北升麻醇对照品

仪器信息网北升麻醇对照品专题为您提供2024年最新北升麻醇对照品价格报价、厂家品牌的相关信息, 包括北升麻醇对照品参数、型号等,不管是国产,还是进口品牌的北升麻醇对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合北升麻醇对照品相关的耗材配件、试剂标物,还有北升麻醇对照品相关的最新资讯、资料,以及北升麻醇对照品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

北升麻醇对照品相关的资料

北升麻醇对照品相关的论坛

  • 2015中国药典检测方案有奖问答03.02(已完结)——暑湿感冒颗粒中5-O-甲基维斯阿米醇苷、升麻素苷的检测

    2015中国药典检测方案有奖问答03.02(已完结)——暑湿感冒颗粒中5-O-甲基维斯阿米醇苷、升麻素苷的检测

    问题:暑湿感冒颗粒中5-O-甲基维斯阿米醇苷、升麻素苷的检测对照品分析中5-O-甲基维斯阿米醇苷的理论塔板数是?答案:24128.072【活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币zengzhengce163(注册ID:zengzhengce163)ZHAOGUANGXI(注册ID:ZHAOGUANGXI)caishendao(注册ID:caishendao)http://ng1.17img.cn/bbsfiles/images/2016/03/201603021507_585734_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/03/201603021507_585735_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================暑湿感冒颗粒中5-O-甲基维斯阿米醇苷、升麻素苷的检测样品制备 制备方法1. 对照品:取5-O-甲基维斯阿米醇苷对照品、升麻素苷对照品适量,精密称定,加甲醇制成每1 mL各含20 μg的溶液,即得。2. 供试品:溶液取装量差异项下的本品,研细,取约4 g,精密称定,置具塞锥形瓶中,精密加入甲醇50 mL,称定重量,加热回流2小时,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。分析条件 色谱柱Diamonsil C18 150 x 4.6 mm,5 μm (Cat#:99901)流动相A:甲醇 B:水 梯度流速1 mL/min柱温30 ℃检测器UV 290 nm 进样量10 μL 色谱图对照品 http://ng1.17img.cn/bbsfiles/images/2016/03/201603020958_585675_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 26.320 311583 8810 12825.336 0.927 -- 2 49.733 341906 7082 24128.072 0.905 21.185 *药典要求理论板数按5-O-甲基维斯阿米醇苷峰计算应不低于5000供试品 http://ng1.17img.cn/bbsfiles/images/2016/03/201603020959_585676_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 26.289 39166 1313 16830.923 0.935 -- 2 49.737 62730 1428 25652.736 0.937 22.846 *药典要求理论板数按5-O-甲基维斯阿米醇苷峰计算应不低于5000

