶的生长。) 2、溶剂的选择(合适的溶剂将物质溶解,溶解性不能太好也不能太差且具有一定的挥发性,不能挥发太快也不能太慢)3、结晶速度(尽量慢的让溶剂挥发,一旦析出结晶,过滤,可能得到单晶也可能是混晶,千万别用母液洗晶体)4、环境的选择(放在一个平稳的地方,千万不能有一丝一毫的震动,否则即使得到单晶也全完了)。

  • 【分享】金属键和金属晶体结构理论!!

    一,金属键理论及其对金属通性的解释一切金属元素的单质,或多或少具有下述通性:有金属光泽,不透明,有良好的导热性与导电性,有延性和展性,熔点较高(除汞外在常温下都是晶体),等等.这些性质是金属晶体内部结构的外在表现.金属元素一般比较容易失去其价电子变为正离子,在金属单质中不可能有一部分原子变成负离子而形成离子键.由于X射线衍射法测定金属晶体结构的结果可知,其中每个金属原子与周围8到12个同等(或接近同等)距离的其它金属原子相紧邻,只有少数价电子的金属原子不可能形成8到12个共价键.金属晶体中的化学键应该属于别的键型.1916年 ,荷兰理论物理学家洛伦兹(Lorentz,H.A.1853-1928)提出金属"自由电子理论",可定性地阐明金属的一些特征性质.这个理论认为,在金属晶体中金属原子失去其价电子成为正离子,正离子如刚性球体排列在晶体中,电离下来的电子可在整个晶体范围内在正离子堆积的空隙中"自由"地运行,称为自由电子.正离子之间固然相互排斥,但可在晶体中自由运行的电子能吸引晶体中所有的正离子,把它们紧紧地"结合"在一起.这就是金属键的自由电子理论模型.根据上述模型可以看出金属键没有方向性和饱和性.这个模型可定性地解释金属的机械性能和其它通性.金属键是在一块晶体的整个范围内起作用的,因此要断开金属比较困难.但由于金属键没有方向性,原子排列方式简单,重复周期短(这是由于正离子堆积得很紧密),因此在两层正离子之间比较容易产生滑动,在滑动过程中自由电子的流动性能帮助克服势能障碍.滑动过程中,各层之间始终保持着金属键的作用,金属虽然发生了形变,但不至断裂.因此,金属一般有较好的延性,展性和可塑性. 由于自由电子几乎可以吸收所有波长的可见光,随即又发射出来,因而使金属具有通常所说的金属光泽.自由电子的这种吸光性能,使光线无法穿透金属.因此,金属一般是不透明的,除非是经特殊加工制成的极薄的箔片.关于金属的良好导电和导热性能,高中化学课本中已用自由电子模型作了解释.上面介绍的是最早提出的经典自由电子理论.1930年前后,由于将量子力学方法应用于研究金属的结构,这一理论已获得了广泛的发展.在金属的物理性质中有一种最有趣的性质是,包括碱金属在内的许多金属呈现出小量的顺磁性,这种顺磁性的大小近似地与温度无关.泡利曾在1927年对这一现象进行探讨,正是这一探讨开辟了现代金属电子理论的发展.它的基本概念是:在金属中存在着一组连续或部分连续的"自由"电子能级.在绝对零度时,电子(其数目为N个)通常成对地占据N/2个最稳定的能级.按照泡利不相容原理的要求,每一对电子的自旋方向是相反的 这样,在外加磁场中,这些电子的自旋磁矩就不能有效地取向.当温度比较高时,其中有一些配对的电子对被破坏了,电子对中的一个电子被提升到比较高的能级.未配对的电子的自旋磁矩能有效地取向,所以使金属具有顺磁性.(前一节中介绍价键理论的局限性时已指出,顺磁性物质一般是具有自旋未配对电子的物质.)未配对电子的数目随着温度的升高而增多 然而,每个未配对电子的自旋对顺磁磁化率的贡献是随着温度的升高而减小的.对这二种相反的效应进行定量讨论,解释了所观察到的顺磁性近似地与温度无关.索末菲与其他许多研究工作者,从1928年到30年代广泛地发展了金属的量子力学理论,建立起现代金属键和固体理论——能带理论,可以应用分子轨道理论去加以理解.(可参看大学《结构化学》教材有关部分)

