金丝桃素分析标准品

仪器信息网金丝桃素分析标准品专题为您提供2024年最新金丝桃素分析标准品价格报价、厂家品牌的相关信息, 包括金丝桃素分析标准品参数、型号等,不管是国产,还是进口品牌的金丝桃素分析标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金丝桃素分析标准品相关的耗材配件、试剂标物,还有金丝桃素分析标准品相关的最新资讯、资料,以及金丝桃素分析标准品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

金丝桃素分析标准品相关的资料

金丝桃素分析标准品相关的论坛

  • 【“仪”起享奥运】中药材鉴别之贯叶金丝桃

    [size=20px][color=#93c6bc][b]鉴别[/b][/color][/size][size=16px][color=#e2a4a4]|[/color][/size] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体](1)本品叶表面观:叶上表皮细胞多角形,细胞壁连珠状增厚;叶下表皮细胞多角形,垂周壁波状弯曲,略呈连珠状增厚,气孔平轴式或[color=var(--weui-LINK)]不定式[i][/i][/color]。黑色腺点由一团分泌细胞组成,细胞内容物红色;半透明腺点为分泌囊结构,由1层上皮细胞包围圆形腔隙构成,内含油状物。[/font] [font=宋体](2)取本品粉末0.1g,加甲醇10ml,超声处理10分钟,滤过,滤液蒸干,残渣加甲醇1ml使溶解,作为供试品溶液。另取贯叶金丝桃对照药材0.1g,同法制成对照药材溶液。照薄层色谱法(通则0502)试验,吸取上述两种溶液各2[/font][font=宋体]μ[/font][font=宋体]l[/font][font=宋体],分别点于同一硅胶G薄层板上,以乙酸乙酯-甲酸(25:1)为展开剂,展开,取出,立即置紫外光灯(365nm)下检视。供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的荧光斑点。[/font] [font=宋体](3)取[color=var(--weui-LINK)]金丝桃苷[i][/i][/color]对照品、芦丁对照品,分别加甲醇制成每1ml各含0.5mg的溶液,作为对照品溶液。照薄层色谱法(通则0502)试验,吸取〔鉴别〕(2)项下的供试品溶液和上述对照品溶液各2[/font][font=宋体]μ[/font][font=宋体]l[/font][font=宋体],分别点于同一硅胶G薄层板上,以乙酸乙酯-甲酸-水(8:1:1)为展开剂,展开,取出,晾干,喷以5%三氯化铝乙醇溶液,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。[/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [size=20px][color=#93c6bc][b]检查[/b][/color][/size][size=16px][color=#e2a4a4]|[/color][/size] [font=宋体][/font] [font=宋体][/font] [b][font=宋体][/font][/b] [font=宋体][/font] [font=宋体][/font] [font=宋体][b]水分[/b] 不得过12.0%(通则0832第二法)。[/font] [b][font=宋体]【含量测定】[/font][/b][font=宋体] 照高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法(通则0512)测定。[/font] [b][font=宋体]色谱条件与系统适用性试验[/font][/b][font=宋体] [/font][font=宋体]以[color=var(--weui-LINK)]十八烷基硅烷键合硅胶[i][/i][/color]为填充剂;以乙腈-0.1%磷酸溶液(16:84)为[color=var(--weui-LINK)]流动相[i][/i][/color];检测波长为360nm。理论板数按金丝桃苷峰计算应不低于3000。[/font] [b][font=宋体]对照品溶液的制备[/font][/b][font=宋体] [/font][font=宋体]取金丝桃苷对照品适量,精密称定,加甲醇制成每1ml含32[/font][font=宋体]μ[/font][font=宋体]g[/font][font=宋体]的溶液,即得。[/font] [b][font=宋体]供试品溶液的制备[/font][/b][font=宋体] [/font][font=宋体]取本品粉末(过三号筛)约0.4g,精密称定,置具塞锥形瓶中,精密加入60%乙醇50ml,称定重量,加热回流1小时,放冷,再称定重量,用60%乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。[/font] [b][font=宋体]测定法[/font][/b][font=宋体] [/font][font=宋体]分别精密吸取对照品溶液与供试品溶液各10[/font][font=宋体]μ[/font][font=宋体]l[/font][font=宋体],注入[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],测定,即得。[/font] [font=宋体]本品按干燥品计算,含金丝桃苷(C[sub]21[/sub]H[sub]20[/sub]O[sub]12[/sub])不得少于0.10%。 [/font] [font=宋体] [/font]

  • 2015中国药典检测方案有奖问答02.24(已完结)——千柏鼻炎胶囊中金丝桃苷的检测

    2015中国药典检测方案有奖问答02.24(已完结)——千柏鼻炎胶囊中金丝桃苷的检测

    问题:千柏鼻炎胶囊中金丝桃苷的检测药典要求理论板数按金丝桃苷峰计算应?答案:不低于7000【活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币mengzhaocheng(ID:mengzhaocheng)dyd3183621(注册ID:dyd3183621)ZHAOGUANGXI(注册ID:ZHAOGUANGXI)http://ng1.17img.cn/bbsfiles/images/2016/02/201602241517_585010_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/02/201602241517_585011_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。======================================================================= 千柏鼻炎胶囊中金丝桃苷的检测样品制备 制备方法1. 对照品:取金丝桃苷对照品适量,精密称定,加流动相制成每1 mL含15 μg的溶液,即得。2. 供试品:取装量差异项下的本品内容物,研细,取约0.5 g,精密称定,精密加入75%甲醇25 mL,称定重量,加热回流1小时,放冷,再称定重量,用75%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。分析条件 色谱柱Platisil ODS 150 x 4.6 mm,5 μm (Cat#:99501)流动相乙腈:0.2%冰醋酸溶液=15:85 流速1 mL/min柱温30 ℃检测器UV 360 nm进样量10 μL色谱图对照品(流动相溶解) http://ng1.17img.cn/bbsfiles/images/2016/02/201602241020_584970_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 23.282 715234 21365 11118.648 0.953 -- *药典要求理论板数按金丝桃苷峰计算应不低于7000供试品http://ng1.17img.cn/bbsfiles/images/2016/02/201602241020_584971_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 23.411 24797 927 17640.547 0.912 -- *药典要求理论板数按金丝桃苷峰计算应不低于7000本品种同时使用了Leapsil C18色谱柱,在药典规定条件下进行金丝桃苷的检测,满足药典要求。