  • 【金秋计划】基于UHPLC-Q-TOF-MS/MS的升麻素苷在正常大鼠和牙周炎模型大鼠体内外代谢研究

    防风Saposhnikoviae Radix为伞形科植物防风Saposhnikovia divaricata (Turcz.) Schischk.的干燥根,具有祛风解表、胜湿止痛、止痉的功效[1]。防风含有多种化学成分,主要包括色原酮类、香豆素类、多糖类、挥发油类等[2],这些成分具有解热、镇痛、抗炎、抗菌、抗氧化、抗肿瘤等多种药理作用[3-6]。升麻素苷、升麻素、5-O-甲基维斯阿米醇苷为主的色原酮类成分是防风的主要活性物质,具有解热、镇痛、抗炎等多种药理活性[7-10],其中升麻素苷、5-O-甲基维斯阿米醇苷已作为《中国药典》2020年版中防风质量控制的标志物。课题组前期已对5-O-甲基维斯阿米醇苷体内外的代谢进行了全面的研究[11],但尚未见对升麻素苷的研究报道。有研究表明升麻素苷是防风抗炎作用的主要成分[12],而防风为《中国药典》2020年版收录的中成药齿痛消炎灵颗粒的君药,齿痛消炎灵颗粒具有治疗牙周炎的作用[13-14],故本研究采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-四极杆-飞行时间质谱联用技术(UPLC-Q-TOF-MS/MS)与MetabolitePilot 2.0、PeakView 2.0软件,对升麻素苷在牙周炎模型大鼠和正常大鼠的体内外代谢进行研究,并比较代谢差异,为防风的药效物质基础提供依据。 1 材料 1.1 动物 SPF级雄性SD大鼠,体质量(220±20)g,由河北石家庄伊维沃生物技术有限公司提供,动物生产许可证号SYXK(冀)2020-002。动物于温度(22±2)℃、相对湿度(50±3)%、12 h光照/12 h黑暗循环环境下饲养。动物实验通过河北医科大学动物伦理委员会的伦理审查(批准号DW2019003)。 1.2 药品与试剂 升麻素苷对照品(批号BD121316,质量分数≥98%),购自上海毕得医药科技股份有限公司;升麻素对照品(批号HR1638W2)购自宝鸡市辰光生物科技有限公司;右美沙芬对照品(批号Y03S11W120802,质量分数>98%)购自上海源叶生物科技股份有限公司;甲醇、乙腈(色谱纯)购自美国Tedia公司;甲酸(色谱纯)购自美国Diamond公司;纯净水购自娃哈哈有限公司。 1.3 仪器 Triple TOF 5600+型高分辨质谱仪(美国AB Sciex公司);超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统包括CBM20A型控制器、DGU-20A5R型在线脱气模块、LC-30AD型二元梯度高压泵系统、SIL-30AC型自动进样器和CTO-30A型柱温箱(日本岛津公司);D3024R型高速冷冻离心机(美国SCILOGEX公司);KQ-5200E型台式超声波清洗器(昆山市超声仪器有限公司);十万分之一分析天平(瑞士METTLER TOLEDO公司);MTN-2800D型氮吹仪(天津奥特赛恩斯仪器有限公司);MX-S型涡旋混匀器[大龙兴创实验仪器(北京)有限公司];SkyScan 1176型小动物Micro-CT扫描影像系统、NRecon软件、3D重建软件CTvox(德国Bruker公司)。 1.4 数据处理软件 Analyst® TF 1.7软件、MetabolitePilot 2.0软件、PeakView 2.0软件(美国AB Sciex公司)。 2 方法 2.1 溶液的制备 2.1.1对照品溶液的制备 精密称取升麻素苷、升麻素对照品适量,甲醇溶解制成质量浓度为1 mg/mL的贮备液,并用甲醇稀释成质量浓度为100 μg/mL的对照品溶液。 2.1.2内标(IS)溶液的配制 精密称取右美沙芬对照品适量,甲醇溶解制成质量浓度为1 mg/mL的贮备液,临用前用甲醇稀释成质量浓度为2.0 μg/mL的IS溶液。 2.1.3大鼠ig溶液的配制 精密称取升麻素苷对照品600 mg,加入60 mL纯净水,配成质量浓度为10 mg/mL的ig溶液。 2.2 牙周炎模型的建立 大鼠适应性喂养1周,采用吸入式2%~3%异氟烷实施麻醉,麻醉成功后采用0.2 mm正畸结扎丝结扎大鼠上颌左侧第一磨牙牙颈部,诱导实验性牙周炎[15-17],对侧同名牙作为对照不结扎。手术后,待大鼠全部苏醒,喂其常规鼠粮及水,并定期检查结扎丝牢固程度,整个实验持续8周。 在整个实验过程,注意大鼠精神状态,定期检查牙龈炎症、颜色、水肿、探针是否出血及牙周袋是否形成等。造摸8周后随机抽取牙周炎模型大鼠,处死,取上颌左侧第一磨牙及牙龈组织,同时取其对侧对比,置于4%多聚甲醛固定,常规脱钙,脱水透明,浸蜡包埋,制作切片,常规苏木素-伊红(HE)染色后,于显微镜下观察病理变化。同时采用微型计算机断层成像技术(micro computed tomography,Micro-CT)重建大鼠牙槽骨三维图像,观察牙槽骨吸收情况。 2.3 动物给药及生物样品采集 实验前,将正常大鼠随机分为4组,每组3只,第1组为空白正常胆汁组,第2组为给药正常胆汁组,第3组为空白正常血浆、尿液及粪便组,第4组为给药正常血浆、尿液及粪便组。模型组按与正常组相同的方法随机分为4组。给药前大鼠禁食12 h,自由饮水。根据大鼠体质量,以100 mg/kg的剂量进行ig给药。空白组ig等体积的纯净水溶液。 分别于ig给药后0.167、0.333、0.5、0.75、1、2、4、6、8、12、24 h自眼内眦取血0.3 mL,置肝素化的离心管中,4 ℃、3 500 r/min离心10 min,取上清液获得血浆样品,并将各组不同时间点获得的血浆样品合并,即得空白血浆和含药血浆。ig给药后,收集大鼠0~72 h每4个小时的尿液和粪便样本,并将来自同组大鼠的所有尿液和粪便分别进行混合,即得空白和给药尿液、粪便。