佐米曲普坦

仪器信息网佐米曲普坦专题为您整合佐米曲普坦相关的最新文章,在佐米曲普坦专题,您不仅可以免费浏览佐米曲普坦的资讯, 同时您还可以浏览佐米曲普坦的相关资料、解决方案,参与社区佐米曲普坦话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

佐米曲普坦相关的耗材

  • 中镜科仪 坐标镀碳支持膜 (铜.镍.金坐标镀碳支持膜)
    坐标普通碳支持膜的载网是带标记的,方便您找到需要观察的样品。F1坐标载网和F2坐标载网是不同规格标记(F1坐标网见图1,F2坐标网见图2)。图1 F1坐标图2 F2坐标 碳膜为两层支持膜结构,可以采用不同规格的载网做载体。从空间结构来讲,从下到上依次为载网,方华膜和碳膜,如下图它是在一层有机方华膜上再覆盖一层碳膜。由于碳层具有较强的导电以及导热性,弥补了无碳方华膜的荷电效应以及热效应,增强了膜整体的稳定性,适合大多数纳米材料和生物样品的一般形貌观察。普通碳支持膜是针对常规检测20-50nm尺度样品的理想产品,是初次使用或筛查样品的最基本选择。如下图是纳米材料和生物样品在中低倍下的TEM照片,图像清晰,背底影响较小。支持膜的厚度,由对样品提供的承载强度和自身产生的背底干扰共同决定。如果膜厚度大,对样品的承载能力强,但会导致背底噪音增强;如果膜厚度小,图像质量高,但容易引起支持膜破裂。膜总厚度:10-20 nm产品编号产品名称规格/数量间距肋宽孔径BZ10021F1b100目F1坐标碳支持膜50枚/盒25040210BZ10021F1a100目F1坐标碳支持膜100枚/盒25040210
  • 曲安奈德益康唑乳膏中曲安奈德和硝酸益康唑含量的分离,色谱柱COSMOSIL C8-MS
    曲安奈德益康唑乳膏中曲安奈德和硝酸益康唑含量的分离,色谱柱COSMOSIL C8-MS 关键词:曲安奈德益康唑乳膏,曲安奈德,硝酸益康唑,2010年药典,辛烷基硅烷键合硅胶 2010年中国药典标准:曲安奈德益康和硝酸益康唑色谱条件:照高效液相色谱法(附录Ⅴ D)测定,用辛烷基硅烷键合硅胶为填充剂;以溶解在乙腈-异丙醇-水-85%磷酸中的己烷磺酸钠为流动相A,以溶解在甲醇-水-85%磷酸中的己烷磺酸钠为流动相B,进行梯度洗脱;柱温为40℃;检测波长为227nm。曲安奈德峰与硝酸益康唑峰的分离度应符合要求。(中国药典二部P269) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cN
  • 左乙拉西坦专用液相色谱柱
    美国药典中液相色谱法测定左乙拉西坦的含量及有关物质推荐使用YMC-Pack ODS-AQ色谱柱(4.6x150mm,3um)。YMC-Pack ODS-AQ色谱柱特点 1、适用于分离亲水性化合物; 2、可用100%水洗流动相; 3、对亲水性化合物具有独特的保留能力。YMC-Pack ODS-AQ色谱柱技术参数 1、微孔径:120A 2、碳载量:14% 3、粒径:3um 4、pH耐受范围:2.0-7.5订货号P/N:AQ12S03-1546WT。更多产品详情请向销售人员咨询。

