直接铜盐灰

仪器信息网直接铜盐灰专题为您提供2024年最新直接铜盐灰价格报价、厂家品牌的相关信息, 包括直接铜盐灰参数、型号等,不管是国产,还是进口品牌的直接铜盐灰您都可以在这里找到。 除此之外,仪器信息网还免费为您整合直接铜盐灰相关的耗材配件、试剂标物,还有直接铜盐灰相关的最新资讯、资料,以及直接铜盐灰相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

直接铜盐灰相关的资料

直接铜盐灰相关的论坛

  • 新手小白求问,关于火焰原子吸收直接法测自来水中铁锰铜锌铅镉的问题

    本人新手小白,刚接手[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],用的是岛津AA6880,我们通常检测的是自来水,经过几次尝试遇到以下问题需要向大佬们请教。根据GB5749-2016规定,自来水铁锰铜锌铅镉分别不得超过0.3、0.1、1、0.05、0.01、0.005㎎/L,但GB5750-2006检测方法中火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]直接法适宜的测定范围分别是铁0.3-5㎎/L、锰0.1-3㎎/L、铜0.2-5㎎/L、锌0.05-1㎎/L、铅1-20㎎/L、镉0.05-2㎎/L。这样的话自来水水样中铁锰锌很容易测量值在测定范围之外,测量数值大多为负数,铅镉更是基本测不出来。然后我根据这几个元素的限值重新配制了标液,上机后可能因为浓度太小,机器所测吸光度基本一致,标线无法绘制。问题:1、测自来水,如果用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]直接法能不能测,我的方法需要怎样改进?如果不能需要更换什么方法来测? 2、工程师给我的方法中,各标液定容是用1%的硝酸,但是国标上是用0.15%的硝酸定容,请问我需要用哪种定容? 3、玻璃器皿浸泡液使用的是10%的硝酸还是30%的硝酸?

  • 0.2%盐或者酸,能直接进样吗

    样品是小分子醛酮做二甲基苯肼衍生处理的产物,里面含盐酸0.1%,为了分析这个样品,调到中性再进样,不知道有什么影响。有谁吃过这个螃蟹吗?欢迎讨论直接进样了,出峰了,目前看来没多大影响,还需慢慢观察