金丝桃素分析标准品相关的方案

金丝桃素分析标准品相关的资讯

  • 【CEM】植物基替代肉类的近似组成和金属分析
    01 摘要 随着人口增长和环境问题的日益突出,对可持续且营养丰富的替代蛋白质来源的需求持续上升。为了应对这一挑战,工业界和监管机构一直在关注如何跟上这个不断变化的市场。基于植物的蛋白质几十年来一直是替代蛋白质来源的首xuan选。然而,为了增加消费者的接受度,仍需要进行大量研究。行业必须考虑这些基于植物的蛋白质的口感、质地、外观和营养成分,以便制定出与传统肉类相当的选择。这一点进一步强调了在新规定和测试协议进入市场时进行多组分测试的必要性。在此,我们介绍了一种测试水分、脂肪、蛋白质、灰分和微量金属(包括金属和盐)的方法,该方法采用高精度技术,适合在线结果快速反馈,以便批次可以发布。这项技术遵循现有的 AOAC 和 FDA 方法学,为替代蛋白质,特别是基于植物的蛋白质,设定了遵循类似协议的先例。+02 引言随着对动物养殖对环境的影响、动物福利以及传统肉类产品的营养质量问题日益关注,基于植物的替代产品正引起人们越来越浓厚的兴趣。然而,让消费者完荃接受基于植物的替代品一直是个挑战。对于生产商来说,复制传统肉类产品的口感和质地被证明是非同小可的难题。尽管各公司致力于确保其提供的产品营养密集且价格合理,但监管机构和标准组织则在努力监控和评估当前分析技术的有效性。从内部近似分析和营养标签测试,到遵循 FDA 对污染物的要求等,与分析替代蛋白产品相关的所有事项仍在探讨中。03 植物基产品的近似分析 除了需满足监管要求外,生产高品质植物基产品还需进行必要的近似分析测试。对原材料、生产过程中及最终产品的水分、脂肪、蛋白质和灰分含量进行准确测定,对于在制造阶段适时调整产品至关重要。尽管外部实验室通过精细的方法分析可提供可靠结果,但由于耗时较长,在产品急于上市的情况下,时间成本显得尤为昂贵。 水分 水分含量对于口感、保质期以及许多产品的一致生产至关重要。由于许多替代蛋白选项旨在复制传统基于肉类的产品,因此模仿动物肉的一致质地极为重要。此外,正确的水分含量确保了更长的保质期,有助于市场可行性。水分分析是一个简单过程,在传统测试中没有太多变化。现有方法非常适合新的和新奇的替代产品;无论是使用烘箱法进行批量干燥,还是使用卤素或 IR 水分天平在 10-20 分钟内获得结果,或者像 CEM 的 SMART 6&trade 这样的微波/IR干燥,在 2 分钟内获得结果,基本方法保持不变。从样品中去除水分含量,然后确定差异。方法理论之间主要的区别是所需的时间和结果的精确度。来自 SMART 6 的结果,一种 2 分钟的水分测试,呈现在表1-4(见文末)中,并与传统的参考方法如 AOAC 950.46 和 934.01 进行了准确性比较。精度可以通过重复样本或范围看出。 灰分 为了模拟动物肉的感官体验,植物基肉类中添加了粘合剂、矿物质、盐、调味料和色素,这些添加剂通常占产品总成分的 0-15%。1随着对口感和质地改进的持续研究与开发,测定新成分添加后剩余的无机材料百分比灰分变得必要。采用如 Phoenix BLACK&trade 这样的微波炉式马弗炉,能够快速升温,使企业能在一个系统中使用多种温度,避免了长时间加热。Phoenix BLACK&trade 的独牛寺设计在于其腔体内的气流,配合 CEM 石英纤维坩埚使用,可以显著减少烧灰所需的时间。如同水分测试一样,传统的烧灰程序可以很好地应用于替代肉制品的测试。然而,在面对更为复杂的技术挑战,如脂肪和蛋白质测试时,我们可能会遇到各种难题。 脂肪 植物基肉类替代产品通常天生脱脂,其脂肪含量较动物衍生产品为低。因此,在加工过程中需添加脂肪或油分。这种添加对纤维结构的形成影响深远,可能导致挤压过程中的问题并对大分子排列产生不利影响。2此外,植物基脂质的熔融特性、化学组成、饱和度、链长、分子性质及整体性质与动物来源的脂质存在显著差异,1这增加了另一层复杂性。尽管如此,脂肪仍是健康、均衡饮食的重要组成部分。脂肪是人体无法自行产生的必需脂肪酸的来源,同时还是吸收维生素 A、D 和E 等必需维生素的必需品。油脂还能增强风味、质地和口感,这对消费者偏好产生极大影响。由于油脂是一种成本较高的成分,对最终产品有很大影响,因此严格控制其含量对于管理成品的总成本以及最终的利润至关重要。 传统动物肉类拥有悠久的验证历史,有大量数据支持已定义的方法。这些脂肪分析方法包括经典的索氏提取参考方法和通过先进技术如 NIR、X 射线和 NMR 进行的快速校准方法。 蛋白质 在比较传统肉类与其植物基替代品时,营养密度是两者之间最大的差异所在。为了提高植物基肉类替代品的总蛋白含量,生产商必须利用水解、发酵、分离和提取的植物蛋白产品。这些经过深度加工的蛋白产品的添加可能会影响味道、气味、外观和质地。3这也正是准确和可重复测试的重要性所在。在经过验证的 Udy 染料结合法的基础上,CEM 创造了全自动化快速蛋白分析仪 Sprint® 。通过使用一种只与蛋白质相互作用的染料结合分子,而非游离氨基酸或非蛋白氮,Sprint 不仅能够为植物基食品的原料提供更准确的蛋白结果,也能够对过程中和最终产品本身进行测定。 对多种植物基肉类替代品的水分、灰分、脂肪和蛋白进行了测试。一式三份的数据呈现在表 1-4 中(见文末),这些表格还显示了通过 AOAC 950.46/934.01、954.02 和 2001.11 获得的水分、脂肪和蛋白的参考结果,以验证快速方法的精确度和准确性。同时,快速获取结果的能力使得可以在生产过程中或作为新产品研发的一部分进行调整。04 植物基产品中痕量金属的分析 植物基替代产品的另一个发展阶段是对质量控制测试的需求增加,如金属探测。像 Prop 65 这样的立法旨在更好地调整食品和其他消费品中的重金属测试。