光标记装置

仪器信息网光标记装置专题为您提供2024年最新光标记装置价格报价、厂家品牌的相关信息, 包括光标记装置参数、型号等,不管是国产,还是进口品牌的光标记装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光标记装置相关的耗材配件、试剂标物,还有光标记装置相关的最新资讯、资料,以及光标记装置相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光标记装置相关的厂商

  • 常州光标环保科技有限公司是一家集水资源处理、利用成套系统研发、生产、销售、施工于一体的环保型工程企业。公司致力于科研和管理创新,开发出适用于各类工矿环境下的给排水系统,污水处理循环利用系统,产品广泛应用于城市生活供水、市政排水、黑臭河环境治理等工程中;公司采用三维CAD设计软件,CFD计算流体力学软件等先进设计手段进行产品开发,一直以努力打造产品自动化及后期投入使用无人化为目标,开发出适合产品的GPRS通讯模块,集中远程操控和监控物联网平台,让所有产品在使用过程中都能达到现场无人值守,自动运行,真正做到节能、节约、清洁、省时、省力的环保型产品。
    留言咨询
  • 北京欧比邻科技有限公司成立于2011年,核心研发人员在图像处理领域有超过10年的从业经验。经过9年稳健的快速发展,已经成长为具有自主研发和技术创新能力的公司。公司主要产品为光学动捕相机、高速相机等,公司核心业务——SMK系列光学定位动作捕捉相机,采用高性能的光学图像处理器捕捉被动发光标记点,构建三维数据的动作采集与分析系统,针对不同行业对使用场景和人数的需求,为用户提供定制化解决方案,并迅速成长为动作捕捉技术领域的领跑者。
    留言咨询
  • 上海楚肽生物科技有限公司是一家以多肽类产品为主,以氨基酸、荧光染料、糖类衍生物、小分子定制合成和小分子构件为辅的高科技企业。公司在上海浦东开发区设有销售、科研、财务、人事、行政等部门;在江苏常州设有现代化的生产基地和大型科研仪器,拥有专业化的人才,由业界资深人士负责公司营运,致力于打造以上海为龙头、以长三角为后方的多肽及小分子合成服务的品牌企业。   楚肽公司在多肽方面的技术国内领先,尤其在糖肽(Glycopeptide)、环肽(Cyclicpeptide)、甲基化多肽(Methyl-peptide)、磺化多肽(Sulfication-peptide)、磷酸化多肽(Phosphopeptides)天然产物肽(Natural peptides)、各种荧光标记肽(Fluorescent Labeled Peptides)和小分子修饰肽(Modification Peptides)等方面技术突出。在荧光染料方面,我们有一定的技术,能进行FITC、Fam、罗丹明B、Cy序列、AMC、AFC等荧光标记,目前公司正进行数个荧光染料开发知识产权保护。在小分子构件和小分子化合物合成方面,公司拥有一批经验丰富的有机合成研发人员,专门从事小分子有机合成,天然产物,杂环化合物,核苷及其氨基酸的研究。在生物大分子研究领域,我们也拥有一批资深生物专家,为您搭建化学与生物的桥梁。公司凭借在多肽领域专业的丰富经验和雄厚的研发能力,已经和国内外多个科研院所、著名科研机构、医药公司建立起长久的合作关系。
    留言咨询