金属配合物低维晶体相关的资料

金属配合物低维晶体相关的仪器

  • SKJ-M50-16金属晶体生长炉是用坩埚下降法生长金属晶体的设备,可在真空、大气、惰性气体或其他保护气氛下、在可控的局部压力状态下运行。根据金属的属性,本机可采用中频感应加热电源,以及石墨电阻加热两种加热方式;采用欧陆微处理器与热电偶闭环控制炉温,使结晶体按照一定的直径进行控制。 产品型号SKJ-M50-16金属晶体生长炉安装条件本设备要求在海拔1000m以下,温度25℃±15℃,湿度55%Rh±10%Rh下使用。1、水:设备配有自循环冷却水机(加注纯净水或者去离子水)2、电:AC380V 50Hz(63A空气开关),必须有良好接地3、气:设备腔室内需充注氩气(纯度99.99%以上),需自备氩气气瓶(自带?6mm双卡套接头)4、工作台:尺寸1500mm×600mm×700mm,承重200kg以上5、通风装置:需要主要特点属于小型晶体生长炉,适合于大专院校、研究所使用。技术参数1、电源:208V-240V AC三相 50Hz/60Hz 15KW2、炉体容积:约100L3、炉管:石英管或刚玉管4、坩埚:高纯石墨坩埚5、加热元件:1800级硅钼棒6、温控系统:50段控温程序7、控温精度:±1℃8、工作温度:连续工作1600℃,短时间工作1700℃9、控温方式:自动程序控温10、生长方法:区熔法(样品固定不动,炉体向上移动)11、移动速度:1mm/h-10mm/h可调12、快速移动:手动13、结晶转速:1rpm-50rpm14、真空系统:机械泵和扩散泵15、极限真空度:10-5torr标准配件1、电源控制系统一套2、机械控制系统一套可选配件Kathnal Super-1800级硅钼棒
    留言咨询
  • 本公司研发团队开展石英晶体微天平化学生物传感分析研究已有三十余年,具有丰富的QCM应用研究经验,可根据客户需求提供个性化服务,解决客户QCM使用中出现的技术问题。该仪器融合多家著名高校相关领域研究成果,仪器模块化结构、便携式设计,可与电化学仪器光学仪器联用。仪器价格优惠、使用简单、性能稳定、检测结果可靠。石英晶体微天平(Quartz Crystal Microbalance,QCM)是一种非常灵敏的质量检测仪器。在一定条件下,石英晶体上沉积的质量变化和振动频率移动之间关系呈线性关系(Sauerbrey公式),其测量灵敏度可达纳克级,可以测到单原子层的质量变化。本仪器采用10 MHz石英晶体,每Hz的频率变化相当于0.85 ng/cm2。石英晶体微天平作为纳克质量传感器具有结构简单、成本低、灵敏度高的优点,被广泛应用于化学、物理、生物、医学和表面科学等领域中,可实现电化学、光化学、光电化学的现场动态监测分析。可广泛用以进行气体、液体成分分析以及微质量的测量、薄膜厚度、液体粘度(血凝)检测等。例如:电活性聚合物表征、Li+ 嵌入材料、金属腐蚀、自组装单层、生物传感器、免疫检测、 蛋白质的相互作用 、膜表面的吸附/解析 、DNA的杂交 、 细胞吸附 、靶向药物筛选、高分子材料的生物相容性等。 仪器特点l 仪器接触溶液的激励电极做工作电极与电化学仪器联用可构成EQCM测量技术。 l 仪器便携式设计、操作简单、方法选择、操作过程、步步提示。l 锂离子电池可作为电源、抗干扰能力强。l 仪器智能化模块化设计、结构可靠,可适应现场使用。