ig给药后,通过ip 20%乌拉坦生理盐水溶液(1.5~2.0 g/kg)麻醉,实施胆汁插管引流手术收集0~24 h的胆汁样品,将来自同组大鼠的所有胆汁进行混合,即得空白和给药胆汁。所有样品置于?80 ℃冰箱备用。 分别取正常大鼠及牙周炎模型大鼠新鲜粪便3 g,加入30 mL厌氧培养液[18],用玻璃棒研碎并搅拌均匀,经医用纱布滤过,即得肠道菌培养液。取肠道菌培养液1 mL,加入100 μL(1.0 mg/mL)升麻素苷溶液,通入氮气置于无氧并充满氮气的厌氧袋中,在提前预热至37 ℃的摇床中孵育12 h,即得肠道菌孵育样品。空白组用100 μL超纯水代替升麻素苷溶液。 2.4 样品前处理 取血浆、尿液、胆汁样品各1 mL,分别加入100 μL的IS溶液(2 μg/mL),混合均匀,加入3倍量甲醇,涡旋5 min,4 ℃、15 000 r/min离心10 min,取上清液。取肠道菌孵育液1 mL、粪便样品0.5 g(加1 mL蒸馏水超声30 min制备成匀浆),分别加入100 μL的IS溶液(2 μg/mL),加入3倍量的醋酸乙酯,涡旋5 min,4 ℃、15 000 r/min离心10 min,收集上层萃取液,重复萃取3次,合并萃取液。将离心后所得的各生物样品上清液置另一清洁离心管中,N2流吹干,200 μL 50%甲醇复溶,涡旋5 min,15 000 r/min离心10 min,取上清液即得。 2.5 检测条件 2.5.1 色谱条件 COSMOCORE C18柱(150 mm×2.1 mm,2.6 μm);流动相为0.1%甲酸水溶液(A)- 甲醇(B),梯度洗脱:1~3 min,5%~20% B;3~25 min,20%~95% B;25~30 min,95% B。预平衡5 min,柱温40 ℃,体积流量0.3 mL/min,进样量5 μL。 2.5.2 质谱条件 电喷雾离子源(electro-spray ionization,ESI),正离子模式下进行全扫描,参数设置如下:离子源喷雾电压5 500 V;源温度550 ℃;气帘气压力241.325 kPa;雾化气(Gas1)压力379.225 kPa;加热气(Gas2)压力379.225 kPa;解簇电压70 V;碰撞能量40 eV;碰撞能量扩展15 eV。TOF-MS扫描的扫描范围为m/z 100~1 200,积累时间设置为250 ms。每个扫描周期选择8个响应最高的离子进行MS/MS扫描。产物离子扫描范围为m/z 50~1 200,积累时间为100 ms。 2.6 数据处理 正常大鼠和牙周炎模型大鼠ig升麻素苷后,各生物样本的总离子流图见图1。采用以下5个步骤来鉴定和分析升麻素苷在正常大鼠及牙周炎模型大鼠体内外的代谢物:①基于UHPLC-Q-TOF-MS/MS技术,在线进行全扫描数据采集,并利用多重质量亏损(MMDF)和动态背景扣除(DBS)设置获得准确的MS/MS质谱信息。②利用Peak View、Metabolite Pilot软件中的多种数据挖掘工具,自动过滤出升麻素苷的可能代谢物。③从准确的质谱数据、母体药物的裂解模式以及相关文献描述代谢物的推断过程。④ClogP值用作区分具有相同分子式和相似质谱数据的代谢物异构体的参数。ClogP值越大,在反相色谱系统中的洗脱时间就越长。⑤根据Peak View软件提供的代谢物的峰面积,用峰面积相对定量法比较代谢物在正常大鼠及牙周炎模型大鼠各生物样品中的含量差异。3 结果 3.1 CT成像 应用Micro-CT扫描、三维图像重建显示,与对照组(图2-B、D)相比,模型组(图2-A、C)牙槽骨吸收明显,同时有水平和垂直向吸收。对大鼠上颌第一、第二磨牙兴趣区域[19](本实验选取的兴趣区域(region of interest,ROI)为第一、第二磨牙近中牙槽嵴吸收情况)进行测量,对照组牙近中釉牙骨质界(cemento-enamel juction,CEJ)到牙槽嵴顶(alveolar bone crest,ABC)的平均距离为0.394 mm(图2-D),与对照组相比,模型组CEJ到ABC的距离平均增至0.813 mm。分析大鼠CEJ至ABC的垂直距离(图2-A、B),即分别取对照组与模型组样本牙齿颊侧的近中、中央及远中共3个位点的CEJ至ABC的距离,测量统计分析结果显示,与对照组相比,模型组CEJ-ABC距离明显增加(P<0.05,图2-E)。 图片 3.2 升麻素苷质谱裂解规律分析 升麻素苷(M0,C22H28O11)的保留时间为8.80 min,M0通过重排生成准分子离子峰[M+H]+m/z469.170 2。母离子m/z 469.170 2失去18(-H2O)、72(-C4H8O)分别形成特征碎片离子m/z 451.173 2、397.125 0。M0通过丢失162(-glu)、234(-glu-C4H8O)分别产生特征碎片离子m/z307.128 6、235.068 0,其中特征碎片离子m/z 235.068 0是特征碎片离子m/z307.128 6通过二氢吡喃环失去C4H8O发生RDA裂解反应产生。通过连续丢失O和C3H6O后,m/z 235.068 0产生碎片离子m/z 219.072 5、161.065 4。苷元离子m/z307.126 8有2种脱水方式(-H2O),分别产生m/z289.116 6的2种结构不同碎片离子,苷元离子在失去水的基础上连续失去2个CH3分别产生m/z274.092 3、259.068 8。通过连续丢失C3H6、CH2、C2H2、CO和O后,m/z 289.116 6产生了一系列碎片离子m/z247.068 1、233.052 3、221.051 7、219.072 5、205.056 3、193.056 0、189.061 1、177.060 6。升麻素苷可能的裂解途径见图3。 