光标记装置相关的仪器

  • [ 产品简介 ]多光子成像与全息光刺激系统 DeepVision是神经科学、肿瘤免疫和药物代谢等相关研究领域进行活体显微成像的理想平台。DeepVision核心技术来自于复旦大学脑科学转化研究院李博团队及工程与应用技术研究院董必勤团队的多年研发成果。系统采用了创新的设计理念和先进技术,能够实现双光子、三光子快速深层成像,并可拓展实现单细胞精度的三维双光子全息光遗传操控。[ 产品特点 ]&bull 更大的样品空间:龙门架式结构,可放置猕猴等非人灵长类动物或搭载小动物VR装置,实现小鼠跑球等行为学实验。&bull 更深的成像深度:三光子成像深度最大超过1500 μm,能记录到活体小鼠海马区神经元钙信号。&bull 多脑区同步成像:同一视野下可对多个脑区同步成像或刺激,实现多脑区互作神经环路研究。&bull 同步高精度光遗传刺激:对分布在三维空间中的多个目标神经细胞进行单细胞精度的全息光遗传学操控。&bull 无荧光标记谐波成像:利用二次谐波(SHG)或三次谐波(THG)进行无需荧光标记的谐波信号成像。[ 应用领域 ]&bull 活体脑(鼠/猴等)深层成像、神经元功能钙成像、光遗传实验&bull 各类模式生物(果蝇/斑马鱼/线虫)活体深层成像、神经元功能钙成像&bull 多色样品深层成像、谐波成像&bull 各种类器官和血管深层成像、谐波成像&bull 行为学实验中的神经元功能钙成像 活体小鼠海马区神经元钙信号成像(复旦大学脑科学转化研究院李博实验室)小鼠活体皮层三维双色成像,绿色:小胶质细胞;红色:皮层血管 ((复旦大学脑科学转化研究院李博实验室))脑类器官三光子三次谐波(THG)信号成像,无需荧光标记 (复旦大学脑科学转化研究院李博实验室)在三维空间中的多个目标神经细胞进行单细胞精度的光遗传学操控(复旦大学脑科学转化研究院李博实验室)
    留言咨询
  • 安捷伦生物(原艾森生物杭州有限公司)创建于2002年,致力于开发具有国际先进水平的实时无标记细胞功能分析系统等系列产品,以加速现代药物开发和提高基础生命科学研究水平。在无标记生物检测这个新颖的生物技术领域处于全球领先地位。实时无标记动态细胞分析技术(RTCA Real Time Cellular Analysis)是全球独有的专利核心技术。该技术采用特殊工艺,将微电极列阵整合在细胞培养板的每个细胞生长孔底部,用以构建实时、动态、定量跟踪细胞形态和增殖分化改变的细胞阻抗检测传感系统。当贴壁生长在微电极表面的细胞引起贴壁电极界面阻抗的改变时,这种改变与细胞的实时功能状态改变呈相关性,通过实时动态的电极阻抗检测可以获得细胞生理功能相关的生物信息、包括细胞生长、伸展、形态变化、死亡和贴壁等。xCELLigence RTCA MP使用无创生物传感技术监测,以实时无标记的方式检测细胞增殖,细胞形态变化和粘附能力。MP与其他xCELLigence仪器不同,它可以容纳6个96孔实时微电子检测板(E-Plate 96)。