佐米曲普坦相关的仪器

  • CRONO移动式微区X射线荧光光谱仪是一款可移动且可重新配置的快速检测的微型XRF扫描仪。基于EDXRF技术,可对大型样品进行原位,非破坏性和快速检测。XRF组件完全集成到一个紧凑的测量头中,元素检测范围从Na到Am,即使在低于2keV或高于25keV时(例如Sn,Sb和Ba k激发)。测量头安装在电动机上,探测器芯片面积50m㎡。电动框架和移动拉杆可以很容易地拆卸运输。若将测量头安装在轻型三脚架上,CRONO又可以变成一款便携式的用于单点测量的便携式XRF。该系统完全非接触式工作,距离样品1厘米,同时由于监测系统的设置,该分析区域将shi终处于控制之下。CRONO拥有两种前端的技术支持。其中CUBE是CMOS前置放大器,同时数字脉冲处理器DANTE可对样品进行快速的实时扫描。CRONO的软件可以控制和查看每一个界面,并实时显示光谱和元素分布图,同时每一个像素点的光谱都被自动存储,报告工具可自动为每个单独检测或整个项目检测生成pdf格式的测量报告。50厘米x 40厘米绘画的元素分布图(左1图)。测量时间:30分钟,线扫描速度:20mm/s,准直器孔径2 mm,X射线管设置50 kV和100μA。从左2图:BaLα,PbLα,CaKα 元素浓度范围从高到低依次是红色,黄色,绿色,蓝色。
    留言咨询
  • ZEISSMICURA特点工业生产中的零部件日趋小型化,同时对测量精度的要求也在不断提高,蔡司MICURA正是针对这一全新需求定制的解决方案。小型化与高精度工业生产中的零部件日趋小型化,同时对测量精度的要求也在不断提高,MICURA正是针对这一全新需求定制的解决方案。MICURA采用蔡司VASTXTgold扫描探头与navigator技术,可在主动式扫描时获得微米级的测量精度。它尤其适于测量用于光学和电子产品的结构复杂的小型工件。尽管采用紧凑型设计,系统却具备500x500x500毫米的测量能力——性能远超同类产品。精准的高速扫描蔡司VASTXTgold探头具有高速扫描功能,除可在极短时间测定几何特征外,还可精准测量及评定形状误差如圆度、平面度等特性。探针最小直径仅为0.3毫米。自动测量速度蔡司MICURA采用VASTnavigator技术。该技术可在确保测量精度的前提下自动调节理想的测量速度,从而显著缩短测量时间。在测量精度要求较高的区域,蔡司MICURA的移动速度放缓。当轮廓简单或精度需求较低时,移动的速度更快。VASTnavigator技术还通过切线逼近扫描、螺旋扫描和测针快速动态校准等功能进一步缩短测量时间。操作与人体工学蔡司MICURA的控制面板进行了全新设计。用户可在不使用计算机的情况下,借助一台显示器和两个摇杆进行控制和编程。系统操作简便,即使没有丰富测量机使用经验的用户也可迅速上手。花岗岩台面前侧的台架可将控制面板和工具与测量区域隔离。计算机辅助精度修正:由动态惯性效应引起的测量误差会自动得到补偿工业陶瓷导轨和大型轴承座可将外界环境的影响降低四面环抱的蔡司气浮轴承确保更好的稳定性和测量精度蔡司MICURA同时配备两个工件温度传感器可实现测量力的高效控制,适用于敏感材料控制柜、软件、探头和其他组件均来自蔡司,彼此完美适配
    留言咨询
  • 诺坦普 (NanoTemper) 新一代 Monolith 系列分子互作分析仪MO 系列分子互作仪,采用创新性的光谱位移技术 (Spectral Shift) 和 经典的微量热泳动技术 (MicroScale Thermophoresis, MST),轻松检测具有挑战性的分子互作。仅需极微量的样品 , 即可在液体环境中快速、精确地定量检测各种类型的分子间相互作用力,且检测浓度范围广、操作简单。1. 技术优势功能全面,灵活应对不同类型的亲和力检测项目(1)实现几乎所有类型分子间的亲和力检测:从IDPs、膜蛋白、大型蛋白复合体到PROTACs、小分子甚至离子,检测各种类型的分子间结合。(2)不依赖于分子量和粒径变化检测:结合检测不受由配体结合引起的粒径和分子量变化限制。(3)样品消耗量极低:为 ITC 实验准备大量的、高浓度的互作样品是非常困难的。Monolith 系列仅需几微升的样品浓度即可,为您节约宝贵的样品。(4)液体环境检测,更接近天然条件:在液体环境中直接检测,且适用于几乎所有的缓冲液,保证样品在天然条件下自由发生相互作用,获得更可靠的结果。(5)不仅限于取得Kd值数据:研究人员还可计算结合的化学计量比*和热力学参数*,并通过竞争结合实验进行相对亲和力 和协同性评估*。 * 需进行线下数据处理及分析,无法在MO系列仪器配套软件中完成。(6)不局限于两种分子间的互作分析:竞争结合实验、多种分子结合检测都可以轻松搞定。高品质的毛细管则保证了高品质的数据,使用毛细管的优势众多:仅需微量样品,在溶液中检测, 接近天然环境,无需固定样品,甚至无需进行蛋白纯化。2. 技术原理Monolith 可搭载光谱位移和 MST 两种生物物理检测方法,用于结合亲和力的检测。 在实验中,我们对其中一个分子进行荧光标记*,然后将其与一系列梯度稀释的结合分子等量混匀,接下来使用毛细管吸取样品并放入仪器开始检测。 *此外,色氨酸内源荧光也可用于免标记 MST 检测。(1)光谱位移技术(Spectral Shift )光谱位移技术通过荧光发射光谱的蓝移或红移来检测分子间的结合。Monolith X 在等温条件下精确检测 650nm 和 670nm 双波长的发射光,因而能够精确检测到极细微的光谱位移。接下来,以配体浓度为横坐标,双波长荧光强度的比值为纵坐标作图,拟合得到平衡解离常数 Kd。(2)微量热泳动技术(MicroScale Thermophoresis)微量热泳动(MicroScale Thermophoresis,MST) 是一种定量分析生物分子间相互作用的前沿技术。通过精确检测荧光变化,结合灵敏的热泳动现象,MST 提供了一种灵活、强大和快速测量分子间相互作用的 方法。MST 技术是通过激光在溶液中产生精确而短暂的温度变化从而检测配体结合引起的荧光强度变化。以配体浓度为横坐标,荧光值为纵坐标作图,从而获得平衡解离常数 Kd。MO 系列仪器测量一个 Kd 值仅需 10 分钟,专家模式下最快仅需 90 秒,而无需额外冗长的数据分析。通过检测与配体结合后,荧光标记的蛋白或者具有自发荧光的样品的荧光强度在温度梯度中随时间而变化 (上左图中灰色部分),然后将选定时间段内的荧光强度对应配体浓度进行拟合作图,软件自动计算得到该结合的亲和常数 Kd 值 (上右图)。3. 仪器软件智能软件自动进行数据分析,使您对实验结果更加自信。对于大多数的软件,当您加载样品之后才会启动。但是 MO 软件别具一格——它不但可以在实验启动之前 为您提供每一步骤的详细指导,助您快速设置实验;而且实验结束时,会立即根据所得数据提供实验优化 建议,全程为您提供可靠信息。MO. Control 2 软件增加而了缓冲液条件优化功能,提高效率,帮助您快速获得结果。4. 应用范围Monolith 系列分子互作仪可以检测几乎所有类型的分子互作,包括蛋白,小分子,多肽,核酸, 脂类等,应用范围非常广泛。(1)蛋白——小分子 &bull 自噬—溶酶体靶向降解 &bull 基于结构的药物设计 &bull “靶向降解组学”鉴定中药成分靶点 &bull 中药小分子抑制剂作用机制 &bull 靶向雄激素受体液 - 液相分离的药物开发 &bull 新型泛素化反应的分子机制(2)蛋白——离子 &bull 植物硝态氮新受体 &bull 植物免疫抑制与广谱抗病机理 &bull 铜元素调节水稻广谱抗病毒的机制 &bull 低温特异钙信号的感知和应答机制(3)蛋白——多肽 &bull 植物防止多精受精的分子机制 &bull 小肽—受体激酶调控花粉与柱头识别的分子机理 &bull 植物重要肽激素作用机理 &bull 多肽 PROTAC 降解致癌蛋白(4)蛋白——蛋白 &bull 淬灭抑制蛋白 SOQ1 调节 qH 的作用机制 &bull 胃癌基因治疗新靶点 CPEB3 作用机制研究 &bull 精子与卵子受精识别的结构基础 &bull 抗原表位研究(5)蛋白——核酸 &bull CRISPR-Cpf1 识别剪切 RNA 的分子机制 &bull 核酸适配体检测霉菌毒素(6)蛋白——脂类 &bull 新冠病毒 S 蛋白结合胆固醇 &bull 调控蛋白与磷脂酰肌醇二磷酸识别机制(7)蛋白——复合物 &bull 蛋白酶体与去泛素化酶动态调控机制(8)蛋白——纳米颗粒 &bull 靶向乳酸代谢的工程仿生纳米颗粒治疗胶质瘤 &bull 多肽修饰的纳米颗粒抑制病毒侵染 &bull 核酸适配体修饰的纳米颗粒探针(9)蛋白——糖类 &bull 流感病毒结构改变介导病毒在人类传播的机制(10)免纯化 / 无标记检测 &bull 老药新用,Wnt/β-catenin 信号通路活性抑制 &bull 血清中多克隆抗体 - 海洛因结合检测 &bull 葡萄糖转运蛋白抑制剂—— 技术参数 ——
    留言咨询