直接铜盐灰相关的方案

  • 美析仪器:导数-原子吸收法测定粉煤灰中微量铜含量
    粉煤灰除含有Si、A1、Ca等常量元素外,还含有As、Cd、Cr、Cu、Pb等多种微量甚至痕量有害元素。在其排放贮存和利用过程中,极易进进大气、水体和土壤,给环境和生态造成较严重的负效应。采用常规火焰原子吸收法(FAAS)难于直接测定粉煤灰中的微量甚至痕量元素含量。为改善常规火焰法的灵敏度,扩大其应用范围,FAAS往往与多种技术联用。孙汉文等人提出基于测定信号强度随时问变化率的导数原子光谱分析新技术。作者曾利用导数一原子捕集火焰吸收法(I)IAT-FAAS)成功测定了粉煤灰中痕量镉、铅,其灵敏度较常规火焰法进步2~3个数目级。本文研究提出导数一原子吸收法(I)IFAAS)测定粉煤灰中的微量元素铜方法,为进一步研究粉煤灰中微量重金属元素的分布及其在环境中的溶出特性提供一种灵敏度、正确的测定方法。
  • 导数-原子吸收法测定粉煤灰中微量铜、铬含量
    粉煤灰除含有Si、A1、Ca等常量元素外,还含有As、Cd、Cr、Cu、Pb等多种微量甚至痕量有害元素。在其排放贮存和利用过程中,极易进进大气、水体和土壤,给环境和生态造成较严重的负效应。采用常规火焰原子吸收法(FAAS)难于直接测定粉煤灰中的微量甚至痕量元素含量。为改善常规火焰法的灵敏度,扩大其应用范围,FAAS往往与多种技术联用。孙汉文等人提出基于测定信号强度随时问变化率的导数原子光谱分析新技术。作者曾利用导数一原子捕集火焰吸收法(I)IAT-FAAS)成功测定了粉煤灰中痕量镉、铅,其灵敏度较常规火焰法进步2~3个数目级。本文研究提出导数一原子吸收法(I)IFAAS)测定粉煤灰中的微量元素铜、铬方法,为进一步研究粉煤灰中微量重金属元素的分布及其在环境中的溶出特性提供一种灵敏度、正确的测定方法。
  • MA-3000直接燃烧法在地质矿产行业测定铜矿中总汞的应用
    MA-3000直接燃烧法在地矿行业测定铜矿中总汞的应用汞以元素形式作为天然汞齐存在于铜等天然金属中。大多数铜矿石仅包含一小部分结合在有价值矿石矿物中的铜金属,其余矿石为脉石(不需要的矿物)。矿石首先被压碎(粉碎),所产生的各个矿物相颗粒被分离以去除脉石,这是富含汞的尾矿可以进入当地分水岭的地方。汞蒸气也可以在冶炼过程中释放到大气中,在该过程中矿石被加热和还原,以去除气体或炉渣等其他元素。尽管元素汞仅以痕量存在于大气中,但这已被确定为水生环境中汞的重要来源。众所周知,汞会在人类中生物蓄积,因此海洋生物中的生物蓄积会转移到人类群体中,从而导致在汞中毒中。汞对自然生态系统和人类都是危险的,因为它具有剧毒,特别是因为它能够破坏中枢神经系统。汞对子宫内和儿童早期的人类发展构成特别威胁。因此,为防止汞中毒,必须准确量化铜矿石中的总汞含量。 NIC公司 MA-3000是一款专用的直接汞分析仪,通过热分解、金汞齐化和冷原子吸收光谱有选择地测量几乎任何样品基质(固体、液体和气体)的总汞。MA-3000提供快速测试的结果,没有任何繁琐、耗时和复杂的样品制备过程。这是一个理想的解决方案,以满足当今实验室对简单,快速和准确的汞测量的需求。