这六个板可以同时控制和监控,但彼此独立,可为多个用户提供最大的通量。将MP仪器置于标准的CO2细胞培养箱中,并通过电线与分析和控制单元接触,并将其放置在培养箱外。友好的用户软件允许对仪器进行实时控制和监控,并包括实时数据进行显示和分析。消除了传统终点法的基于细胞的测定的时间和劳动密集型步骤,xCELLigence RTCA MP的实时细胞分析大大提高了效率;其完美的重复性,避免了传统终点法的不稳定性,获得更加准确可信的实验数据。xCELLigence RTCA MP特点:• 无需标记,对细胞无损伤,检测频率快,检测准确度高• 自动、连续监测,获取全过程动态信息• 交叉式电极设计,确保高精确性和高重复性• 完整细胞效应图谱,提供大量、重要的动态反应信息• 支持从细胞迁移、浸润到细胞毒作用等多种检测应用,功能更灵活• 紧凑型设计,体积小巧,节省空间;设备安装简便,即插即用,易维护• 最新版本软件,可对IC50/EC50等数据进行自动计算
    留言咨询
  • 安捷伦生物(原艾森生物杭州有限公司)创建于2002年,致力于开发具有国际先进水平的实时无标记细胞功能分析系统等系列产品,以加速现代药物开发和提高基础生命科学研究水平。在无标记生物检测这个新颖的生物技术领域处于全球领先地位。实时无标记动态细胞分析技术(RTCA Real Time Cellular Analysis)是全球独有的专利核心技术。该技术采用特殊工艺,将微电极列阵整合在细胞培养板的每个细胞生长孔底部,用以构建实时、动态、定量跟踪细胞形态和增殖分化改变的细胞阻抗检测传感系统。当贴壁生长在微电极表面的细胞引起贴壁电极界面阻抗的改变时,这种改变与细胞的实时功能状态改变呈相关性,通过实时动态的电极阻抗检测可以获得细胞生理功能相关的生物信息、包括细胞生长、伸展、形态变化、死亡和贴壁等。xCELLigence RTCA SP仪器采用实时无标记、无损伤、电阻抗方式监测细胞的增殖、形态变化和附着质量。SP仪器与我们的其他xCELLigence仪器不同,它使用96孔微金电极板(E-Plate 96)。该仪器被放置在一个标准的二氧化碳细胞培养培养箱中,通过电缆接口与在外部的分析和控制单元进行连接。友好的配套软件可以实时控制和监控仪器,包括实时数据显示和分析功能。消除了传统终点法的基于细胞的测定的时间和劳动密集型步骤,xCELLigence RTCA SP的实时细胞分析大大提高了效率;其完美的重复性,避免了传统终点法的不稳定性,获得更加准确可信的实验数据。xCELLigence RTCA SP特点:• 无需标记,对细胞无损伤,检测频率快,检测准确度高• 自动、连续监测,获取全过程动态信息• 交叉式电极设计,确保高精确性和高重复性• 完整细胞效应图谱,提供大量、重要的动态反应信息• 支持从细胞迁移、浸润到细胞毒作用等多种检测应用,功能更灵活• 紧凑型设计,体积小巧,节省空间;设备安装简便,即插即用,易维护• 最新版本软件,可对IC50/EC50等数据进行自动计算
    留言咨询