这为消费者提供了安心,确保他们食用的食品是安全的。然而,对于植物基替代产品的制造商来说,这可能是一把又又刃剑。例如,鱼中的汞含量一直是一个长期关注的问题。植物基产品旨在减少汞的问题,同时减轻商业捕鱼对环境的影响,但众所周矢口,植物会从地面吸收金属。因此,与动物基产品相比,植物基产品可能具有更高的金属本底水平。更进一步,制造商可能会引入某些成分和添加剂,这些成分可能会贡献这些升高的水平,所有这些都是为了改变最终产品的外观或味道,使消费者从传统肉类过渡到植物基替代品更加容易。 处理 FDA 及其他立法要求可能较为复杂。CEM 一直是 AOAC 和 FDA 传统食品样品制备和分析方法的关键合作者和参与者。MARS 6&trade 微波消解系统和协议被 AOAC 方法 2015.01 和 FDA EAM 方法 4.7 引用。作为行业令页导者和创新者,CEM 与许多主要的植物基公司合作,就金属测试的适当方法和要求提供咨询,并就如何避免可能导致审计、召回和失去消费者信任的重大错误提供指导。 以下是 CEM 收集的数据简要概述,包括植物基牛肉末、鸡肉条替代品、大豆基热狗和植物基金枪鱼。选择这些产品是因为它们易于获得,可以以最少加工(研磨)的形式购买,或作为一件后来被捣碎以获得更均匀样品的件。作为比较,还测试了三种不同类型的金枪鱼,提供了一种常见的消费鱼类样本的基线比较。基于营养、添加和毒性分析了十四种元素,以提供广泛的分析物范围。还制备并分析了三种标准参考材料(SRMs),以验证分析性能。这些包括 NIST 参考材料,SRM 1568c 米糠、SRM 1547 桃叶和 SRM 1947 密歇根湖鱼。 SRM 元素的恢复率均在 85-100% 之间,验证了方法学(微波消解和分析)。一般来说,四大毒性元素(Pb、Cd、Hg和As)的含量较低,如表 5 和表 6 (见文末)所示,这在消费品中是可以预期的。目前 FDA 没有为食品中的重金属设定限制。然而,如果我们查看世界卫生组织(WHO)对植物材料的允许限制,我们发现铅的限制在 ppm 范围内,而镉是 1.30 ppm。WHO 没有列出砷或汞。与动物基产品相比,植物基产品被发现含有略高的铅水平(但在监管限制内4),但其他四大重金属的含量较低。这与预期一致,由于土壤样本中通常发现高水平的铅。植物基蛋白质将从其生长的土壤中吸收重金属。另外,与传统的金枪鱼样本相比,传统的金枪鱼样本的砷和汞水平显著高于其他测试的植物基替代品,这对金枪鱼来说并不意外。 在植物基样本中的盐分含量(钠、钾和钙)普遍高于传统金枪鱼产品。这些通常是作为替代蛋白产品的调味剂添加的,以帮助它更接近模仿其肉类产品,但也可能因从土壤中吸收而存在。测试的锰、铜、钼和铝在植物基样本中也较高,这同样可能是由于土壤吸收,因为这些元素在土壤样本中非常常见。Mn 和 Mo 也用于各种植物喂养周期(如光合作用和氮固定5),因此在植物中比动物中更为常见。 05 结论 随着配方的发展和市场上出现更多可供选择的替代蛋白来源,消费者接受度和监管机构的监管力度都在增加。这导致了对可靠测试方法需求的增加。准确且及时交付的结果可以在制造和研发过程中节省资金和资源。CEM 产品在食品行业中的应用已超过 45 年,提供了快速且可靠的结果。CEM 致力于替代蛋白行业,正在与他人合作开发、测试和制定规章制度。将传统上用于动物基蛋白源的技术用于植物基蛋白源的独牛寺能力,将有助于平稳过渡到监管要求。06 结论 1.Chen, Q., Chen, Z., Zhang, J., Wang, Q., & Wang, Y. Application of Lipids and Their Potential Replacers in Plant-based Meat Analogs. Trends in Food Science & Technology [Online] 2023.138, 645-654. 2.Ahmad, M., Qureshi, S., Akbar, M. H., Siddiqui, S. A., Gani,A., Mushtaq, M., Hassan, I., Dhull, S. B. Plant-based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Applied Food Research [Online] 2022, 2(2),100154. 3.Kiczorowski, P., Kiczorowska, B., Samolinska, W., Szmigielski,M., & Winiarska-Mieczan, A. Effect of Fermentation of Chosen Vegetables on the Nutrient, Mineral, and Biocomponent Profile in Human and Animal Nutrition. Scientific Reports [Online] 2022, 12(1), 13422. 4.Osmani, M., Bani, A., Hoxha, B. Heavy Metals and NiPhytoextractionin in the Metallurgical Area Soils in Elbasan.Albanian J. Agric. Sci. [Online] 2015, 14 (4), 414-419. 5.Alejandro, S., Holler, S., Meier, B., Peiter, E., Manganese in Plants: from Acquisition to Subcellular Allocation. Front. Plant.Sci. [Online] 2020, 11 (300), 1. 表1. 植物基鸡肉替代品的水分、脂肪、蛋白质和灰分含量 表2. 植物基热狗替代品的水分、脂肪、蛋白质和灰分含量 表3. 植物基牛肉替代品的水分、脂肪、蛋白质和灰分含量表4. 植物基金枪鱼替代品的水分、脂肪、蛋白质和灰分含量 表5. 标准参考材料的金属分析 表6. 植物基和传统肉类样品的金属分析