直接铜盐灰相关的资讯

  • 研究|具有超低热导率的宽直接带隙半导体单层碘化亚铜(CuI)
    01背景介绍自石墨烯被发现以来,二维(two-dimensional, 2D)材料因其奇妙的特性吸引了大量的研究兴趣。特别是二维形式的材料由于更大的面体积比可以更有效的性能调节,通常表现出比块体材料更好的性能。迄今为止,已有许多具有优异性能的二维材料被报道和研究,如硅烯、磷烯、MoS2等,它们在电子、光电子、催化、热电等方面显示出应用潜力。在微电子革命中,宽带隙半导体占有关键地位。例如,2014年诺贝尔物理学奖材料氮化镓(GaN)已被广泛应用于大功率电子设备和蓝光LED中。此外,氧化锌(ZnO)也是一种广泛应用于透明电子领域的n型半导体,其直接宽频带隙可达3.4 eV。在透明电子的潜在应用中,n型半导体的有效质量通常较小,而p型半导体的有效质量通常较大。然而,人们发现立方纤锌矿(γ-CuI)中的块状碘化铜是一种有效质量小的p型半导体,具有较高的载流子迁移率,在与n型半导体耦合的应用中很有用。例如,γ-CuI由于其较大的Seebeck系数,在热电中具有潜在的应用。二维材料与块体材料相比,一般具有额外的突出性能,因此预期单层CuI可能比γ-CuI具有更好的性能。作为一种非层状I-VII族化合物,CuI存在α、β和γ三个不同的相。温度的变化会导致CuI的相变,即在温度超过643 K时,从立方的γ-相转变为六方的β-相,在温度超过673 K时,β-相进一步转变为立方的α-相。因此,不同的条件下,CuI的结构是很丰富的。超薄的二维γ-CuI纳米片已于2018年在实验上成功合成 [npj 2D Mater. Appl., 2018, 2, 1–7.]。然而,合成的CuI纳米片是非层状γ-CuI的膜状结构,由于尺寸的限制,单层CuI的结构可能与γ-CuI薄膜中的单层结构不同。因此,需要对单层CuI的结构和稳定性进行全面研究。在这项研究中,我们预测了单层CuI的稳定结构,并系统地开展电子、光学和热性质的研究。与γ-CuI相比,单层CuI中发现直接带隙较大,可实现超高的光传输。此外,预测了单层CuI的超低热导率,比大多数半导体低1 ~ 2个数量级。直接宽频带隙和超低热导率的单层CuI使其在透明和可穿戴电子产品方面有潜在应用。02成果掠影近日,湖南大学的徐金园(第一作者)、陈艾伶(第二作者)、余林凤(第三作者)、魏东海(第四作者)、秦光照(通讯作者),和郑州大学的秦真真、田骐琨(第五作者)、湘潭大学的王慧敏开展合作研究,基于第一性原理计算,预测了p型宽带隙半导体γ-CuI(碘化亚铜)的单层对应物的稳定结构,并结合声子玻尔兹曼方程研究了其传热特性。单层CuI的热导率仅为0.116 W m-1K-1,甚至能与空气的热导率(0.023 W m-1K-1)相当,大大低于γ-CuI (0.997 W m-1K-1)和其他典型半导体。此外,单层CuI具有3.57 eV的超宽直接带隙,比γ-CuI (2.95-3.1 eV)更大,具有更好的光学性能,在纳米/光电子领域有广阔的应用前景。单层CuI在电子、光学和热输运性能方面具有多功能优势,本研究报道的单层CuI极低的热导率和宽直接带隙将在透明电子和可穿戴电子领域有潜在的应用前景。研究成果以“The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap”为题发表于《Nanoscale》期刊。03图文导读图1. 声子色散证实了CuI单层结构的稳定性。单层CuI(记为ML-CuI)几种可能的结构:(a)类石墨烯结构,(b)稳定的四原子层结构,(c)夹层结构。(d)稳定的γ相快体结构(记为γ-CuI)。(e-h)声子色散曲线对应于(a-d)所示的结构。给出了部分状态密度(pDOS)。