光标记装置相关的资讯

  • EVs荧光标记的机遇与挑战
    细胞外囊泡(extracellular vesicles, EVs)在机体的多种生理病理过程中均发挥着重要作用,良好的结构稳定性、生物相容性及天然的转运能力使其成为理想的药物递送载体和治疗制剂。不管是在工业生产还是科学研究中,EVs的质量控制都至关重要,国际细胞外囊泡协会(international society for extracellular vesicles, ISEV)一直在努力推动和完善相关标准,如MISEV2014、MISEV2018以及即将发布的MISEV2022,同时工业界也试图确立适用于工业产品的质控标准。除了粒径、浓度等常规物理参数的检测,更重要的是对EVs的纯度、蛋白标志物、核酸以及载物等功能性分子进行表征,而内容物的定性定量分析通常需要通过荧光标记来实现。近日Lonza集团的研发团队发表了题为“Opportunities and Pitfalls of Fluorescent Labeling Methodologies for Extracellular Vesicle Profiling on High-Resolution Single-Particle Platforms”的文章,作者分别利用高分辨单颗粒表征平台nFCM(NanoFCM)和F-NTA对EVs进行表征,探讨EVs荧光表征过程中面临的问题与挑战。文章对EVs纯度测定过程中染料的选择、蛋白标志物分析、RNA检测、复杂体系中EVs的表征等方面进行全面研究,指出在EVs综合表征中面临的问题与注意事项,供广大EVs研究者参考。EVs纯度鉴定首先,分别选取两种细胞膜染料和两种细胞质染料对EVs的纯度进行鉴定。nFCM结果显示,无论是细胞膜染料(CMG/CMR)还是细胞质染料(CFSE/CTR),EVs阳性颗粒的比例均高达90%左右,且EVs尺寸越大,结合的染料越多,荧光强度也越高。由于具备超高的散射和荧光灵敏度,nFCM证实了几种染料标记效率的一致性(图1)。同样的样品和染色方法用F-NTA检测,经CFSE标记的EVs阳性率为88%,与nFCM结果相当,而对于CMG染料标记,F-NTA测得的阳性颗粒比例只有32%左右,粒径分布显示F-NTA检测到的是大的EVs。这个案例提醒研究者对于EVs纯度分析不仅需要关注不同染料间的标记和检测效率问题,还需要关注表征平台的检测能力。图1 不同染料标记EVs纯度的效率EVs抗体选择和标记方法在早期的微信公众号推文中小编介绍过不同公司的抗体特异性存在差异,抗体标签也是影响EVs标记效率的一个因素。该研究对比了PE、AF488、AF647、APC四种标签的CD9抗体,发现PE和AF488的标记比例优于AF647和APC,比例在50%左右;进一步选用PE和AF488两种标签的CD9、CD63和CD81抗体,发现在HT29和HEK293细胞系中不同标签抗体标记的效果没有显著差别(图2),说明在EVs蛋白标记过程中研究者需要格外关注抗体特异性、标签的选择对标记效率的影响。图2 不同荧光标签对抗体标记效率的影响除了抗体标签,未结合的抗体对EVs的阳性率也存在影响。文章对比了稀释法(Dilution)、超滤(UF)、尺寸排阻(SEC)三种方法对游离抗体去除效果和标记比例的影响。由于不涉及纯化过程,理论上稀释法对EVs的影响是最少的。nFCM结果显示三种方法得到的CD9、CD63、CD81阳性率基本一致,说明稀释法可以用来准确地测定EVs蛋白的比例,同时结果也证明UF和SEC纯化过程对EVs蛋白的阳性率没有影响(图3)。说明nFCM可通过稀释法测定EVs蛋白表达比例,省略超速离心去除游离抗体的操作,极大缩短操作时间,同时真实反映EVs蛋白表达比例和强度。图3 nFCM测定游离抗体去除方法对标记比例的影响细胞上清中EVs的直接检测前面介绍的案例都是基于EVs纯品的分析,杂质颗粒含量非常低,对测定结果的影响相对较小。进一步对较复杂的细胞上清(CCM)进行直接检测,作者指出对于EVs纯品和CCM样品,nFCM的结果令人惊讶的一致,CFSE与CMG阳性率例均在90%左右,与超离纯化的 HT29 EVs样品结果一致,说明nFCM平台既适用于纯的EVs样品,也可用于细胞上清样品中EVs的直接检测,具有广泛的应用场景;而在F-NTA平台,CFSE与CMC对于HT29细胞上清EVs标记阳性率分别为33%和27%,作者解释称可能是由于CCM样品复杂的成分导致F-NTA的检测存在差异;对于蛋白比例检测,3种EVs蛋白marker总比例高达188.5%,远远超过100%,文章指出可能是F-NTA荧光的灵敏度高于散射,大量小颗粒的散射信号未检出,导致比例高于100%。