l SD卡储存数据,方便后续数据处理。l 数据同时通过蓝牙无线传输到手机,可在手机上同步进行显示和储存。l 仪器可与其他分析仪器联用,如电化学仪器、光学仪器联用实现现场多信息传感分析。根据科研需要可进一步开发应用。 技术参数 l 使用晶体频率范围5MHz-20MHz,本仪器使用商用镀金10MHz AT切石英晶体。l 频率稳定性,空气中+1Hz/小时,液相中精确控制实验条件可达到相近的信号稳定性。l 3.5英寸触屏彩色液晶显示。l 提供2G SD卡储存数据,每隔2秒储存一组实验数据。l 便携式QCM 配备直流供电电压范围9V-18V,建议使用12V,2A 直流稳压源。l 可配备12V 5400mAh 锂离子电池(12.6V,1A 充电器)。l 便携式仪器尺寸:150*97*40mm;仪器重量:500 g。
    留言咨询
  • 石英晶体微天平 400-860-5168转6094
    QCM-D石英晶体微天平 对AT切型剪切振动石英晶振进行快速阻抗频谱测量,频谱测量可获得诸多信息,可在响应幅值最大处获得谐振频率,峰高、半峰宽也可作为特征参数用来表征压电石英体表面粗糙度、膜粘弹性变化情况。本仪器通过快速频谱扫描技术,获得压电石英体的谐振频率(F) 和耗散因子 D (定义为石英晶体品质因子 Q的倒数,通过半高峰宽近似求得)。 JSK-T(I)型石英晶体微天平是本公司独自开发的多功能一体化QCM-D型质量传感检测仪器,工作频率可达200MHz,精确测量纳克级物质质量的传感技术。QCM仪器价格便宜,操作简单,可实现电化学、光化学、光电化学的现场联用动态监测分析。可广泛用于电活性聚合物表征、电池储能材料如Li+ 嵌入材料、金属腐蚀、自组装单层、光电材料、生物传感器、免疫检测、 蛋白质的相互作用 、膜表面的吸附/解析 、细胞黏附行为、靶向药物筛选、高分子材料的生物相容性等。仪器特点 QCM-D石英晶体微天平基于快速阻抗频率谱测定技术,能够测定谐振频率、振幅、相位等参数,可用于常见压电石英晶体,例如基频5MHz、6MHz、8MHz、10MHz的石英晶体; 可进行奇数倍频测量,频率上限最高可达200MHz,优于目前常见QCM设备。可实现频率、相移、耗散因子等参数测量。根据需要预设参数、个性化定制。仪器模块化结构、数据显示储存一体、无需外接电脑、抗干扰能力强。l 石英晶体基频 5MHz,6MHz,8MHz,10MHz,33MHz,100MHz可任选。可3、5、7、9、11倍频激励,扫频范围200MHz以内。l 提供两套检测池、满足不同实验需求。可配置注射泵或蠕动泵、PID自动控制温度。技术参数l 本仪器使用商用镀金8MHzAT切石英晶体,稳定状态下液相中频率测定相邻数值波动可控制在±0.1Hz。l 3.5英寸触屏彩色液晶显示,U盘储存数据,无需外接电脑。l 仪器常规石英晶片直径14 mm,能够非常灵敏地检测非常薄的吸附层的质量、耗散、分子的结构(构象)变化。并可计算其他参数,如:厚度、粘度、弹性模量,同时可以进行分子间反应的动力学分析。l 仪器检测的耗散灵敏度可达10-7, 质量灵敏度为4ng Hz-1 cm-2(基频10MHz) 0.4 pg Hz-1 mm-2(基频100MHz) 频率测定模式数据采集0.2s一组数据 ;(可定制相移角测定模式,数据采集速度可达10微秒,可用于快速瞬态测定)。
    留言咨询