通过测试二维材料的所有可能的结构模式,发现除了如图1(b)所示的弯曲夹层结构外,单层CuI都存在虚频。平面六边形蜂窝结构中的单层CuI,类似于石墨烯和三明治夹层结构,如图1(a,c)所示作为对比示例,其中声子色散中的虚频揭示了其结构的不稳定性[图1(e,f)]。因此,通过考察单层CuI在不同二维结构模式下的稳定性,成功发现单层CuI具有两个弯曲子层的稳定结构,表现出与硅烯相似的特征。优化后的单层CuI晶格常数为a꞊b꞊4.18 Å,与实验结果(4.19 Å)吻合较好。而在空间群为F3m的闪锌矿结构中,得到的优化晶格常数a=b=c=6.08 Å与文献的结果(5.99-6.03 Å)吻合较好。此外,LDA泛函优化得到的单层CuI和γ-CuI的晶格常数分别为4.01和5.87 Å,为此后续计算都基于更准确的PBE泛函。通过观察晶格振动的投影态密度,发现Cu和I原子在不同频率下的贡献几乎相等。此外,光学声子分支之间存在带隙[图1(g)],这可能导致先前报道的光学声子模式散射减弱。相反,在γ-CuI中不存在声子频率带隙[图1(h)]。图2. 热导率及相关参数的收敛性测试。(a)原子间相互作用随原子距离的变化。(b)热导率对截断距离的收敛性。彩色椭圆标记收敛值。(c)热导率相对于Q点的收敛性。(d)单层CuI和γ-CuI的热导率随温度的函数关系。在稳定结构的基础上,比较研究了单层CuI和γ-CuI的热输运性质。基于原子间相互作用的分析验证了热导率的收敛性[图2(a)]。如图2(b)所示,热导率随着截止距离的增加而降低,其中出现了几个阶段。热导率的下降是由于更多的原子间相互作用和更多的声子-声子散射。注意,当截止距离大于6 Å时,热导率仍呈下降趋势,说明CuI单层中长程相互作用的影响显著。这种长程的相互作用通常存在于具有共振键的材料中,如磷烯和PbTe。通过收敛性测试,预测单层CuI在300 K时的热导率为0.116 W m-1K-1[图2(c)],这是接近空气热导率的极低值。单层CuI的超低热导率远远低于大多数已知的半导体。此外,计算得到的γ-CuI的热导率为0.997 W m-1K-1,与Yang等的实验结果~0.55 W m-1K-1基本吻合,值得注意的是Yang等人的实验结果测量了多晶态γ-CuI。此外,单层CuI和γ-CuI的热导率随温度的变化完全符合1/T递减关系[图2(d)]。考虑到温度对热输运的影响,今后研究声子水动力效应对单层CuI热输运特性的影响,特别是在低温条件下,可能是很有意义的。图3. 单层CuI和γ-CuI在300 K的热输运特性。(a)群速度,(b)相空间,(c)声子弛豫时间,(d) Grüneisen参数,(e)尺寸相关热导率的模态分析。(f)平面外方向(ZA)、横向(TA)和纵向(LA)声子和光学声子分支对热导率的贡献百分比。超低导热率的潜在机制可能与重原子Cu和I有关,也可能与单层CuI的屈曲结构有关。声子群速度[图3(a)]和弛豫时间[图3(c)]都较小,而散射相空间[图3(b)]较大。总的来说,单层CuI (1.6055)的Grüneisen参数的绝对总值显著大于γ-CuI (0.4828)。即使在低频下Grüneisen参数没有显著差异[图3(d)],单层CuI和γ-CuI的声子散射相空间却相差近一个数量级,如图3(b)所示。因此,低频声子弛豫时间的显著差异[图3(c)]在于不同的散射相空间。此外,单层CuI的声子平均自由程(MFP)低于γ-CuI,如图3(e)所示。因此,在单层CuI中产生了超低的热导率,这将有利于电源在可穿戴设备或物联网的应用,具有良好的热电性能。此外,详细分析发现,光学声子模式在单层CuI[图3(f)]中的较大贡献是由于相应频率处相空间相对较小,这是由图1(g)所示的光学声子分支之间的带隙造成的。图4. 单层CuI的电子结构。