佐米曲普坦相关的试剂

佐米曲普坦相关的方案

  • 使用 Agilent 7100 毛细管电泳仪拆分佐米曲普坦手性异构体
    本文采用 Agilent 7100 毛细管电泳系统来拆分佐米曲普坦手性异构体。以内径50 µ m、有效长度 56 cm 石英毛细管为分离通道,以 30 mmol/L 羟丙基-β -环糊精溶液为电泳缓冲液,佐米曲普坦对照品与 R-异构体分离度为 3.1,R-异构体在1.25 µ g/mL 到 10 µ g/mL 之间线性关系良好 (r = 0.9994),定量限为 1.25 µ g/mL,连续进样 6 次 R-异构体峰保留时间 RSD 为 0.135%,峰面积 RSD 为 3.5%,佐米曲普坦理论塔板数为27000,符合中国药典相关要求。
  • 依据2020年版药典使用 LUMEX毛细管电泳Capel分析佐米曲普坦手性异构体
    2020年版药典二部和四部进一步扩大了现代分析技术的应用,丰富了色谱检测器的类型,加强了没有紫外吸收品种液相色谱检测器的应用指导,如采用毛细管电泳法检查佐米曲普坦分散片中的光学异构体等。毛细管电泳法在药典中的使用日益增多,药典通则0542中提到以(1)毛细管区带电泳(CZE)和胶束电动毛细管色谱(MEKC)使用较多,常用来解决异构体拆分,也可用于无机离子检测等,LUMEX公司的Capel 系列 CE可以进行多种方式的分离检测,提供可靠的分析方法。本实验采用依据2020版《中华人民共和国药典》使用LUMEX毛细管电泳仪Capel 205建立手性分离方法并检查佐米曲普坦光学纯度,通过手性拆分剂种类及浓度、缓冲液pH及浓度、温度及电压的优化,选择较佳的手性分离条件,基线分离了佐米曲普坦及其对映体。实验结果表明通过Capel205建立的毛细管电泳法可用于佐米曲普坦的手性分离,分离良好,为产品的质量控制提供了可靠准确的分析方法。
  • 安捷伦:使用固相萃取-高效液相色谱法对牛奶中左旋咪唑残留量进行测定
    左旋咪唑 (Levamisole) 是四咪唑的左旋体,常用其盐酸盐,它是一种高效、低毒、广谱驱肠虫药物,主要用于控制动物胃肠道、肺中的线虫,在畜牧业中被广泛使用。不合理的使用左旋咪唑会造成动物产品中的残留,残留的左旋咪唑对人体的主要潜在危害是致畸作用和致突变作用。本方法参照食品安全国家标准 GB 29681-2013,建立了牛奶中左旋咪唑残留分析的固相萃取-高效液相色谱法。

佐米曲普坦相关的论坛

  • 70.3 大鼠血浆佐米曲普坦的HPLC测定方法学研究

    70.3 大鼠血浆佐米曲普坦的HPLC测定方法学研究

    【作者】 蔡佳; 蒋新国; 陈钧; 熊志刚; 金樑; 【Author】 CAI Jia,JIANG Xin-guo~*,CHEN Jun,XIONG Zhi-gang,JIN Liang(Department of Pharmaceutics,School of Pharmacy,Fudan University,Shanghai 200032,China) 【机构】 复旦大学药学院药剂学教研室; 复旦大学药学院药剂学教研室 上海200032; 上海200032; 【摘要】 目的建立大鼠血浆中佐米曲普坦的高效液相测定方法,并研究大鼠不同途径给药后的药动学。方法采用甲基叔丁基醚为溶剂,提取药物。以0.05%三乙胺(用磷酸调至pH 2.70)-乙腈(92∶8)为流动相,色谱柱为Dikma Diamonsil C18柱(4.6 mm×200 mm,5μm),流速1.2 mL.min-1,荧光检测的激发波长225 nm,发射波长360 nm。结果佐米曲普坦在2.5~1 000μg.L-1内线性关系良好(r=0.999 7)。高、中、低3种浓度的提取回收率分别为90.10%,91.75%,86.79%,方法回收率分别为103.55%,94.49%,98.79%,日内和日间RSD均小于4%,最低检测限为1μg.L-1。计算出灌胃、静注、鼻腔给药途径主要药动学参数分别为:t1/2(2.03±0.88)h,ρmax(144±28)μg.L-1,tmax(0.85±0.14)h,AUC0~t(442±110)μg.h.L-1;t1/2(1.40±0.12)h,ρmax(567±55)μg.L-1,AUC0~t(1 075±128)μg.h.L-1;t1/2(1.48±0.23)h,ρmax(304±34)μg.L-1,tmax(0.65±0.14)h,AUC0~t(685±43)μg.h.L-1。结论该方法操作简单、快速、准确、重现性好,适用于大鼠血浆中佐米曲普坦浓度的检测及其药动学研究。 【关键词】 佐米曲普坦; 高效液相色谱法; 药动学;http://ng1.17img.cn/bbsfiles/images/2012/09/201209022115_388005_1838299_3.jpg