3.3 升麻素苷在大鼠体内外代谢物的分析鉴定 采用上述分析策略,共鉴定出30个升麻素苷的代谢物(其中I相代谢物25个、II相代谢物5个)。在健康大鼠中,共发现25个代谢产物(血浆中8个、尿液中17个、粪便中11个、胆汁中19个、体外肠道菌群3个)。在牙周炎模型大鼠中,共发现27个代谢产物(血浆中8个、尿液中18个、粪便中12个、胆汁中22个、体外肠道菌中2个)。升麻素苷原型及30种代谢物的详细信息见表1。 3.3.1 I相代谢物的鉴定 (1)水解(M1):M1的保留时间为10.14 min,准分子离子为m/z 307.118 0,推测其分子式为C16H18O6。M1的相对分子质量比M0少162(C6H10O5),此外,M1的特征碎片离子m/z 307.118 0、289.107 4、274.085 0、259.059 5、247.061 9、235.059 4、233.044 1、221.043 9、217.050 3、205.049 6、189.055 0、177.054 3、161.059 2均与M0相同,这表明M1在M0基础上发生了糖基化反应。且经过对照品比对,确认M1是M0脱糖产生的水解产物升麻素。 (2)水解-羟基化:M2~M5的保留时间分别为5.98、7.12、7.92、8.65 min,准分子离子峰分别为m/z323.113 4、323.111 2、323.112 8、323.113 0,均比M1多16,表明M2~M5可能为M1的单羟基化产物,推测其是分子式C16H18O7的同分异构体。M2的特征碎片离子m/z323.113 4、305.101 9、275.085 0、263.064 4均比M1的特征碎片离子m/z307.118 0、289.107 4、259.059 5、247.061 9多16,此外M2的特征碎片离子m/z 247.060 2、235.059 4、233.046 2、221.044 1、177.054 9均与M1的特征碎片离子保持一致,尤其特征碎片m/z263.064 4的存在,说明该羟基化反应发生在C-2′位。M3的特征碎片离子m/z 323.111 2、305.109 0、275.055 4均比M1的特征碎片离子m/z 307.118 0、289.107 4、274.085 0、259.0595多16,且其特征碎片离子m/z 235.031 5、233.035 6、205.072 2、193.050 1均与M1的特征碎片保持一致,说明该羟基化反应可能发生在C-5′位或者C-2′位。M4的特征碎片离子m/z259.060 0、247.060 0、235.060 2、233.044 6、221.044 8、205.048 5、189.054 3、177.054 9、161.060 1与M1具有相同的裂解途径,且根据其特征碎片m/z 305.1015的存在,推测羟基化的位置可能在C-3′位。M5的碎片离子m/z323.113 0、305.102 6与M1相比增加了16,其特征碎片离子m/z 259.061 1、247.060 1、235.060 3、233.043 9、221.044 7、205.050 2、189.054 9、177.054 5均与M1具有相同的裂解途径,尤其特征碎片离子275.054 8的存在,推测M5的羟基化反应可能发生在C-8位上。通过计算ClogP值发现,M2~M5的ClogP值分别为?0.859 1、?0.756 5、?0.364 7、?0.018 9,与保留时间的大小具有一致性,证明了推测的合理性。 (3)水解后失去CH2:M6保留时间为12.85 min,准分子离子峰为m/z293.102 3,推测其分子式为C15H16O6,是在M1的基础上丢失1个CH2。M6主要的二级碎片离子m/z 293.102 3、275.091 6、245.043 7、221.044 8均比M1的碎片离子m/z307.118 0、289.107 4、274.085 0、259.059 5、235.059 4少14,且由于特征碎片m/z 275.091 6、233.044 7的存在,提示反应位点可能在C-5。 (4)水解后失去CH2+O:M7、M8的保留时间分别为7.19、9.67 min,准分子离子峰分别为m/z 309.096 6、309.097 7,推测其分子式为C15H16O7。与M6相比多了16。因此,代谢物M7、M8被初步鉴定为M6的羟基化产物。M7的特征碎片离子m/z233.026 8、221.029 1、205.031 9均与M6保持一致,且其特征碎片离子m/z309.096 6、291.099 1与M6相比增加了16,提示羟基化的位置发生在侧链上,推测反应位点在C-5′位。M8的特征碎片m/z 233.050 8、221.045 6、177.083 7均与M6的特征碎片离子保持一致,说明M8与M6具有相同的裂解途径,且有特征碎片m/z 249.164 1的存在,说明羟基化的位置在环上,推测反应位点可能在C-8位。此外,根据上述所推结构,计算M7、M8的ClogP值分别为?0.320 8、0.337 1,与出峰时间保持一致,证明了推测的合理性。 (5)水解后去甲基化成羧酸:M9、M10的保留时间分别为7.78、9.30 min,准分子离子峰分别为m/z337.092 9、337.091 9,推测其分子式为C16H16O8。与M1相比多了30,推测M9、M10是M1结构中的1个甲基被氧化成羧酸后得到的代谢产物。根据M1的结构特征推测发生反应的位点可能是与C-5连接的甲氧基及C-5′位的甲基上。