  • 食品中元素形态分析方法与标准简述
    元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态分为物理形态和化学形态,物理形态是指元素在样品中的物理状态,如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。   元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。比如铬,三价铬是人体耐糖因子的组成部分,很多糖尿病和人体缺乏三价铬有关,而六价铬则是比较强的致癌物。不同形态砷之间的毒性差异也很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于某些元素,只了解某元素在食品中的总量还是不够的,我们在了解总量的同时,更希望了解某元素在食品中的形态组成。   测量元素的形态,可以通过以下一些方法来实现:   分光光度法:在显色时对元素的形态有特定要求,可以利用这一特性,进行形态分析。比较典型的例子是水中六价铬的测量。这一方法通常干扰大、灵敏度不是很高,在简单基质有一定应用的范围。   原子荧光法(AFS):由于产生氢化物对元素的形态有一定的要求,可以利用这一特点进行形态分析。比如说有机砷几乎不会和硼氢化物生成氢化砷,氢化物-原子荧光法不能直接检测有机砷,而无机砷则能和硼氢化物进行反应而被探测到。利用这一特点可以测量某些元素的不同形态。该方法的特点是灵敏度很高。不足之处是特异性强,只能分析有限几种元素中某些形态,应用不广。   色谱法:采用色谱柱分离不同形态,然后用分光光度或电导等检测器测量。比如离子色谱法就是比较常用的方法。这一方法由于有预分离处理,干扰比分光光度法小,灵敏度也好一些。   预分离法:对试样先根据元素不同形态的特点,进行预分离,如有机萃取、离子吸附和交换等手段,将某特定形态和其它形态分离后收集,再采用一些光谱的分析方法测量。这种方法灵敏度比较高,但前处理比较复杂,也容易受到干扰。   色谱-光谱(质谱)联用法:该方法采用在线色谱分离,分离后各组分直接进入光谱仪器测量。结合了色谱和光谱技术的优点,具有分离效果好、灵敏度高、应用广泛等优点。缺点是设备较为昂贵,从色谱到光谱的接口技术需要解决,前处理方法也有待加强研究。不同的色谱和光谱联用技术都有文献报道,主要集中在色谱和等离子体质谱仪(ICP-MS)的联用上。目前常见的有以下几种联用方法。   1、液相色谱-ICP-MS联用   液相色谱(HPLC)-ICP-MS联用技术适用于食品样品中难挥发的化合物的分析。由于液相色谱的流速和ICP-MS 进样速度一致,所以联接非常简单方便,其联用接口非常简单。另外,由于液相色谱的特点,具有进样量小、分析速度快、分离效果好等优点。因此,HPLC与ICP&mdash MS联用技术在各类食品中砷、硒、锡、汞等元素形态分析领域得到了越来越多的应用,相关的研究也最多。在使用该技术时,要注意液相流动相的成分是否符合ICP-MS的进样溶液要求。如果有机相比例过高,则需要辅助氧化技术。   2、离子色谱-ICP-MS联用   离子色谱法(IC)作为一种有效的分离和检测技术,已经在金属和非金属离子的测定中得到了较多应用,已成为成为解决复杂机体中超痕量离子形态分析的有效工具,也是ICP&mdash MS相关联用技术研究的热点之一,在食品分析领域有着越来越多的应用。其联用方法和液相色谱一样,也很简单。目前相关文献集中在铬、砷、锑、溴、碘等形态的检测研究上。同样的,使用该技术时,要注意离子色谱流动相和ICP-MS进样要求的匹配性,流动相的可溶性固体含量不能太高。   3、气相色谱-ICP-MS   气相色谱(GC)适用于易挥发或中等挥发的有机金属化合物的分离,而且分离之前的衍生化步骤不仅使分离与分析过程复杂化,而且增加了待测形态丢失或玷污的可能性。而且气相和ICP-MS联接需要一个专用的接口。因此,GC与ICP&mdash MS联用应用于元素的形态分析具有一定局限性。目前,GC-ICP-MS技术仅限于烷基铅、烷基锡和烷基汞等形态的分析上。   4、毛细管电泳-ICP-MS   相对与气相和液相色谱,毛细管电泳(CE)具有分离效率高、消耗样品量少、分离时间快等特点适用范围广,可分离从简单离子、非离子性化合物到生物大分子等各类化合物。但是在分离过程中,样品中分析物的原始形态可能由于电解质或pH值的调节而发生变化,样品的组成也是影响CE分离的一个重要因素,由于CE与ICP&mdash MS的接口没有HPLC成熟,在一定程度上制约了CE-ICP&mdash MS联用技术的应用。但相关的研究还是不少,主要集中在食品中砷、硒、汞等元素形态的分析。   5、液相色谱-AFS   由于中国AFS的技术领先于世,所以该研究在国内发展也很快。由于AFS对某些元素,如As、Se、Hg等的检测灵敏度很高,而且这些元素也是形态分析所最关注的元素,所以AFS在元素形态分析上大有用武之地。如前所述,单用AFS能进行一些特定的形态分析,而要完成更好的分离和检测,就需要和色谱联用。现在主要是和液相色谱联用,已经有多款HPLC-AFS仪器上市。该技术的优势在于具备了液相分离的优点,也能利用AFS的高灵敏度和元素特异性,仪器的整体价格也不高。其缺点在于,检测元素受到AFS的限制,而且AFS检测状态的稳定性也较难保证。   