图4 CCM样品EVs纯度和蛋白比例测定与F-NTA相比,nFCM还可以利用多色荧光标记策略对sEV亚群进行表征。为研究EVs的抗体单标和双标之间是否相互影响,作者选取CD9-AF488和CD81-PE分别进行单独标记和双标,对比标记比例的变化。结果表明这两个蛋白之间,不管是单独标记或双标,阳性率差异不显著;另外,用EVs染料CTR和CD81同时标记EVs,发现所有CD81阳性的EVs的CTR均呈现阳性,说明CD81阳性的颗粒,均是EVs!(图5)。nFCM可以准确识别抗体标记的所有EVs,并且确认抗体阳性率的准确性。图5 EVs抗体单标和双标的影响结论综上,Lonza集团的研发团队对EVs荧光标记过程中的各项指标进行综合对比,对EVs纯度测定过程中染料的选择、蛋白标志物分析、复杂体系中EVs的表征等进行研究,对工业生产中EVs的质量控制提供了新思路和新方法。作者肯定了nFCM用于EVs检测的准确性和灵敏度,提出EVs纯度表征方法,初次采用CD9/63/81几种抗体的混合物验证EVs的纯度,并对细胞上清中的EVs进行直接检测,得到了跟EVs纯品相一致的结果。另外作者指出nFCM对于EVs荧光检测具有更高的灵敏度和稳定性(图6),nFCM可在单颗粒水平对EVs的散射和荧光进行同时检测,单次采样即可实现蛋白与EVs(或蛋白间)的“共定位”分析,是EVs质量控制中不可或缺的工具。图6 文中关于nFCM的评价附录:Lonza Walkersville(龙沙集团)是全球CDMO龙头企业,一家以生命科学为主导,在生物化学、精细化工、功能化学等行业均处于领先地位的全球性跨国公司,具有一百多年历史,总部位于瑞士巴塞尔。Lonza集团EVs工作流程图(图片来源:Lonza官方网站)Lonza目前已采购3台NanoFCM,分别用于EVs研发、生产质控和CRO项目,致力于EVs大规模生产、纯化和表征,后续将应用于EVs载药领域。2021年11月,Lonza收购了Codiak公司位于马萨诸塞州Lexington的外泌体生产基地,正式成为Codiak管线的战略制造合作伙伴。届时Lonza将借助Codiak的高通量外泌体生产技术向第三方提供服务,并开发先进的外泌体产品,助力细胞与基因治疗产业。参考文献:1. Fortunato D, Mladenović D, Criscuoli M, et al. Opportunities and Pitfalls of Fluorescent Labeling Methodologies for Extracellular Vesicle Profiling on High-Resolution Single-Particle Platforms[J]. International Journal of Molecular Sciences, 2021, 22(19): 10510.2. https://www.lonza.com/3. https://www.lonza.com/news/2021-11-02-13-01
  • 荧光定量PCR实验,荧光标记怎么选?
    荧光定量PCR技术是将常规的PCR和荧光检测技术相结合,利用荧光信号积累实时监测整个PCR进程,以此实现对初始模板的定量分析。荧光定量PCR技术作为当今生物学研究的重要手段之一,在基础科学、生物技术、医学研究、法医学、诊断学等多方面具有广泛的应用前景。说到荧光定量PCR技术,我们经常会问类似于“你的实验是染料法还是探针法”,“你用的探针是什么类型”等之类的问题,这其实是对荧光标记的选择。根据荧光标记的不同,可以将荧光定量PCR实验分为探针法和染料法两大类。染料法染料法利用能与DNA双链结合的染料来实现,如SYBR Green I。该染料在游离状态下呈现微弱的荧光,一旦与双链DNA的双螺旋小沟结合,其绿色荧光增强约1000倍。因此其总的荧光强度与双链DNA含量成正比,利用这一关系可以反映生成的PCR产物的量(图 1)。SYBR Green I的最大吸收约在497 nm,发射波长最大约在520 nm,与FAM荧光分子的光谱性质类似,因此在所有的荧光定量PCR设备中都是第一通道检测,即“FAM/SYBR Green I”通道。▲ 图1 染料法原理图理论上,所有能与双链DNA结合的染料都可以用于qPCR检测,如溴化乙锭EtBr,碘化丙啶PI,吖啶橙、Cy3等。