  • 顶空法做水中三氯甲烷四氯化碳做不出标曲

    用的是Thermo 的GC色谱仪按照国标GBT 5750.8 方法做,从同一瓶三氯甲烷四氯化碳混标出来的标准系列5个点(0.2—5 ppb),线性为,0.91;达不到0.99孵化池40℃平衡了1小时,进样量0.3mL,色谱条件和标准一样,出来的峰型很好顶空瓶120℃加热了2h,密封垫圈也用煮沸的水洗过晾干衬管换下来清洗过,柱子应该是没问题的milli-Q超纯水机出来的水检出很高的三氯甲烷四氯化碳响应,故换用了市售屈臣氏蒸馏水(低检出),煮沸的水四氯化碳响应反而变高怎么才能把这个标曲做出来?已经弄了4次了,最好一次是0.91,最坏一次完全没线性。而且空白略高

  • 对未做任何处理的碳纳米管做FTIR红外光谱

    对未做任何处理的碳纳米管做FTIR红外光谱,结果图像上一个峰都没有,[color=#444444]求助求助。[/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2018/1030/bw215h4620127_1540905721_538.jpg[/img][/color]

佐米曲普坦相关的资料

佐米曲普坦相关的资讯

  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters® )公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案&mdash &mdash Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚ C 检测波长: 215nm 进样量: 5&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚ C 进样量: 2&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 岛津成像质谱显微镜应用专题丨米曲可视化
    镜质合璧 还原真实成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析 引言米曲是清酒酿造中的关键元素。它在清酒酿造中的主要作用被认为是提供分解淀粉和蛋白质的消化酶。众所周知,米曲成品的成分对清酒的品质(味道和香气)有很大的影响。然而,目前为止对米曲质量的评估经常依赖于首席酿酒师的经验。这意味着此领域相关科学知识的不足,且仍有发展空间。当首席酿酒师评估米曲质量时,米曲的物理结构,即外观和质地似乎是质量指标之一。在过去的研究中利用扫描电子显微镜来研究米曲的内部结构,但直到近几年,评估米曲结构和成分关系的研究仍然进展甚微。由于岛津iMScope成像质谱显微镜可同时观察样品结构和成分分布,在本应用报告中,我们将iMScope应用于发酵领域,并尝试可视化分析米曲结构和成分分布。 如图1所示,质谱成像(MSI)是非常适合观察米曲结构以及决定其有效成分分布的技术。MSI应用于食品的论文,已有芦笋中天冬酰胺和姜黄根中姜黄素分布可视化的应用报告⑴,⑵。本文针对食品科学研究中的“发酵”新应用领域,尝试着将米曲内的结构和成分分布可视化。由于米曲非常易碎,在进行MSI分析时,未经前处理制作米曲切片几乎是不可能的。因此,我们研究了各种切片制备方法,并成功实现从生米到蒸米和米曲过程中的代谢物可视化分析。图1 质谱成像(MSI)工作流程 实验 2-1试剂使用羧甲基纤维素(CMC)(FUJIFILM Wako)为包埋剂,配制浓度为4%的CMC水溶液,并将溶液放入70℃的恒温箱过夜来确保完全溶解。本实验中使用的基质是α-氰基-4-羟基肉桂酸(CHCA)和N-(1-萘基)聚乙烯二胺二盐酸盐(NEDC)(Merck),溶剂为乙腈、异丙醇和甲醇(FUJIFILM Wako)、超纯水。 