食品中元素形态分析的标准:   1、砷的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中无机砷的限量标准,所以也有相关的检测方法:   GB/T 5009.11-2003 食品中总砷及无机砷的测定 :无机砷检测采用原子荧光法,前处理和总砷不一样。   GB/T 23372-2009 食品中无机砷的测定 液相色谱-电感耦合等离子体质谱法:该标准采用HPLC-ICP-MS联用技术,分离和检测能力都很强。   有机砷农药的检测方法有一个行业标准:SN/T 2316-2009 进出口动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留量检测方法 离子色谱-电感耦合等离子体质谱法   2、汞的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中有机汞(以甲基汞计)的限量标准,所以也有相关的检测方法:   GB/T 5009.15-2003 食品中总汞及有机汞的测定: 有机汞采用气相色谱法和预分离&mdash 冷原子光度法。   无机砷和有机汞的检测方法都有缺陷,修订的新方法(草案)采用液相-原子荧光联用法,但也有问题,到现在没有颁布为更新方法。   3、溴酸盐的形态分析标准   由于溴酸盐是2B类致癌物,所以已不允许作为添加剂使用。食品中溴酸盐的形态分析有两个标准,都用离子色谱法:   GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法   SN/T 3138-2012 出口面制品中溴酸盐的测定 柱后衍生离子色谱法   水中溴酸盐也有限量标准和检测方法,在相关水检测标准中,也是离子色谱法。   4、铬的形态分析标准   六价铬的检测方法有一个行业标准:   SN/T 2210-2008 保健食品中六价铬的测定 离子色谱-电感耦合等离子体质谱法   水中的六价铬也有相应标准检测方法,采用经典的比色法。在水的检测标准中。     (撰稿人:上海出入境检验检疫局 杨振宇 博士)   注:文中观点不代表本网立场,仅供读者参考
  • 分析仪器通用技术、色谱柱等381项标准将在5月份实施
    分析仪器通用技术、液相色谱柱等381项标准将在5月份实施我们通过国家标准信息平台查询到,在2022年5月份将要实施的科学仪器及检测相关的国家标准暴增,共有381项标准将要实施。其中有111项电子电器类标准将要实施位居榜首,机械类标准次之有72项,农林牧渔食品类与化工橡胶塑料类标准旗鼓相当分别有47项和46项标准。5月份将要实施标准类别图除此之外我们还发现有5项仪器仪表类标准,分别如下:GB/T 12519-2021 分析仪器通用技术条件本文件规定了分析仪器的术语和定义、仪器分类与命名、要求、试验方法、检验规则及标志、包装、运输和贮存。本文件适用于各种类型分析仪器。本文件也适用于与仪器配用或形成独立产品的样品处理、制备、信号处理传输和辅助分析的装置等。GB/T 30433-2021 液相色谱仪测试用标准色谱柱本文件规定了液相色谱仪测试用标准色谱柱的术语和定义.标准柱参数、要求、试验方法,检验规则,标志﹑包装、运输和贮存。本文件适用于液相色谱仪测试用标准色谱柱(以下简称“标准柱”)。GB/T 40023-2021 无损检测仪器 超声衍射声时检测仪 技术要求本标准规定了超声衍射声时检测仪的技术要求、检验规则、标志、包装、运输和贮存等内容。本标准适用于超声衍射声时检测仪。GB/T 40658-2021 溴化钾光学元件本文件规定了溴化钾光学元件(以下简称溴化钾)的技术要求、试验方法、检验规则及包装、标志、运输及贮存等要求。本文件适用于溴化钾光学元件的制造与验收。GB 19815-2021 离心机 安全要求(该标准划归为机械)本标准规定了各种具有金属转鼓的工业用离心机(以下简称离心机)在设计、制造、安装和使用中的安全要求,以及使用信息和安全性能的检验、判定方法。本标准适用于一切工业用途的离心机(包括工业脱水机)。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40850-2021 饲料中肠杆菌科的检验方法 GB/T 40848-2021 饲料原料 压片玉米 GB/T 40747-2021 饲料瘤胃可发酵有机物(FOM)测定方法 GB/T 21543-2021 饲料添加剂 调味剂 通用要求 GB/T 40830-2021 猪饲料真可消化氨基酸测定技术规程(简单T型瘘管法) GB/T 40837-2021 畜禽饲料安全评价 蛋鸡饲养试验技术规程 GB/T 40835-2021 畜禽饲料安全评价 反刍动物饲料瘤胃降解率测定 牛饲养试验技术规程 GB/T 23884-2021 动物源性饲料中生物胺的测定 高效液相色谱法 GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法 GB/T 40834-2021 夏玉米苗情长势监测规范 GB/T 40833-2021 甘蔗皮渣中对香豆酸检测方法 高效液相色谱法 GB/T 40832-2021 芒果叶中芒果苷的测定 高效液相色谱法 GB/T 40772-2021 方便面 GB/T 40752-2021 沃柑产业扶贫项目运营管理规范 GB/T 40751-2021 花曲柳窄吉丁检疫鉴定方法 GB/T 40750-2021 农用沼液 GB/T 40749-2021 海水重力式网箱设计技术规范 GB/T 40748-2021 百香果质量分级 GB/T 40746-2021 淡水有核珍珠 GB/T 40745-2021 冷冻水产品包冰规范 GB/T 40744-2021 马铃薯茎叶及其加工制品中茄尼醇的含量测定 高效液相色谱-质谱法 GB/T 40743-2021 