而选择用于qPCR反应的染料通常会从信号强度、生物安全性、检测简便性和经济适用性这几个因素考虑。例如EtBr可能存在潜在的致癌性。综合考虑下来,SYBR Green I成了比较理想的选择。目前,使用Evagreen的实验者也越来越多,Evagreen作为一种新型的染料,其光谱性质与SYBR Green I类似,其优势在于:▶ 对PCR反应的抑制程度小。高浓度SYBR Green I会强烈抑制PCR反应,因此要控制其使用浓度,一定程度上降低了DNA检测的灵敏度。▶ 与DNA结合密度高。单位长度的DNA双链上Evagreen的密度更高,为饱和型染料,消除了SYBR Green I存在的“染料重分布”的缺陷,提高检测灵敏度的同时也可用于高分辨率溶解曲线HRM。▶ 化学性质更稳定,适合长期保存。TaqMan 探针TaqMan 探针基本可以满足60%以上的qPCR实验,如常规的基因表达和拷贝数变异CNV实验。TaqMan 荧光探针是一种寡核苷酸探针,荧光基团连接在探针的5' 末端,而淬灭剂则在3' 末端(图2)。PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,探针完整时,报告基团发射的荧光信号被淬灭基团吸收 PCR扩增时, Tag酶的5' -3' 外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。常用的荧光基团是FAM,TET,VIC,HEX。▲ 图2 Taqman探针MGB探针对于要分辨单碱基差异的SNP实验,采用对碱基错配容忍度更低的MGB探针,在淬灭基团后加入了DPI3基团(图3),从而提高了与靶标结合的亲和力;而且可以对靶点碱基进行化学修饰,如PeptideNucleic Acid和Locked Nucleic Acid。▲ 图3 MGB探针双杂交探针Taqman探针对探针的长度有比较严格的要求,双杂交探针则消除了这一“缺陷”。双杂交探针是由两条寡核苷酸单链组成,一条的3’端带有供体荧光分子,另一条的5’端带有受体荧光分子(图4)。游离状态下荧光供体会发出荧光,但当两条单链都匹配到模板链上时,就会发生荧光共振能量转移FRET,受体荧光分子就可以发出荧光,其荧光强度与生成的产物的量成正比。双杂交探针的优势有两点:摆脱了探针长度的限制,较长的探针可以提高与模板匹配的成功率;只有上下游两条探针都正确匹配后才能检测到受体荧光分子发出的荧光,特异性有所提高。▲ 图4 双杂交探针分子信标探针游离状态下,分子信标探针是一种茎环结构,其环状部分的15-30个碱基可以与靶标区域相结合匹配,下端的配对区域(左右一般各5-6个碱基)则由重复的GC组成,从而将5’的荧光分子和3’的淬灭基团紧紧聚在一起,荧光发生淬灭;当退火时,分子信标探针解开环并与模板靶标杂交,这样荧光分子和淬灭基团的物理距离就变大了,荧光淬灭的前提就打破了(图5)。除了MGB探针,分子信标探针也非常适合用于SNP检测。▲ 图5 分子信标探针除了上述几种类型的探针之外,还有尝试将引物和探针功能相结合的技术,如Amplifluor、LUX等,在设计难度上有所提高,但使用时更简便。各有其应用的侧重点和设计上的利弊,在此不多赘述。那么在荧光定量PCR实验中,我们应该如何进行选择呢?在这里,给大家总结了一些两种方法的区别,供大家参考。表1 染料法和探针法的区别
  • 追踪单个活细胞 细胞条码完胜荧光标记
    p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 404px" title=" 2015812530441140.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201508/uepic/28a495d3-f847-4968-980e-a818f89bc0ae.jpg" width=" 500" height=" 404" / /p p style=" TEXT-ALIGN: center" strong 活细胞中的塑料球能发出激光。图片来源:M. SCHUBERT /strong /p p   两组研究人员分别将微小激光器放置在了活细胞内。这听上去可能有点像蚂蚁侠的下一代武器,但这个“小玩意”将极大提高生物学家追踪单个细胞活动的能力——这可能惠及从发育生物学到癌症研究的诸多领域。 /p p   “这有可能做一些你利用其他技术做不到的事。”英国敦提大学生物物理学家David McGloin说。