M9的特征碎片离子m/z 337.092 9、319.082 3、304.060 0、289.032 9、277.071 1、265.032 2、263.056 3、235.024 3、219.029 1、207.043 8均比M1的特征碎片离子离子m/z 307.118 0、289.107 4、274.085 0、259.059 5、247.061 9、235.059 4、233.044 1、205.049 6、189.055 0、177.054 3多30,因此证明M9氧化位点发生在C-5位连接的甲氧基上。M10在正离子模式下形成的准分子离子峰为m/z 337.091 9,与M1相比多30,其特征碎片离子m/z274.130 1、259.063 0、247.060 7、235.061 7、233.045 8、205.051 7、161.061 8均与M1的特征碎片离子保持一致,说明其氧化位点发生在M1的侧链上而不在环上,故推测反应位点发生在C-5′位。根据以上推测的结构,计算两者的ClogP值分别为?1.233 0、?0.585 6。计算结果与出峰时间顺序保持一致,进一步确证了推测的合理性。 (6)水解后去甲基化成酮:M11保留时间为10.96 min,准分子离子峰为m/z 291.086 3,推测其分子式为C15H14O6。与M1相比少了16,推测在M1的基础上失去了1个甲基进一步将连接在中心碳原子上的羟基氧化成酮。M11的特征碎片离子m/z 291.086 3、273.076 7、258.058 0与M1相比均少16,特征碎片离子m/z 259.062 8、235.096 5、233.044 7、221.041 4、177.052 1与M1保持一致,说明反应发生在侧链上,因此推测反应发生在C-4′位。 (7)水解脱羟基:M12的保留时间为9.83 min,其准分子离子峰m/z 291.122 6,推测其分子式为C16H18O5。与M1相比少了16(O),推测M12在M1的基础上发生了脱羟基反应,M12的特征碎片离子m/z 273.076 0、263.092 2、219.025 6、217.159 5均比M1的特征碎片离子m/z 289.107 4、247.061 9、235.059 4、233.044 1少16,说明脱羟基位发生在C-9位。 (8)水解后失去CH2O:M13的保留时间为8.24 min,其准分子离子峰为m/z277.106 7,推测其分子式为C15H16O5。与M1相比少了30(CH2O),推测M13可能是在M1的基础上丢失甲氧基产生的代谢物。M13的特征碎片离子m/z 259.101 8、217.054 2、205.052 8、181.089 7可能是M1的特征碎片离子m/z289.107 4、247.061 9、235.059 4、221.043 9丢失1个甲氧基产生的,根据M1的结构特点推测丢失位点在C-5位。 (9)水解后脱羟基失去CH2O:M14的保留时间6.48 min,其准分子离子峰为m/z261.112 5,推测其分子式为C15H16O4。与M12相比少了16,与M1相比少了46(M1-O-CH2O),推测M14可能是在M1的基础上先失去羟基又失去甲氧基产生的。M14的特征碎片离子m/z 243.215 1、228.206 8、189.090 3与M1的特征碎片离子m/z 289.107 4、274.085 0、235.059 4相比均少46,且M14的特征碎片离子m/z243.215 1正好比M12的特征碎片离子少16,证明推测合理。 (10)水解脱羟基后被氧化成醛:M15的保留时间为8.23 min,其准分子离子峰为m/z 305.102 4,推测其分子式为C16H16O6。M15的特征碎片离子m/z 287.132 8比M12的特征碎片离子m/z 273.076 0多14,水解后脱羟基位点与M12保持一致。且其特征碎片离子m/z290.071 9、275.054 4、247.058 3、233.044 4可能是在M15的准分子离子m/z 305.102 4的基础上通过连续丢失2个甲基、CO和亚甲基产生的。因此,推测M15是代谢物M12中的1个甲基被氧化成醛产生的。根据母药结构特点,结合π-π共轭体系可能使结构更加稳定的规律,推测氧化反应位点最可能发生在2位的CH3上。 (11)失去C4H8O:M16的保留时间为8.80 min,其准分子离子峰为m/z397.113 6,推测其分子式为C18H20O10。与M0相比少了72,根据其结构特点推测M16可能是M0失去C4H8O所得到的代谢产物,其特征碎片m/z 235.05 51、205.136 9与M0保持一致,且特征碎片m/z72.086 6(-C4H8O)的存在,初步认为推测M16的结构合理。 (12)水解脱羟基后去甲基成羧酸:M17的保留时间为11.08 min,其准分子离子峰为m/z 321.097 4,推测其分子式为C16H16O7。与M9相比少了16,与M1相比多了14,推测M17可能是M1脱羟基后的1个甲基被氧化成羧酸的产物。其特征碎片离子m/z 321.097 4、303.085 9正好比M1的特征碎片离子m/z289.107 4多14,比M9的特征碎片离子m/z 319.082 3少16,特征碎片离子m/z273.039 5比M9的特征碎片离子m/z 289.032 9少16,且其含有特征碎片离子m/z 235.022 7、205.049 6,与M1和M9一致。说明M17与M9结构相似,氧化位点与M9一致。 (13)单羟基化反应:M18~M20的保留时间分别为6.24、6.93、9.00 min,其准分子离子峰分别为m/z 485.166 2、485.166 5、485.164 7,推测其分子式为C22H28O12。与M0相比多了16(O),因此推测他们可能是M0的单羟基化产物。根据母药的结构特点可以看出羟基化反应发生在C-3′、C-5′和C-8位时相对稳定。M18的特征碎片离子m/z247.060 0、235.058 3、233.043 8、205.048 4均与M1的特征碎片离子保持一致,且其特征碎片