猕猴桃质量等级 GB/T 40644-2021 杜仲叶提取物中京尼平苷酸的检测 高效液相色谱法 GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测 高效液相色谱法 GB/T 40643-2021 山楂叶提取物中金丝桃苷的检测 高效液相色谱法 GB/T 40641-2021 松针聚戊烯醇含量的测定 高效液相色谱法 GB/T 40636-2021 挂面 GB/T 40635-2021 银耳干品包装、标志、运输和贮存 GB/T 40632-2021 竹叶中多糖的检测方法 GB/T 40631-2021 阿月浑子(开心果)坚果质量等级 GB/T 40627-2021 油菜茎基溃疡病菌活性检测方法 GB/T 40626-2021 杨树细菌性溃疡病菌检疫鉴定方法 GB/T 40624-2021 黄瓜绢野螟检疫鉴定方法 GB/T 40622-2021 牡丹籽油 GB/T 29379-2021 马铃薯脱毒种薯贮藏、运输技术规程 GB/T 23347-2021 橄榄油、油橄榄果渣油 GB/T 20452-2021 仁用杏杏仁质量等级 GB/T 20412-2021 钙镁磷肥 GB/T 20398-2021 核桃坚果质量等级 GB/T 19164-2021 饲料原料 鱼粉 GB/T 15628.1-2021 中国动物分类代码 第1部分:脊椎动物 GB/T 1536-2021 菜籽油 GB/T 14467-2021 中国植物分类与代码GB/T 11761-2021 芝麻 GB/T 10457-2021 食品用塑料自粘保鲜膜质量通则 GB/T 10395.21-2021 农林机械 安全 第21部分:旋转式摊晒机和搂草机 GB/T 10395.20-2021 农林机械 安全 第20部分:捡拾打捆机 冶金标准(21个)GB/T 40854-2021 镧铈金属 GB/T 40798-2021 离子型稀土原矿化学分析方法 稀土总量的测定 电感耦合等离子体质谱法 GB/T 40796-2021 金属和合金的腐蚀 腐蚀数据分析应用统计学指南 GB/T 40795.2-2021 镧铈金属及其化合物化学分析方法 第2部分:稀土量的测定 GB/T 40795.1-2021 镧铈金属及其化合物化学分析方法 第1部分:铈量的测定 硫酸亚铁铵滴定法 GB/T 40794-2021 稀土永磁材料高温磁通不可逆损失检测方法 GB/T 40793-2021 烧结钕铁硼表面涂层 GB/T 40792-2021 烧结钕铁硼永磁体失重试验方法 GB/T 40791-2021 钢管无损检测 焊接钢管焊缝缺欠的射线检测 GB/T 40790-2021 烧结铈及富铈永磁材料 GB/T 40566-2021 流化床法颗粒硅 氢含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 40561-2021 光伏硅材料 氧含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 28504.3-2021 掺稀土光纤 第3部分:双包层铒镱共掺光纤特性 GB/T 28504.2-2021 掺稀土光纤 第2部分:双包层掺铥光纤特性 GB/T 18996-2021 银合金首饰 银含量的测定 氯化钠或氯化钾容量法(电位滴定法) GB/T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法) GB/T 18115.4-2021 稀土金属及其氧化物中稀土杂质化学分析方法 第4部分:钕中镧、铈、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法 GB/T 12690.7-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第7部分:硅量的测定GB/T 12690.4-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第4部分:氧、氮量的测定 脉冲-红外吸收法和脉冲-热导法GB/T 11888-2021 首饰 指环尺寸 定义、测量和命名 环境标准(2个)GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 GB/T 40662-2021 废铅蓄电池再生处理技术规范医疗卫生生物标准(4个)GB/T 40660-2021 信息安全技术 生物特征识别信息保护基本要求 GB/T 40423-2021 健康信息学 健康体检基本内容与格式规范 GB/T 40419-2021 健康信息学 基因组序列变异置标语言(GSVML) GB/T 25915.12-2021 洁净室及相关受控环境 第12部分:监测空气中纳米粒子浓度的技术要求 化工橡胶塑料标准(46个)GB/T 9766.6-2021 轮胎气门嘴试验方法 第6部分: 气门芯试验方法 GB/T 9578-2021 工业参比炭黑4# GB/T 8290-2021 胶乳 取样 GB/T 40872-2021 塑料 聚乙烯泡沫试验方法 GB/T 40871-2021 塑料薄膜热覆合钢板及钢带 GB/T 40870-2021 气体分析 混合气体组成数据的换算 GB/T 40845-2021 化妆品中壬二酸的检测气相色谱法 GB/T 40844-2021 化妆品中人工合成麝香的测定 气相色谱-质谱法 GB/T 40639-2021 化妆品中禁用物质三氯乙酸的测定 GB/T 40797-2021 硫化橡胶或热塑性橡胶 耐磨性能的测定 垂直驱动磨盘法 GB/T 40789-2021 气体分析 一氧化碳含量、二氧化碳含量和氧气含量在线自动测量系统 性能特征的确定 