例如,该激光器能追踪的细胞比荧光标记能追踪的更多,并且比高频ID等萌芽技术更简单易用。剑桥大学神经生物学家Kristian Franze也赞同这一观点。“如果他们能开发出适用于活细胞的此类技术,那对许多人而言将非常有趣。”他说。 /p p   要制作一个激光器,你需要两件东西:一种能被激发产生光的材料或“媒介”以及一个回荡着特定波长的光的“共振腔”,就像管风琴会同特有频率的声波共鸣一样。与谐振腔共振的光会刺激该材料发出更多光,极大地放大其效果来创造激光,结果将产生一个能放大光量的反馈回路。 /p p   之前,科学家也曾“摆弄”过以细胞为基础的激光器。例如,2011年,美国哈佛大学医学院生物医学家Seok Hyun Yun和现供职于英国圣· 安德鲁大学的物理学家Malte Gather,利用工程改造后包含绿色荧光蛋白的单个细胞作为发光媒介,并将其置于一个共振腔内,从而制造了一个激光器。但没有人制出放置在单个细胞内的激光器。 /p p   研究小组多年来一直在探索以单细胞为基础的激光,希望在活组织内造出会发荧光的细胞,以便在这些细胞工作时跟踪它们,深入揭示身体内部机制,比如癌症是如何开始的。目前,Gather和Yun正在利用类似技术分别进行研究。 /p p   一个困难环节是将腔囊放置在细胞内。Gather和同事将细胞与直径约为5~10微米的塑料球混合,这些小球被掺杂了荧光染料。小珠子充当了空腔,而染料则充当了媒介。细胞经由内吞作用将小球吸入“体内”,这一过程就像免疫细胞吞噬病原体。由于这些球体用荧光染料浸过,所以用一种颜色的光撞击后,它们会发出另一种颜色的光。这种光接着在球体内共振,引发激光作用,并放大自己。重要的是,每一束激光会根据球体的精确尺寸发出12种不同波长的光。相关论文发表在近日出版的《纳米快报》上。这一技术能作用于4类细胞,包括人类巨噬细胞和一种白血细胞。 /p p   研究人员指出,这一技术在细胞传感、医疗成像等领域有着广泛应用。“改写传统激光研究领域的知识并在这个平台上展开研究以便将激光性能最优化,将是一件有趣或者说非常激动人心的事情。”Yun表示。 /p p   之后,研究人员设计出一种5纳秒的光脉冲激活这些染料。它发射的光能沿球体的中间线运行——通过一种名为全内反射的过程进行约束。特定波长的共振和增加会更强烈,直到珠子发出足够的激光。 /p p   Yun和同事Matjaz Humar还设法诱导细胞“吞下”塑料珠子,并且他们制造了两类共振球,相关成果日前在线发表于《自然—光子学》期刊。研究人员利用一个细胞内的脂肪滴或油滴反射和放大光,从而产生激光。Yun和Humar报告说,他们能改变波长,并且利用不同直径的荧光聚苯乙烯微球而不是被注射进去的油滴或脂肪滴标记单个细胞。理论上,利用不同组合的微球和具有不同光谱特性的染料,应当可以使为人体中存在的几乎所有细胞进行单独标记成为可能。 /p p   Yun和Gather表示,这些激光器最显著的应用可能将是追踪单个细胞的行动。每个塑料珠子的直径和光学特性都略有不同,因此它们能有效区分波长,充当细胞条形码。Gather和同事用19小时在细胞培养皿中追踪了少量巨噬细胞,而Yun和Humar也进行了类似验证。 /p p   由于激光器能在明确的波长上照亮细胞,这让它们比荧光蛋白质标记等其他细胞追踪技术更有优势。包含荧光染料和蛋白的传统荧光探针拥有相对较宽的发射光谱——约30~100纳米。这限制了能被同时使用的探针数量,因为通常很难从组织中天然分子广泛的背景发射中区分出这些发光源。但这种激光器的光谱特性使其能同时追踪数千个微小指向标。研究人员通过为每个细胞装载数个小球将这一数字扩展到数百万或数十亿。然后,每个细胞将以不同的波长组合发射激光。 /p p   但这一技术还有很长的路要走。首先,研究人员需要确定不同的细胞类型都能“吞下”小球,尤其是活组织中的细胞。Gather预测,这将不是问题。“我相信该技术是可归纳的。”他说。另外,研发人员必须缩小塑料球的尺寸。Yun承认,现在的小球会将细胞填满。但Yun和Gather已经证实,他们可以用更小的玻璃球代替塑料球。 /p p   由于细胞发光可以持续一个较长的周期,可以在较长时间里识别和跟踪活组织内的细胞,有望为研究人员提供一种很有潜力的手段,执行细胞内传感、自适应成像,还可能真正看到肿瘤细胞的生长过程。但科学家指出,目前这一技术还只用在实验室培养的活细胞中,但他们希望进一步研究能带来用于动物实验的细胞跟踪系统,并最终用于人类。“不管怎样,它非常酷!”McGloin说。 /p