北升麻醇对照品相关的方案

北升麻醇对照品相关的资讯

  • 化学药品研发中对照品(标准品)有关技术要求
    药物的质量研究与质量标准的制订是药物研发的主要内容之一,药品标准物质也是质量标准和质量研究中不可分割的一部分,是药品质量标准的物质基础。药品标准物质在新药研究中与产品定性、杂质控制及量值溯源密切相关,标准物质的运用贯穿于质量研究与质量标准的制订工作中。一、概述标准品、对照品系指用于药品鉴别、检查、含量测定的标准物质,即药品标准中使用的具有确定的特性或量值,用于对供试药品赋值、定性、评价测定方法或校准仪器设备的物质,其中标准品系指用于生物检定、抗生素或生化药品中含量或效价测定的标准物质。《药品注册管理办法》规定“中国药品生物制品检定所负责标定和管理国家标准物质”,“申请人在申请新药生产时,应当向中国药品生物制品检定所提供制备该药品标准物质的原材料,并报送有关标准物质的研究资料”。但在新药研究中,普遍存在对照品(标准品)的应用超前于中检所制备和标定的情况,鉴于新药研究的连续性以及标准物质在新药研究中涉及量值溯源、产品定性、杂质控制及其在药品质量控制中的重要性,标准物质的制备和标定与药品的质量研究、稳定性研究乃至药理毒理学研究中剂量的确定等临床前基础研究间存在密切关系,因此,药品对照品(标准品)的研究(制备与标定)也是药品审评的一项重要内容。二、对照品来源1、所用对照品(标准品)中检所已经发放提供,且使用方法相同时,应使用中检所提供的现行批号对照品(标准品),并提供其标签和使用说明书,说明其批号,不应使用其他来源者;如使用方法与说明书使用方法不同(如定性对照品用作定量用、效价测定用标准品用作理化测定法定量、UV法或容量法对照品用作色谱法定量等),应采用适当方法重新标定,并提供标定方法和数据;若色谱法含量测定用对照品用作UV法或容量法,定量用对照品用作定性等,则可直接应用,不必重新标定。2、申报临床研究时,如中检所尚无供应,为不影响注册进度,可先期与中检所接洽制备和标定,申报时提供标定报告、标签(应标明效价或含量、批号、使用效期)和使用说明书;也可与省所合作标定,申报时提供标准品或对照品研究资料,“说明其来源、理化常数、纯度、含量及其测定方法和数据”;标定有困难时,可使用国外药品管理当局或药典委员会发放的对照品(标准品)或国外制药企业的工作对照品(标准品),进行标准制订和其他基础性研究,但应提供其标签(应标明其含量)和使用说明书,能保证其量值溯源性;也可使用国外试剂公司(如sigma公司等)提供的对照品(标准品),但应提供试剂公司该批对照品(标准品)的检测报告(用作含量测定时,应有确定的含量数据),如为高纯度试剂,提供了国外试剂公司检测报告(用作含量测定时,应有确定的含量数据)时,也可使用,并应能保证其量值溯源性,但申请人应及时与中检所接洽对照品(标准品)的标定事宜,临床研究期间完成此工作。3、直接申报生产品种,如中检所尚无供应,可参照2中要求进行,并提供相应研究资料,但申请人在标准试行期间应与中检所接洽并完成的标定事宜。三、对照品(标准品)标定的技术要求1、创新药物应说明对照品(标准品)原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱),提供标定方法的研究和验证资料(如与原料药质量研究项下相同,可不再提供)、含量测定数据及经统计分析得到的对照品(标准品)含量结果,并说明进行临床前药学研究、药理毒理学研究所用样品的含量是否用该批对照品(标准品)确定或可用该批对照品(标准品)进行量值溯源。纯度测定方法应选用色谱法,并采用两种以上不同分离机理或不同色谱条件并经验证的色谱方法相互验证比较,同时采用二极管阵列检测器或其它适宜方法检测HPLC法的色谱峰纯度,而后根据测定结果经统计分析确定对照品(标准品)原料的纯度。对于组份单一、纯度较高的药物,对照品(标准品)标定方法宜首选可进行等当量换算、精密度高、操作简便快速的容量法。可根据药物分子中所具有的官能团及其化学性质,选用不同的容量分析方法,但应符合如下条件:(1)反应按一个方向进行完全;(2)反应迅速,必要时可通过加热或加入催化剂等方法提高反应速度;(3)共存物不得干扰主药反应,或能用适当方法消除;(4)确定等当点的方法要简单、灵敏;(5)标化滴定液所用基准物质易得,并符合纯度高、组成恒定且与化学式符合、性质稳定(标定时不发生副反应)等要求。标定方法的选择要关注如下事项:(1)供试品的取用量应满足滴定精度的要求(消耗滴定液约20ml);(2)滴定终点的判断要明确,提供滴定曲线。如选用指示剂法,应考虑其变色敏锐,并用电位法校准其终点颜色;(3)为排除因加入其它试剂而混入杂质对测定结果的影响,或便于剩余滴定法的计算,可采用“将滴定的结果用空白试验校正”的办法;(4)要给出滴定度(采用四位有效数字)的推导过程。标定结果要根据3个以上实验室各不少于15组测定结果经统计分析,去除离群值和可疑值后的结果,并报告可信限。如该药物没有可进行等当量换算并符合要求的容量法时,可采用反复纯化的原料,色谱法确定纯度后扣除有关物质、炽灼残渣、水分和挥发溶剂等后的理论含量确定为标准品含量,以此为基准进行对照品(标准品)的换代和量值传递。用于抗生素微生物检定法的第一代基准标准品可参照上述方法标定,如为多组份抗生素,其组份比例应与拟上市产品组份比例一致或接近,或以其中某一组份纯品为基准标准品,但要注意标准品换代时量值传递的恒定。仅用于鉴别定性的化学对照品,注重其结构确证的研究资料,纯度和含量的要求一般可适当降低。杂质对照品,用作限度要求时,应提供其来源(合成路线)、结构确证的研究资料,应具备较高的纯度和含量,并提供纯度和含量的的测定结果,提供质量控制标准。2、其他类别药物用于抗生素微生物检定法的标准品须用上市国的国家标准品或原发厂的工作标准品为基准标准品进行标定。标定时采用的原料药应符合相应要求,并提供原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱)。标定须用现行版中国药典附录收载的“抗生素微生物检定法”-三剂量法,并提供详细的方法学研究,包括检定菌和培养基的选择、剂量和剂距选择、缓冲液选择(如与质量研究项下相同,可不再提供)。每次标定结果均应照“生物检定统计法-量反应平行线测定法(3.3)”法进行可靠性测验及效价计算。对照品是质量标准的重要组成部分,从日常工作中发现,研发单位在对照品的制备、研究、标定、使用及保存过程中,仍存在部分问题。作为对照品,其研究工作的质量以及质量标准的高低直接影响新药研究的质量,对其提出技术要求是为了保证药品的质量控制与新药研究的结果准确有效,需重视起来。
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • 对照品如何保存,又应该如何使用?
    对照品系指用于鉴别、检查、含量测定的标准物质,包括杂质对照品,不包括色谱用的内标物质。在药品检验工作中我们常会用到一种用来检查药品质量的特殊参照物——药品标准物质(对照品)。它在药品检验中具有十分重要的地位。随着仪器分析的广泛使用,必将越来越多地使用药品标准物质。下面远慕生物就来介绍一下如何对对照品进行保存和使用:  (1)对照品应按说明书规定的条件妥善保存,一般置干燥阴凉处保存,某些对照品如维生素E等需避光低温保存。要注意对照品的使用期限,过期、变质的对照品不宜再使用。开瓶后建议短期内用完,避免开瓶后长期不用,同时,在重复使用过程中应尽量避免对照品的分解、污染或吸潮。  (2)使用中检所对照品时,应严格按说明书执行。一般情况下,供鉴别、检查用的对照品不能用于含量测定。红外鉴别用的对照品使用时应注意与样品在晶型上的差异,必要时可采用相同的方法对样品和对照品重结晶。例如氨苄西林钠具有多种不同的晶型,可用丙酮对样品和对照品重结晶后测定,以确保二者晶型和红外光谱图的一致。  (3)由中国药品生物制品检定所提供的对照品或国际对照品为法定对照品,以法定对照品作对照标化的原料可称为二级对照品或工作对照品。药品生产单位为节约成本,可使用工作对照品进行日常检验,但药品检验所必须使用法定的对照品,出具的检验报告书才具有法律效力。  (4)除另有规定外,对照品使用时应采用适宜的方法测定其水分的含量,按干燥品(或无水物)进行计算后使用,否则会造成含量测定结果偏高。对热稳定的对照品可直接干燥后使用;对热不稳定的对照品可同时另取一份作干燥失重,扣除水分后使用。此外,对照品若含有结晶水或盐基,使用时应注意其换算。  远慕生物提供以下服务:  1.中药提取物的定制研发和生产,中药提取物代加工相关服务。  2.中药高含量提取物的工业化高效分离及分离纯化生产  3.天然产物原料药和中间体的生产,定制(包括合成,半合成)