GB/T 40726-2021 橡胶或塑料涂覆织物 汽车内饰材料雾化性能的测定 GB/T 40725-2021 浸胶帘线与橡胶粘合剥离性能试验方法 GB/T 40723-2021 橡胶 总硫、总氮含量的测定 自动分析仪法 GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法 GB/T 40721-2021 橡胶 摩擦性能的测定 GB/T 40720-2021 硫化橡胶 绝缘电阻的测定 GB/T 40719-2021 硫化橡胶或热塑性橡胶 体积和/或表面电阻率的测定 GB/T 40718-2021 绿色产品评价 轮胎 GB/T 40717-2021 阻燃轮胎 GB/T 40716-2021 汽车轮胎气密性试验方法 GB/T 40640.5-2021 化学品管理信息化 第5部分:化学品数据中心 GB/T 40640.4-2021 化学品管理信息化 第4部分:化学品定位系统通用规范 GB/T 40640.2-2021 化学品管理信息化 第2部分:信息安全 GB/T 40640.1-2021 化学品管理信息化 第1部分:数据交换 GB/T 40006.9-2021 塑料 再生塑料 第9部分:聚对苯二甲酸乙二醇酯(PET)材料 GB/T 40006.8-2021 塑料 再生塑料 第8部分:聚酰胺(PA)材料GB/T 40006.7-2021 塑料 再生塑料 第7部分:聚碳酸酯(PC)材料 GB/T 40006.6-2021 塑料 再生塑料 第6部分:聚苯乙烯(PS)和抗冲击聚苯乙烯(PS-I)材料 GB/T 40006.5-2021 塑料 再生塑料 第5部分:丙烯腈-丁二烯-苯乙烯(ABS)材料 GB/T 3778-2021 橡胶用炭黑 GB/T 30314-2021 橡胶或塑料涂覆织物 耐磨性的测定 泰伯法 GB/T 29614-2021 硫化橡胶 多环芳烃含量的测定 GB/T 26277-2021 轮胎电阻测量方法 GB/T 23938-2021 高纯二氧化碳 GB/T 22930.2-2021 皮革和毛皮 金属含量的化学测定 第2部分:金属总量 GB/T 22930.1-2021 皮革和毛皮 金属含量的化学测定 第1部分:可萃取金属 GB/T 22271.1-2021 塑料 聚甲醛(POM)模塑和挤出材料 第1部分:命名系统和分类基础 GB/T 21537-2021 锥型橡胶护舷 GB/T 21287-2021 电子特气 三氟化氮 GB/T 17874-2021 电子特气 三氯化硼 GB/T 18426-2021 橡胶或塑料涂覆织物 低温弯曲试验 GB/T 18012-2021 胶乳 pH值的测定 GB/T 1687.4-2021 硫化橡胶 在屈挠试验中温升和耐疲劳性能的测定 第4部分:恒应力屈挠试验 GB/T 1232.3-2021 未硫化橡胶 用圆盘剪切黏度计进行测定 第3部分:无填料的充油乳液聚合型苯乙烯-丁二烯橡胶Delta门尼值的测定GB 18382-2021 肥料标识 内容和要求 石油地质矿产标准(16个)GB/T 6683.1-2021 石油及相关产品 测量方法与结果精密度 第1部分:试验方法精密度数据的确定 GB/T 4985-2021 石油蜡针入度测定法 GB/T 4652-2021 地下矿用装岩机和装载机 试验方法 GB/T 40874-2021 原油和石油产品 散装货物输转 管线充满指南 GB/T 40873-2021 大洋富钴结壳资源勘查规程 GB/T 40736-2021 矿用移动式货运索道 安全规范 GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法 GB/T 40702-2021 油气管道地质灾害防护技术规范 GB/T 40697-2021 第三方煤炭检测管理规范 GB/T 386-2021 柴油十六烷值测定法 GB/T 261-2021 闪点的测定 宾斯基-马丁闭口杯法 GB/T 23799-2021 车用甲醇汽油(M85) GB/T 17144-2021 石油产品 残炭的测定 微量法 GB/T 11060.10-2021 天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化 合物 GB 40881-2021 煤矿低浓度瓦斯管道输送安全保障系统设计规范 GB 40880-2021 煤矿瓦斯等级鉴定规范 玻璃陶瓷建材标准(11个)GB/Z 2640-2021 模制注射剂瓶 GB/T 5990-2021 耐火材料 导热系数、比热容和热扩散系数试验方法(热线法) GB/T 40724-2021 碳纤维及其复合材料术语 GB/T 40715-2021 装配式混凝土幕墙板技术条件 GB/T 40714-2021 浮法玻璃生产成套装备通用技术要求 GB/T 40713-2021 建筑陶瓷生产成套装备通用技术要求 GB/T 40619-2021 基于雷电定位系统的雷电临近预警技术规范 GB/T 19322.1-2021 小艇 机动游艇空气噪声 第1部分:通过测量程序 GB/T 16399-2021 黏土化学分析方法 GB/T 16277-2021 道路施工与养护机械设备 沥青混凝土摊铺机 GB/T 17808-2021 道路施工与养护机械设备 沥青混合料搅拌设备 轻工标准(29个)GB/T 40971-2021 家具产品及其材料中禁限用物质测定方法 多环芳烃 GB/T 40938-2021 皮革 物理和机械试验 水渗透压测定 GB/T 40936-2021 皮革 物理和机械试验 服装革防水性能的测定GB/T 40927-2021 皮革 物理和机械试验 漆皮耐热性能的测定 GB/T 40920-2021 皮革 色牢度试验 往复式摩擦色牢度