(a)单层CuI和(h)γ-CuI的电子能带结构,其中电子局部化函数(ELF)以插图形式表示。(b-d)单层CuI和(i)γ-CuI的轨道投影态密度(pDOS)。(e)透射系数,(f)吸收系数,(g)反射系数。在验证了CuI单层结构稳定的情况后,进一步研究其电子结构,如图4(a)所示。利用PBE泛函,预测了单层CuI的直接带隙,导带最小值(CBM)和价带最大值(VBM)都位于Gamma点。PBE预测其带隙为2.07 eV。我们利用HSE06进行了高精度计算,得到带隙为3.57 eV。如图4 (h)所示,单层CuI的带隙(3.57 eV)大于体γ-CuI的带隙(2.95 eV),这与Mustonen, K.等报道的3.17 eV非常吻合,使单层CuI成为一种很有前景的直接宽频带隙半导体。此外,VBM主要由Cu-d轨道贡献,如图4(b-d)的pDOS所示。能带结构、pDOS和ELF揭示的电子特性的不同行为是单层CuI和γ-CuI不同热输运性质的原因。电子结构对光学性质也有重要影响。如图4(e-g)所示,在0 - 7ev的能量范围内,单层CuI的吸收系数[图4(f)]和折射系数[图4(g)]不断增大,说明单层CuI在该区域的吸收和折射能力增强。相应的,随着透射系数的减小,单层CuI的光子传输能力[图4(e)]也变弱。当光子能量大于7 eV时,CuI的吸收和折射系数开始显著减弱,最终在8 eV的能量阈值处达到一个平台。值得注意的是,与声子的吸收和传输能力相比,单层CuI对光子的反射效率较低,最高不超过2%。对于光子吸收,单层CuI的工作区域在5.0 - 7.5 eV的能量范围内,而可见光的光子能量在1.62 - 3.11 eV之间。显然,CuI的主要吸收光是紫外光,高达20%。
  • 学生感染诺如原因查明 桶装水直接灌井水
    嘉兴海宁海盐两地爆发诺如病毒,引起社会广泛关注。(相关报道:嘉兴511名师生感染诺如病毒 桶装水检出病毒)卷入风波的3家桶装水企业(其委托生产商为湖州龙瀑山泉水有限公司、湖州市水皇饮品有限公司、湖州德清莫干山云溪山泉饮品有限公司)均已停产检查,企业库存产品全部封存,各抽取的1批次成品和水源水已送省疾控中心检验。   销往诺如病毒爆发地区嘉兴海宁、海盐两地的桶装水,为这三家企业生产的部分产品。2月8日到2月17日,这三家企业累计生产了桶装饮用水16717桶,其中受海宁市大东南水业有限公司委托生产&ldquo 杭嘉湖&rdquo 、&ldquo 波旺&rdquo 品牌桶装水5122桶,以自有品牌销售的11595桶分别销往湖州、嘉兴等地区。   同时,海宁警方已开展相关调查取证工作。经查,海宁大东南公司于2003年注册&ldquo 杭嘉湖&rdquo 商标后,与湖州龙瀑山泉水有限公司签订委托贴牌加工协议,委托该企业生产&ldquo 杭嘉湖&rdquo 牌桶装饮用水。据统计,2014年2月,大东南公司供应海宁83家学校共6550桶桶装水。从前期掌握的情况分析,此次桶装水受诺如病毒污染是龙瀑山泉水公司在生产环节中造成的。   2月21日,调查人员奔赴龙瀑山泉水公司现场勘察,在霞幕山水库(取水点)、厂区附近深井(取水点)、深井旁小溪、水库取水口、源水桶等处采集水样,并调查询问了企业法人代表及相关工作人员。   经查,龙瀑山泉水公司平时桶装水水源主要来源于上游的霞幕山水库,2014年1月3日开始,由于水库进入枯水期,企业直接将厂区附近深水井的水接入源水桶用于生产。此次学生感染诺如病毒主要是饮用了使用深水井水源生产的桶装水导致。事发后,这家企业停止生产,于2月20日将库存水全部销毁。   公安机关将继续会同质监、工商等部门开展调查取证,待水样检测结论出具后,依法做出处理。
  • SCIEX:直接进样质谱法助力污水验毒