光标记装置相关的方案

光标记装置相关的资料

光标记装置相关的试剂

光标记装置相关的论坛

  • 荧光标记-荧光标记多肽

    荧光标记-荧光标记多肽

    5(6)-FAM,FITC,CY5,RhodamineB,PNA,EDNAS/dabcyl等荧光标记修饰的多肽:荧光标记修饰多肽技术是我们国肽生物的代表性多肽合成技术,我们的这项技术已经相当成熟。[img=,488,412]https://ng1.17img.cn/bbsfiles/images/2019/04/201904191652029467_5266_3531468_3.jpg!w488x412.jpg[/img]我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com欢迎咨询服务热线:17718122172;17718122684;17730030476;17718122397

  • 荧光标记抗体:原理、应用与进展

    [b][font=宋体]一、引言[/font][/b][font=宋体] [/font][font=宋体]荧光标记技术是生物学和医学领域中常用的可视化技术,其中荧光标记抗体凭借其独特的应用优势,在许多研究方向中发挥了重要作用。本文将详细介绍荧光标记抗体的原理、应用及最新进展。[/font][font=宋体] [/font][b][font=宋体]二、荧光标记抗体的原理[/font][/b][font=宋体] [/font][font=宋体]荧光标记技术是一种利用荧光物质对目标进行标记,通过特定波长的光激发后发出荧光,从而实现可视化检测的方法。荧光标记抗体则是将荧光物质与特异性抗体结合,形成荧光标记抗体,用于对目标抗原进行特异性结合和荧光标记。常见的荧光物质有荧光素、量子点、上转换纳米颗粒等。[/font][b][font=宋体] [/font][font=宋体]三、荧光标记抗体的应用[/font][/b][font=宋体] [/font][font=宋体][font=宋体]免疫分析:荧光标记抗体在免疫分析中具有广泛的应用,如酶联免疫吸附试验([/font][font=Calibri]ELISA[/font][font=宋体])、流式细胞术、免疫荧光染色等。通过荧光标记抗体与抗原的特异性结合,可以实现对目标抗原的高灵敏度、高特异性检测。例如,利用荧光标记抗体检测肿瘤标志物,有助于肿瘤的早期诊断和治疗监测。[/font][/font][font=宋体]细胞成像:荧光标记抗体在细胞成像中具有重要作用,可以用于观察细胞内特定抗原的表达情况,了解细胞的功能和行为。例如,利用荧光标记抗体对细胞膜抗原进行标记,可以观察细胞迁移、侵袭等行为。[/font][font=宋体]组织切片染色:荧光标记抗体也可用于组织切片染色,对病理组织中的特定抗原进行标记,有助于病理诊断和组织学研究。例如,利用荧光标记抗体对肿瘤组织进行染色,有助于肿瘤类型的鉴别和恶性程度的评估。[/font][font=宋体]药物筛选:荧光标记抗体在药物筛选中具有重要应用,可以用于药物作用靶点的检测和药物作用机制的研究。例如,利用荧光标记抗体对药物作用靶点进行标记,可以观察药物对靶点的影响,评估药物的疗效和安全性。[/font][font=宋体] [/font][b][font=宋体]四、展望[/font][/b][font=宋体] [/font][font=宋体]随着荧光标记技术的不断发展,荧光标记抗体在灵敏度、特异性和可视化效果等方面得到了显著提升。同时,新型荧光物质的开发和制备也为荧光标记抗体的应用提供了更多选择。未来,随着荧光标记技术的进一步优化和多色荧光标记技术的发展,荧光标记抗体将在更多领域发挥重要作用,为生物学、医学和其他相关领域的研究提供有力支持。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/immunofluorescence-service][b]免疫荧光检测服务[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/services/immunofluorescence-service[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

光标记装置相关的耗材

  • WesterBright ChemiPen化学发光标记笔
    WesternBright 化学发光标记笔免费提供试用,您可以跟我们联系。 WesternBright 化学发光标记笔,可直接在预染的蛋白质marker上或者蛋白转移膜上书写,其特有的“墨水”可以和HRP底物(ECL发光液)起反应,产生化学发光信号。优势: ? 更简便-- 可将蛋白质Marker转换成化学发光条带,和目的蛋白质条带一起同时成像,方便观察和分析? 更人性化-- 可直接在蛋白转移膜上注明编号和日期,方便实验数据的管理? 确认 HRP 底物稳定性-- ChemiPen中的试剂和HRP底物(ECL发光液)结合后可长时间发光,所以他可以用来实时检测HRP底物(ECL发光液)的稳定性? 兼容性-- 可用于胶片和CCD成像 美国Advansta公司,全球顶级的ECL发光液制造商;以超越传统的灵敏度,引领行业的品质标准;100%美国原装进口!
  • 标记试剂盒
    标记试剂盒AminoAllyl Labeling kit已经优化,可使用1至2微克的mRNA作为起始材料,可以生成200至500毫微克的染料标记的cDNA。标记试剂盒AminoAllyl Labeling kit支持所有基质和芯片表面化学作用,并提供染料大量有效地掺入。协议简单,AminoAllyl Labeling kit试剂盒是现成使用的,不需要任何缓冲液或柱制备。染料去除减少了芯片杂交的背景。 标记试剂盒AminoAllyl Labeling kit可与总RNA提取试剂盒盒MiniAmp 扩增试剂盒一起使用。 编号 名称 AFK 间接氨基烯丙基荧光标记试剂盒(20标记反应)
  • 标记试剂盒-DNA芯片
    标记试剂盒-DNA芯片AminoAllyl Labeling kit已经优化,可使用1至2微克的mRNA作为起始材料,可以生成200至500毫微克的染料标记的cDNA。标记试剂盒支持所有基质和芯片表面化学作用,并提供染料大量有效地掺入。协议简单,AminoAllyl Labeling kit试剂盒是现成使用的,不需要任何缓冲液或柱制备。染料去除减少了芯片杂交的背景。 标记试剂盒AminoAllyl Labeling kit可与总RNA提取试剂盒盒MiniAmp 扩增试剂盒一起使用。 标记试剂盒规格 编号 名称 AFK 间接氨基烯丙基荧光标记试剂盒(20标记反应)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制