北升麻醇对照品相关的仪器

  • Sanotac致力于天然产物和中药对照品分离纯化、化学药物杂质对照品分离纯化应用的中压制备色谱、制备液相色谱技术的开发,系统软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求,可实现多达 4元梯度洗脱和自动馏分收集,同时兼容ge AKTA、isco、biotage,buchi、biorad等中压分离纯化制备色谱的色谱柱和纯化柱,是一款高效、功能强大的模块化快速纯化制备液相色谱,在中药化学对照品分离纯化领域已经得到广泛应用:皂苷类对照品分离纯化 ,黄酮类对照品分离纯化,异黄酮类对照品分离纯化,香豆素类对照品分离纯化,色原酮类对照品分离纯化,生物碱类对照品分离纯化,酚酸类对照品分离纯化,萜类对照品分离纯化,蒽醌类对照品分离纯化,木脂素类对照品分离纯化。快速纯化制备液相色谱系统技术特点: *微处理器控制,高速双驱动和平行的泵头具有高速的腔室压力反馈,补偿再填充和溶剂压缩效果,实现在宽动态范围内获得精确高重现的流速。 *采用轮曲线补偿技术有效控制流量脉动,保证最低的基线噪声。 *多点流量校正曲线,保证在全流量范围内的流量精度。 *浮动柱塞设计,保证高压密封圈的使用寿命。 *10个用户程序,可实现流量和梯度编程。 *双波长检测、波长时间程序和停泵扫描——三种测定方式使得基线噪音和漂移降到最低,获得了最高的灵敏度和最低检测限,以及更宽的线性范围。对应各种测定需求,可以同时对主要成分、副产物和杂质进行可靠的定量。 *可快速便捷的更换灯和流通池,氘灯钨灯实现智能切换,确保正常运行时间的最大化。系统自动收集器特点: ?独创的运动原理,直线和旋转运动结合,可最迅速地到这任意收集位置 ?体积、时间、闺值、斜率组合多种收集模式,满足各种收集需要,可设 立普通模式、顺序收集和循环收集 ?精确的最小管路设计,减少样品在流通池后扩散带来的收集不准确 ?软件延迟体积的设置,使收集更精准,产品更纯净 ?采用高精度切瓶技术,废液通道独立,切换瓶过程无滴漏 ?分于动和自动两种收集方式,操作简单、方便 ?配套软件可以实时采集多路波长信号,收集信号可任意选择 ?实时显示设备状态、连接和收集瓶位置,收集直观,位置清晰 ?兼容多种收集容器,最多可允许收集瓶: 13--15mm 试管 120 支 ?具有收集容器自识别功能,可防止使用不同型号收集容器时安放错位 ?最大程度的空间利用,设备占用空间小,使用方便。 快速纯化制备液相色谱技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-100.00ml/min(梯度)流速精度±0.5%压力范围0-20MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求
    留言咨询
  • FS系列制备色谱是一款典型的高压制备色谱系统,三为科学致力于制备色谱仪研制开发、生产和制备色谱应用服务研究,FS系列制备色谱、高压制备色谱采用模块化设计,功能强大、系统操作简捷,允许使用多达 4 种不同的溶剂的梯度洗脱,两波长同时在线检测,可轻松储存并调用方法,并可在同一平台下完成馏分分收集工作,支持不锈钢色谱柱和高压玻璃色谱柱的系统连接,广泛应用于皂苷类化合物分离纯化 、酮类化合物分离纯化、异黄酮类化合物分离纯化、香豆素类化合物分离纯化、色原酮类化合物分离纯化、生物碱类化合物分离纯化、酚酸类化合物分离纯化、萜类化合物分离纯化、蒽醌类化合物分离纯化、木脂素类化合物分离纯化。中草药酚酸类化合物包含:没食子酸类化合物、鞣花酸鞣质、聚黄烷醇多酚、间苯三酚类化合物、苯丙酸类化合物、绿原酸及奎宁酸类衍生物、天然低聚芪类化合物、丹参的酚酸类化合物、茶多酚三为科学应用制备色谱分离酚酸类化合物活性成分部分案例:中文名英文名CAS No纯度(%)植物来源丹酚酸B;丹参酚酸B;紫草酸BSalvianolic acid B;Lithospermic acid B;Danfensuan B121521-90-2;115939-25-8≥98.5丹参丹酚酸ASalvianolic acid A96574-01-5≥98.0丹酚酸CSalvianolic acid C115841-09-3≥98.0迷迭香酸Rosmarinic acid;Rosemaric acid Rosemary acid20283-92-5≥98.5菊苣酸Cichoric acid70831-56-0≥98.0紫锥菊芍药苷Paeoniflorin23180-57-6≥98.0芍药羟基芍药苷Oxypaeoniflorin39011-91-1≥98.0松果菊苷;海胆苷Echinacoside82854-37-3≥98.5肉苁蓉类叶升麻苷;麦角甾苷;毛蕊花糖苷;阿克苷;毛蕊花苷Acteoside;Verbascoside;Kusaginin61276-17-3≥98.5异类叶升麻苷;异麦角甾苷Isoacteoside61303-13-7≥98.5绿原酸; 3-咖啡酰奎宁酸Chlorogenic acid327-97-9≥98.0金银花隐绿原酸; 4-咖啡酰奎宁酸cryptochlorogenic acid905-99-7≥98.0新绿原酸; 5-咖啡酰奎宁酸neochlorogenic acid906-33-2≥98.0洋蓟素; 1,3-二咖啡酰奎宁酸Cynarin1182-34-9≥98.0 1,5-二咖啡酰奎宁酸1,5-Dicaffeoylquinic acid30964-13-7≥98.0异绿原酸B; 3,4-二咖啡酰奎宁酸Isochlorogenic acid B14534-61-3≥98.0异绿原酸A; 3,5-二咖啡酰奎宁酸Isochlorogenic acid A2450-53-5≥98.0异绿原酸C; 4,5-二咖啡酰奎宁酸Isochlorogenic acid C32451-88-0≥98.0 3,4,5-三咖啡酰奎宁酸3,4,5-Tricaffeoylquinic acid86632-03-3≥98.0高压制备色谱系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-100.00ml/min(梯度)流速精度±0.5%压力范围0-20MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求更多制备液相色谱/蛋白纯化系统/中压制备色谱近20个型号详见三为科学官网:流量:50ml、100ml、200ml、 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询
  • FS-50制备色谱是一款典型的高压制备色谱系统,三为科学致力于制备色谱仪研制开发、生产和制备色谱应用服务研究,FS系列制备色谱、高压制备色谱采用模块化设计,功能强大、系统操作简捷,允许使用多达 4 种不同的溶剂的梯度洗脱,两波长同时在线检测,可轻松储存并调用方法,并可在同一平台下完成馏分分收集工作,支持不锈钢色谱柱和高压玻璃色谱柱的系统连接,广泛应用于皂苷类化合物分离纯化 、酮类化合物分离纯化、异黄酮类化合物分离纯化、香豆素类化合物分离纯化、色原酮类化合物分离纯化、生物碱类化合物分离纯化、酚酸类化合物分离纯化、萜类化合物分离纯化、蒽醌类化合物分离纯化、木脂素类化合物分离纯化。中草药酚酸类化合物包含:没食子酸类化合物、鞣花酸鞣质、聚黄烷醇多酚、间苯三酚类化合物、苯丙酸类化合物、绿原酸及奎宁酸类衍生物、天然低聚芪类化合物、丹参的酚酸类化合物、茶多酚三为科学应用制备色谱分离酚酸类化合物活性成分部分案例:中文名英文名CAS No纯度(%)植物来源丹酚酸B;丹参酚酸B;紫草酸BSalvianolic acid B;Lithospermic acid B;Danfensuan B121521-90-2;115939-25-8≥98.5丹参丹酚酸ASalvianolic acid A96574-01-5≥98.0丹酚酸CSalvianolic acid C115841-09-3≥98.0迷迭香酸Rosmarinic acid;Rosemaric acid Rosemary acid20283-92-5≥98.5菊苣酸Cichoric acid70831-56-0≥98.0紫锥菊芍药苷Paeoniflorin23180-57-6≥98.0芍药羟基芍药苷Oxypaeoniflorin39011-91-1≥98.0松果菊苷;海胆苷Echinacoside82854-37-3≥98.5肉苁蓉类叶升麻苷;麦角甾苷;毛蕊花糖苷;阿克苷;毛蕊花苷Acteoside;Verbascoside;Kusaginin61276-17-3≥98.5异类叶升麻苷;异麦角甾苷Isoacteoside61303-13-7≥98.5绿原酸; 3-咖啡酰奎宁酸Chlorogenic acid327-97-9≥98.0金银花隐绿原酸; 4-咖啡酰奎宁酸cryptochlorogenic acid905-99-7≥98.0新绿原酸; 5-咖啡酰奎宁酸neochlorogenic acid906-33-2≥98.0洋蓟素; 1,3-二咖啡酰奎宁酸Cynarin1182-34-9≥98.0 1,5-二咖啡酰奎宁酸1,5-Dicaffeoylquinic acid30964-13-7≥98.0异绿原酸B; 3,4-二咖啡酰奎宁酸Isochlorogenic acid B14534-61-3≥98.0异绿原酸A; 3,5-二咖啡酰奎宁酸Isochlorogenic acid A2450-53-5≥98.0异绿原酸C; 4,5-二咖啡酰奎宁酸Isochlorogenic acid C32451-88-0≥98.0 3,4,5-三咖啡酰奎宁酸3,4,5-Tricaffeoylquinic acid86632-03-3≥98.0高压制备色谱系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-50.00ml/min(梯度)流速精度±0.5%压力范围0-30MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求 更多制备液相色谱/蛋白纯化系统/中压制备色谱近20个型号详见三为科学官网: 流量:50ml、100ml、200ml、 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询