    污水中毒品定量是污水验毒的关键,污水验毒能够客观、全面的反应城市毒情,为公安机关锁定“毒源”,提供有力的技术支持。 污水验毒,有助于将禁毒重点从事后打击转向事前预警,污水毒情监测能准确获取毒品的相关区域信息,让实时监测毒品滥用情况成为可能。在污水中测出毒品含量稍有变化,就预示着这个区域发生了新的涉毒犯罪。警方根据线索进行追踪,及时扫除毒品来源,能将涉毒犯罪从源头进行控制。  在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”专题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文邀请到SCIEX公司应用技术专家孙小杰经理谈谈污水验毒相关的一系列产品技术及解决方案。SCIEX公司应用技术专家孙小杰经理  污水验毒作为一种客观、实时、准确、便捷的毒情监测方法,在我国还属于新兴技术,需要不断完善,提升其在追查制毒窝点、预警打击方面的作用。当前,新型毒品种类繁多、更新速度快,已成为世界毒品治理的一大难题。对此进行常规化监测,及时建立毒情监测预警更新,将是污水监测下一阶段发展的重点。此外,可以结合多种验毒手段,开展全方位监测。针对涉毒问题易发、多发的重点地域,在污水验毒基础上,提升对土壤、空气等环境介质的监测能力和水平,形成立体的多维毒情数据监测体系,有助于充分发挥新兴手段在毒品查缉、侦查破案、预防教育等领域中的积极作用。  近年来,中国各地开展城市污水中毒品成分监测结果显示,海洛因、冰毒、氯胺酮等3类主流毒品含量以及消费量普遍大幅下降,污水验毒是毒情监测的重要手段,能够推算出特定区域内滥用毒品的种类、消费量以及吸毒人员规模等,具有较高的灵敏性和准确度,不少地方运用城市污水监测毒情,这种非常高效的方式正成为打击防范毒品违法犯罪的利器。  但是,污水中毒品含量低通常在皮克(pg)级别或以下,污水中背景基质非常复杂,对液质联用仪的灵敏度、抗基质效应能力以及抗污染能力提出更高的要求,另外繁琐的前处理过程,大大降低了检测的效率。液质联用仪SCIEX 7500系统直接进样法,能够很好的解决污水中的毒品及其代谢物测定的这些难题。  目前实验方案现状:  通常需要采用离线或在线固相萃取法进行富集后上机分析,操作难度大、效率低,需要大量人力、物力和耗材成本的支撑。  SCIEX 全新解决方案突出特点:省时省力省钱  特点一:采用常规的液质联用直接进样法  特点二:无需离线固相萃取(SPE) 前处理且无需在线固相萃取(Online-SPE)  特点三:抗污染能力和抗基质效应能力强  SCIEX污水查毒全新解决方案  基于SCIEX Triple Quad™ 7500 LC-MS/MS 系统 – QTRAP® Ready  测试谱图  毒品类化合物提取离子流色谱图  线性关系  样品浓度配置在1 pg/mL-500 pg/mL范围内,内标浓度为25 pg/mL,所有化合物具有良好的线性关系。  12种毒品以及代谢产物类化合物线性关系  基质效应  针对本文涉及到的12种毒品类化合物,在1 pg/mL,10 pg/mL,100 pg/mL三个浓度点下进行污水加标基质效应考察,基质效应均在95 %-105 %范围内,完全符合方法学要求。  该方案的特点和优势总结:  1. 简单准确:无需前处理,直接上机分析即可,结果准确。  2. 灵敏度高:12种毒品及其代谢产物定量限均在1 pg/mL以下,充分满足日常污水中毒品检测的需求。  3. 抗污染能力和抗基质效应能力强,基质效应95 %-105 %。  该方法节省人力、时间和物力,为地区毒品研究分析以及禁毒工作的开展提供了有力的监测手段。  打击防范毒品违法犯罪是一项复杂、艰巨、长期的系统工程。针对毒情新形势新变化,加强禁毒技术研究,推进禁毒科技创新,才能牢牢掌握同毒品违法犯罪作斗争的主动权,推动禁毒工作不断取得新成效。