金属配合物低维晶体相关的耗材

  • 高质量二维晶体材料
    高质量二维晶体材料二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料。巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合荷兰HQ Graphene为全球客户提供高质量的二维晶体材料,并提供定制服务(如二维材料机械剥离技术培训,层数判定等性能检测培训等),以满足客户的不同需求。1、名称:硫化镓(GaS) 纯度:>99.995% 尺寸:可定制 属性:半导体 2、名称:硒化铋(Bi2Se3) 纯度:>99.995% 尺寸:~10 mm 属性:拓扑绝缘体 3、名称:碲化铋(Bi2Te3) 纯度:>99.995% 尺寸:~10 mm 属性:拓扑绝缘体 4、名称:二硒化钼(MoSe2) 纯度:>99.995% 尺寸:~6 mm-10 mm 属性:半导体 5、名称:硫化锗(GeS)纯度:>99.995% 尺寸:可定制 属性:半导体 6、名称:二碲化钼(MoTe2) 纯度:>99.995% 尺寸:~6 mm-10 mm 属性:半导体 7、名称:二硫化钼单晶(MoS2)-合成纯度:>99.995% 尺寸:~10 mm-20 mm 属性:半导体 8、名称:二硫化钼单晶(MoS2)纯度:>99% 尺寸:~10 mm-20 mm 属性:半导体 9、名称:二硫化钨(WS2) 纯度:>99.995% 尺寸:~10 mm 属性:半导体 10、名称:二硒化钨(WSe2) 纯度:>99.995% 尺寸:~10 mm 属性:半导体 11、名称:二硒化钒(VSe2) 纯度:>99.995% 尺寸:~7-10 mm 属性:半导体 12、名称:二碲化钨(WTe2) 纯度:>99.995% 尺寸:联系我们 属性:半金属 13、名称:硒化镓(GaSe) 纯度:>99.995% 尺寸:~10 mm 属性:半导体 14、名称:大尺寸六边形氮化硼晶体(HBN) 纯度:>99.99% 尺寸:1.0-1.5 mm鳞片 属性:绝缘体 15、名称:高定向热解石墨(HOPG) 纯度:>99.995% 尺寸:可达12 x 12 x 2 mm 属性:金属 16、名称:天然石墨(NG) 纯度:>99.995% 尺寸:~2 mm 属性:金属 17、名称:石墨烯(graphene) 纯度:>99.995% 尺寸:<60 μm 属性:金属 18、名称:二硒化铪(HfSe2) 纯度:>99.995% 尺寸:~8 mm 属性:半导体 19、名称:二硫化铪(HfS2) 纯度:>99.995% 尺寸:可定制 属性:半导体 20、名称:硒化铟(In2Se3) 纯度:>99.995% 尺寸:~7 mm 属性:半导体 21、定制二维异质结 22、转移二维晶体材料的高纯聚合物 23、名称:定制二维晶体材料样品盒 可定制 超过30多种 24、名称:1T-二硒化钛(1T-TiSe2) 纯度:>99.995% 尺寸:可定制 属性:半导体 25、名称:二硫化钛(TiS2) 纯度:>99.995% 尺寸:~10 mm 属性:半金属 26、名称:2H-二硫化钽(2H-TaS2) 纯度:>99.995% 尺寸:可定制 属性:半导体,具有电荷密度波 27、 名称:1T-二硫化钽(1T-TaS2) 纯度:>99.995% 尺寸:可定制 属性:半导体,具有电荷密度波 28、名称:二硒化钽(TaSe2) 纯度:>99.995% 尺寸:~8 mm 属性:半导体 29、名称:二硒化锡(SnSe2) 纯度:>99.995% 尺寸:~8 mm 属性:半导体 30、名称:二硫化锡(SnS2) 纯度:>99.995% 尺寸:~10 mm 属性:半导体 31、名称:二硒化铼(ReSe2) 纯度:>99.995% 尺寸:~6 mm 属性:半导体 32、名称:二硫化铼(ReS2) 纯度:>99.995% 尺寸:~6 mm-8 mm 属性:半导体 33、名称:二硒化铂(PtSe2) 纯度:>99.99% 尺寸:~2 mm 属性:半金属 34、名称:Pb3Sn4FeSb2S14 纯度:>99.995% 尺寸:~8 mm 属性:半导体 35、名称:硫锡铅矿(PbSnS2) 纯度:>99.995% 尺寸:~8 mm 属性:半导体 36、名称:二硒化铌(2H-NbSe2) 纯度:>99.995% 尺寸:~8 mm 属性:超导体,具有电荷密度波 37、名称:二硫化铌(NbS2) 纯度:>99.995% 尺寸:~4 mm 属性:超导体 38、名称:金云母(KMg3AlSi3O10(OH)2) 纯度:高 尺寸:25 x 25 x 0.15 mm 属性:绝缘体 39、名称:白云母(K2O-Al2O3-SiO2) 纯度:高 尺寸:25 x 25 x 0.15 mm 属性:绝缘体 40、名称:CaSO4-2H2O 纯度:高 尺寸:1-2 cm 属性:绝缘体 41、名称:黑磷(BP) 纯度:>99.995% 尺寸:可达cm级别 属性:半导体(带隙~0.3eV)
  • 二碲化钨晶体(99.995%) WTe2(Tungsten Ditelluride)
    二碲化钨晶体 WTe2(Tungsten Ditelluride) 晶体尺寸:10毫米电学性能:半金属,type II Weyl semimetal (WSM)晶体结构:斜方晶系 P晶胞参数:a = 0.348 nm, b = 0.625 nm, c = 1.405 nm, α = β = γ = 90°晶体类型:合成晶体纯度:>99.995%属性:半导体X-ray diffraction on a WTe2 single crystal aligned along the (001) plane. XRD was performed at room temperature using a D8 Venture Bruker. The 5 XRD peaks correspond, from left to right, to (00l) with l = 2, 4, 6, 8, 10 Powder X-ray diffraction (XRD) of a single crystal WTe2. X-ray diffraction was performed at room temperature using a D8 Venture Bruker. Stoichiometric analysis of a single crystal WTe2 by Energy-dispersive X-ray spectroscopy (EDX).Raman spectrum of a single crystal WTe2. Measurement was performed with a 785 nm Raman system at room temperature.
  • 转移二维晶体材料的高纯聚合物
    1、企业介绍泰州巨纳新能源有限公司:巨纳集团(Sunano Group)是能源行业的知名品牌。泰州巨纳新能源有限公司(Sunano Energy)是国内最早的从事石墨烯制备、性能检测及应用产品开发的公司之一,注册资本11000万元,有办公用房300多平方米,厂房和洁净室3000多平方米。核心研发团队主要由国内外知名高校博士组成,部分成员来自于2010年诺贝尔物理学奖小组,项目技术处于国际领先地位,在石墨烯领域拥有专利30余项。企业管理团队有丰富的成功创业经验,创新意识强,公司客户遍布全球。2、高质量二维晶体材料简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料。巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合荷兰HQ Graphene为全球客户提供高质量的类石墨烯二维晶体材料,并提供定制服务,以满足客户的不同需求。 转移二维晶体材料的高纯聚合物

金属配合物低维晶体相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制