金丝桃素分析标准品相关的仪器

  • 硫氯分析性能媲美波谱仪Epsilon 1 是理想的分析解决方案。此系统在出厂时进行了预校准,是按照 ISO 13032 对燃料中超低硫含量进行分析的现成解决方案。Epsilon 1 可为您提供精密而准确的数据,并降低样品制备和运行成本。由于激发和探测组件的灵敏度很高,您无需使用氦气即可获得符合 ISO 13032 标准的结果。仪器中的空气压力和温度传感器与软件算法相结合,确保每项测量结果都十分稳定,不受环境条件的影响。概述Epsilon 1 在出厂时进行了预校准,用于按照最新的 ISO 13032 测试方法来分析汽车燃料中的超低硫含量。 此外,该仪器还针对原油中氯的痕量分析进行了预校准。 Epsilon 1 是一款高性能台式 XRF 仪器,适合用于根据最新的 ISO 13032 测试方法分析燃料中的硫。 对硫的重复性测试结果都处于 ISO 13032 规定的限制内。 特点和优点对硫和氯保持最高的灵敏度薄窗钒阳极 X 射线光管,由马尔文帕纳科专门设计和制造,确保高质量和高灵敏度。选择钒阳极材料非常适合对硫和氯进行精确的定量,没有 XRF 光谱中可能出现的谱线重叠的干扰,提供的结果更加可靠。无需氦气Epsilon 1 可为您提供精密而准确的数据,并降低样品制备和运行成本。由于激发和探测组件的灵敏度很高,您无需使用氦气即可获得符合 ISO 13032 标准的结果。仪器中的空气压力和温度传感器与先进的软件算法相结合,确保每项测量结果都十分稳定,不受环境条件的影响。这项创新可降至总运行成本。独立系统运行 Microsoft Windows 10 且具有强大的 CPU 和 120 GB 硬盘的内置计算机可确保灵活存储和处理数千个结果。高分辨率 (1024 x 768) 的 10.4 英寸液晶触摸屏便于执行菜单式操作。方便的通信USB 和网络接口可用于连接标准计算机外围设备,有助于扩展用途、应用开发和操作员操作。溢漏保护为了保护系统核心部分免于溢漏,准备好保护膜。发生溢漏时,操作员可以方便地更换保护膜。主要应用该仪器的配置专为石化应用而设计和制造,特别适用于以硫和氯为关键元素的炼油厂。Epsilon 1 符合许多与硫有关的 ED-XRF 仪器的国际测试方法,如:ISO 13032ASTM D4294ISO 8754ISO 20847IP 336IP 496JIS K2541-4技术指标样品制备X 射线管探测器软件功能可重复性高的样品定位稳定性高的陶瓷侧窗高分辨率,一般为 135 eV操作员模式,带有大按钮,方便操作一般为 5 ml 液体50 微米薄窗 (Be)8 微米薄窗 (Be)高级模式,带有多种功能针对液体的防溢漏保护钒阳极,非常适合进行硫和氯分析高计算性能硫分析,符合 ISO 13032 标准由软件控制,最大电压 30 kV原油中的氯分析
    留言咨询
  • 镁合金丝测试机/多功能试验机简介: 1,对铜包铝线、铜包钢线及其他金属材料的力学性能的测试以及工艺性能的分析研究。2,根据客户试样要求配上相应的工装夹具,可做拉伸、压缩、弯曲、剪切、撕裂、剥离、顶破、穿刺等试验。3,试验过程中可根据试验力和变形的大小自动变换量程,力、变形数据的动态显示,具有恒速、定荷重、定位移等控制方式。可选择应力-应变、力-伸长、力-时间等多种试验曲线,自动求出材料的最da力值、抗拉强度、屈服点、屈服强度、延伸率等参数。4,试验条件、测试结果、标距位置自动存储,可细微调整移动横梁位置,方便进行标校验,具有过载、过流、过压、过速、欠压、行程等多种安全保护方式。5,试验结束后,可打印批试样报告和单件试样曲线,软件方便可为用户添加特殊的功能模块。可按用户需求输出不同的报告格式,免费软件升级,享受终身服务。6,Win10下控制软件,人机界面友好,已有的测量数据和结果均可储存,分类,查询和打印,并可按用户的要求打印输出报告(或用户提供报告格式)。7,试验完毕后,即可进行试验数据的分析,从而得到试样的抗拉(压)强度,延伸率等力学性能指标。8,该机精度高、量程范围宽、试验空间宽、性能稳定、可靠。各项性能指标都满足我国GB/T16491《电子式wan 能试验机》标准。简体中文,繁体中文,英语等多种语言可随即切换。9,软件功能:只要输入样件的各项参数,软件可自动按标准完成实验。镁合金丝测试机/多功能试验机夹具可选:
    留言咨询
  • 黄金丝是一种具有优异电气、导热、机械性能以及稳定性极好的内引线材料,主要作为半导体关键的封装材料(键合金丝、框架、塑料封、焊接球、焊锡球、高密度封装基板、导电胶等)。黄金丝在LED封装中起到一个导线连接的作用,将芯片表面电极和支架连接起来,当导通电流时,电流通过金线进入芯片,使芯片发光。黄金丝具有电导率大、耐腐蚀、韧性好等优点,广泛应用于集成电路,相比较其他材质而言,其较好优点就是抗氧化性,这是金线广泛应用于封装的主要原因。
    留言咨询

金丝桃素分析标准品相关的耗材

  • 岛津 同位素标准品
    眼下全球生物分析行业发展如火如荼,尤其在中国因仿制药一致性评价工作的深入和推荐,生物等效性(BE)实验项目受到越来越多的关注。另外随着国民生活水平的提高和对医疗健康的重视,临床医学精准检测的发展也是突飞猛进。LCMS 仪器因其超高的灵敏度逐渐成为生物样品分析的“黄金标准”。稳定同位素标准品作为一种特殊形式的标准品,是在化合物生产合成中引入了如2H,13C,15N等稳定同位素对化合物进行标记,并提纯而制成的一类标准品。不含同位素的标准品(即原型化合物)与稳定同位素标记的标准品有着相同的化学性质、稳定性、溶解度和色谱性质。但是因为质量数上有一定差异,在质谱仪器上两者可以被区分出来。稳定同位素标准品作为内标来进行方法定量,已经成为 LCMS 仪器分析定量的“黄金标准”。
  • 提供分析以下药品的色谱柱及其2010年中国药典标准/ODS
    提供分析以下药品的色谱柱及其2010年中国药典标准/ODS 甲砜霉素 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲氧苄啶 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲氧氯普胺 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲硝唑 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲苯磺丁脲 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲睾酮 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲磺酸培氟沙星分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲磺酸酚妥拉明分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 生长抑素 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 他扎罗汀 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 他唑巴坦 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 司坦唑醇 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 司帕沙星 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 司莫司汀 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 尼可刹米 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 提供分析以下药品的色谱柱及其2010年中国药典标准 COSMOSIL C18柱
    提供分析以下药品的色谱柱及其2010年中国药典标准 COSMOSIL C18柱 西咪替丁 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 西咪替丁氯化钠注射液 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 灰黄霉素 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 达那唑 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 托西酸舒他西林 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 过氧苯甲酰 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 曲尼斯特 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 曲安西龙 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 曲安奈德 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 伊曲康唑 分析用色谱柱 十八烷基硅烷键合硅胶(BDS,3um)为填充剂 伊曲康唑胶囊 分析用色谱柱 十八烷基硅烷键合硅胶(BDS,3um)为填充剂 华法林钠 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 肌苷 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 交沙霉素 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 米非司酮 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cN

金丝桃素分析标准品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制