北升麻醇对照品相关的耗材

  • SureGuide gRNA 对照试剂盒,20 次反应
    SureGuide gRNA 对照试剂盒为 CRISPR 研究提供对照 gRNA 和对照 DNA 靶标。对照 gRNA 为 gRNA 制备的质量评估提供了参比。对照 DNA 靶标用于测量 CRISPR/Cas 实验中的酶切效率。 包含这些对照以获得安捷伦用于体外 CRISPR/Cas 研究的一体化解决方案的所有优势。 特征明确的对照材料可监测 CRISPR/Cas 实验每个步骤的情况。 知晓您的实验何时成功并尽早纠正任何问题。在进行进一步的实验之前,对照 gRNA 有助于评估 gRNA 制备的质量,在制备的 gRNA 不适用时避免浪费时间和精力,适用时可进一步增加您对实验的信心。对照 DNA 靶标用于确定 CRISPR/Cas 实验中的 DNA 酶切效率,以确认实验结果的有效性。根据您的需求量身定制。="" href='https://www.agilent.com/common/requestQuote.jsp?source=contactus”联系我们 返回页首
  • 对照防脱载玻片
    我们在组织病理学研究中应用对照载玻片(control slides),可以方便的知道样本哪个来自病人,哪个来自对照。l 具有Superfrost玻片的一切优点。l 病人和对照样本集中于一张玻片l 有利于病人和对照样本的阳性鉴别l 校准正确的染色流程l 染色过程中样本均紧密贴附于玻片l 方便持久的玻片辨识 订购信息:货号产品名称规格63448-10 Control Slide 329+ 144/包63448-20Control Slide 334+ 144/包
  • MO-C030 | MO NT.115 对照试剂盒(红色)
    NanoTemper 推出 NT.115 对照试剂盒(红色),可用于检测配备有 Nano-GREEN/RED、Nano-BLUE/RED 或 Pico-RED 探测器的 MO 系列仪器的性能、或对第一次操作该系统的新用户进行培训。

北升麻醇对照品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制