直接铜盐灰相关的仪器

  • 产品概述DMA-500直接进样测汞仪,可实现固体、液体、气体直接进样,无需消解,方法灵敏度高,检测速度快,省时省力,一键完成测量,绿色环保,检测全流程无废气废液排出。产品特点◇ 自动进样器:采用四维立体自动进样器,可实现100个样品的自动进样。◇ 灰化炉、催化燃烧炉:高精度PID控温系统,提升样品前处理的一致性,并消除环境温度等波动带来的信号漂移,提高重复性和稳定性。◇ 汞阱:恒功率加热的汞阱系统,快速到达所需温度,避免交叉污染和记忆效应。◇ 检测系统:双吸收池串联式设计,满足高中低不同浓度样品的检测需求;双光束光源校正系统,实时消除光源漂移和波动带来的影响,提高结果准确性。应用领域疾控,食药,海关,第三方检测等行业的样品检验;城市给排水系统的水质检验;环境样品(水、土壤、大气)检验;临床体液及毒理病理检验;化妆品毒性检验等需要对汞元素进行痕量检测的领域。
    留言咨询
  • MA-3000 直接汞分析仪MA-3000 配置 SCRD & RH-MA3仪器简介MA-3000实现了汞分析的突破,采用直接热分解金汞齐冷原子吸收(CVAAS)技术。这一创新汞分析仪可以测量固体、液体和气体样品基质中的总汞。拥有MA-3000,实验室可以实现比以往更快捷、更通用的汞测量。仪器特点&bull 凭借NIC的专利(JP NO.5596995)非色散双池三光束CVAAS尖端技术,确保测量的准确性和可靠性。&bull 具备优秀的多功能性,能够分析从污泥、土壤到血液、原油等的各种样品,满足广泛的行业检测需求。&bull 符合全球公认的检测标准,包括USEPA7473、ASTM D 6722-19、ASTM D7623-20、UOP 1009-15、ISO 15411,确保合规性和可信度。&bull 检测限低于0.001 ng。&bull 测量范围高达70,000 ng,可应用于超低和极高浓度的测量,确保应用的灵活性和精度。工作原理直接热分解将样品装入样品舟。样品舟将被转移到样品加热炉中,根据所选加热方法在高温下加热样品。样品将被分解,所有形式的汞化合物都将转化为气态元素汞。金汞齐释放出的蒸气将通过汞收集管,并将元素汞捕集,形成金汞齐。此步骤可去除干扰元素。冷原子吸收(CVAAS)测量热分解步骤完成后,加热汞收集管将纯化和浓缩的纯汞气体释放到检测池中,通过CVAAS在253.7nm的波长下进行测量。MA-3000通用性强、测量范围宽,无交叉范围干扰。MA-3000配备了获得专利(JP5596995)的双池三光束检测器,其方法检测限(MDL)低于0.001ng,动态范围扩展至70,000ng汞。仪器优势100位自动进样器,实现高通量分析:MA-3000集成了100位自动进样器,采用了自动化技术。用户可以轻松地一次性加载多达100个相同或不同类型的样品进行检测,实现高效分析和投资回报率。专利燃烧管:在汞分析领域,用户可能需要分析不同的样品,采用多功能样品加热管用于热分解技术至关重要。MA-3000的样品加热管内添加的是NIC具有专利的催化剂(JP 5001419)。此设计是为严格的实验室使用而量身定制的,适用于各种样品,并增强了对卤素和硒等干扰物质的耐受性。汞记忆效应低:通过对加热炉及其整体路径进行精准温度控制,MA-3000可以降低并阻止汞记忆效应。这样可减少交叉污染和汞残留,实现汞检测。多种配置MA-3000是一款功能强大的汞分析仪,适用于分析各种基质的样品,从固体、液体到通过吸附材料捕获的气体样品等。此外,MA-3000还具有多种升级功能,通过配置不同的附件,可进一步增强其性能。MA-3000 配置 SCRD & RH-MA3此种配置允许用户在单台仪器上使用3种不同的汞分析技术,如:▶ 直接热分解法 - 固体和液体样品▶ 还原气化法 - 痕量级汞液体基质样品▶ 热解吸法 - 气体基质样品应用情况MA-3000是一款适用于各种应用的多功能汞分析仪。无论是复杂的环境样品、复杂的工业样品、专业研究的样品,还是血液、头发或尿液等生物样本,MA-3000都能迎接挑战。NIC积累了大量应用数据可进一步证明MA-3000的多种适应性。这些丰富的数据展示了MA-3000的多种应用,可以为用户提供宝贵的应用方案,增强用户的信心。
    留言咨询
  • 仪器简介BDHg-60直接进样测汞仪采用电热蒸发冷原子吸收原理,不需要添加任何试剂,不需要进行复杂繁琐的样品前处理,直接测定固体和液体样品中的总汞,有效避免了样品前处理过程中带来汞的损失、交叉污染及环境污染等问题,确保分析数据准确的同时,省时省力省试剂。仪器应用BDHg-60直接进样测汞仪的应用满足HJ 923-2017、 HJ 910-2017、 GB/T 31947-2015、 EPA7473 和SN/T 4697-2016等标准。主要应用于食品安全、环境保护、疾病控制、医药医疗、农业、地矿、土壤、地表水及地下水、化妆品、教学研究等领域样品中汞的含量检测。仪器特点◆ 操作简单方便:样品无需消解,实验人员仅需称样并将其放置于自动进样器上,软件能直接读取称样数据,点击“运行”,即可完成全部测量。◆ 样品分析效率高:复杂基质单样测试不到5min,简单基质单样测试不到3min,可随时插入或删除特殊样品,设备可实现无限循环添加样品,大大提高检测效率。◆ 更优的重复性和准确性:特制高效催化管和金阱等的设计,保证了测试结果的准确性;专利设计的快速冷凝装置,使系统除水效果更好,汞记忆效应更小,测试重复性更佳。◆ 检测过程绿色环保:分析全过程无需使用有毒有害化学物质,分析过程产生的尾气被废气处理装置有效吸收。◆ 智能化的工作平台:软件操作简单,方法文件库,系统自诊断,故障点自检测,所有谱图实时显示,全程催化炉,灰化炉实时温度监控,一键式更新嵌入式程序。◆ 固体样品称样重量直接传输功能:软件可直接读取电子天平称样的数据,避免人为可能的误差。◆ 仪器使用LAN/WIFI通信接口:确保系统快速通讯和可靠稳定工作。
    留言咨询

直接铜盐灰相关的耗材

  • 准直接口,50 μm,颜色编码为绿色
    安捷伦科技公司的准直接口是安捷伦二极管阵列检测 (DAD) 系统的组成部分。这些接口包含与毛细管内径精确匹配的光学狭缝,以获得优化的灵敏度和线性检测范围。准直接口和毛细管卡套结合在一起,可以简化毛细管更换,保护易碎的检测窗口,保证检测器对准窗口。快速更换卡套可使毛细管的更换在不到一分钟内完成。 注:准直接口上颜色标记必须与毛细管的内置准直插头的颜色标记相匹配。 快速更换卡套可使毛细管的更换在不到 1 分钟内完成 卡套和接口可用于所有市售毛细管(外径约 365 µm)
  • 准直接口,75 μm,已扩展,颜色编码为黄色
    安捷伦科技公司的准直接口是安捷伦二极管阵列检测 (DAD) 系统的组成部分。这些接口包含与毛细管内径精确匹配的光学狭缝,以获得优化的灵敏度和线性检测范围。准直接口和毛细管卡套结合在一起,可以简化毛细管更换,保护易碎的检测窗口,保证检测器对准窗口。快速更换卡套可使毛细管的更换在不到一分钟内完成。 注:准直接口上颜色标记必须与毛细管的内置准直插头的颜色标记相匹配。 快速更换卡套可使毛细管的更换在不到 1 分钟内完成 卡套和接口可用于所有市售毛细管(外径约 365 µm)
  • 准直接口,75/100/150 μm,颜色编码为蓝色
    安捷伦科技公司的准直接口是安捷伦二极管阵列检测 (DAD) 系统的组成部分。这些接口包含与毛细管内径精确匹配的光学狭缝,以获得优化的灵敏度和线性检测范围。准直接口和毛细管卡套结合在一起,可以简化毛细管更换,保护易碎的检测窗口,保证检测器对准窗口。快速更换卡套可使毛细管的更换在不到一分钟内完成。 注:准直接口上颜色标记必须与毛细管的内置准直插头的颜色标记相匹配。 快速更换卡套可使毛细管的更换在不到 1 分钟内完成 卡套和接口可用于所有市售毛细管(外径约 365 µm)

直接铜盐灰相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制