2-2切片制备使用清酒酿造用的抛光率为70%的山田锦大米(白鹤酒造株式会社)制成的蒸米和米曲。生米可视化研究中使用市售大米。如前所述,这些样品材料极其脆弱。因此,采用冷冻切片机制备切片并使用粘性冷冻膜(cryo-lab)回收获得的切片。将米粒包埋在上文所述的4%羧甲基纤维素溶液中,在-80℃冷冻。切片厚度为20 μm,获得的薄膜利用导电双面胶带(3M公司)固定在ITO涂层玻璃载玻片上(无MAS涂层,表面电阻:100 Ω/m2)(松浪玻璃工业株式会社)(图2)。图2 米曲切片制备 2-3基质涂敷在检测米粒切片和米曲切片中的磷脂时,使用岛津iMLayer基质升华系统将CHCA沉积在样品表面(图3),接着喷涂CHCA溶液(3)。基质升华的膜厚度为0.5 μm。利用由乙腈、异丙醇、超纯水(3: 1: 6)构成的含0.1 %甲酸的混合溶剂溶解CHCA,调节其浓度为10 mg/mL。已知可以有效电离葡萄糖的基质NEDC,利用iMLayer进行升华,升华时设置温度为220℃、时间为10分钟。NEDC基质升华后,利用5%甲醇溶液进一步进行重结晶。图3 iMLayer基质升华系统 2-4质谱成像MSI检测使用岛津iMScope成像质谱显微镜进行。激光照射次数为100次/点。正离子模式检测磷脂,空间分辨率为25 μm,负离子模式检测葡萄糖,空间分辨率为50 μm。检测范围:正离子模式m/z 400-800,负离子模式m/z 180-230。在所有检测中,激光强度均设置为45,检测器电压为2.1 kV。 2-5构建MS图数据分析和MS图像构建采用岛津MSI分析软件Imaging MS Solution和IMAGEREVEAL MS进行。IMAGEREVEAL MS是通过统计学功能实现非靶向分析的软件。它拥有卓越的校正函数(图像过滤、像素插值),并含有“相似图片提取”功能。本文后半部分所示的葡萄糖可视化数据是利用IMAGEREVEAL MS软件进行分析。 结果 3-1生米、蒸米和米曲中磷脂的分布图4显示了生米、蒸米和米曲切片中胆碱的分布。胆碱是一种在米曲制作过程中分布和数量会发生巨大变化的典型成分。生米的结果在碾米之前测得,且结果表明胆碱累积在大米胚芽中。在碾碎后的蒸米中,来自胆碱的峰急剧下降,但在米曲的内部则观察到极强的峰。这表明胆碱在米曲发酵过程(即米曲制作过程)形成。因此,使用MSI 可以观察到米曲制作过程中胆碱数量和空间分布发生急剧变化的现象。图4 生米、蒸米和米曲中胆碱的分布 在米曲的内部还观察到各种磷脂(包括溶血磷脂)的累积(图5)。尤其是溶血磷脂酰胆碱LPC(16:0),m/z 496.34和LPC(18:2),m/z 520.34显示这一趋势(4)。而磷脂m/z 748.35和786.30的MS图像显示出其在米曲中的不均匀分布。这种异质性被认为由曲霉(米曲霉,Aspergillus oryzae)侵入蒸米中生长出雾状菌丝导致,这个过程就被称为“hazekomi”。下一部分我们将介绍一种将hazekomi过程可视化的方法开发以及将这种方法与MSI结合使用的结果。图5 米曲(山田锦,稻米抛光率:70 %)中溶血磷脂和磷脂的分布 3-2hazekomi可视化及其与MSI的配合使用⑸,⑹haze指的是米曲霉菌丝在蒸米表面扩散时呈现的白点,在首席酿酒师进行米曲目检时被作为一个结果指标。在早期的hazekomi可视化研究中,Yoshii等人发表了一篇基于扫描电子显微镜(SEM)观察的报告,他们通过将米曲霉传播过程直接可视化的方式成功观察到了米曲中米曲霉的生长,该结果有助于改善制曲过程(7)。 利用SEM将hazekomi过程可视化时,观察微观区域的能力是一个重要特征。不过,我们认为将整个米曲hazekomi过程可视化的方法以及可获取成分分布信息的技术也是有用的。为了解决这一问题,我们引入了采用β-葡萄糖醛酸酶(GUS)作为标志基因的GUS报告系统用于hazekomi可视化。具体来说,通过构建米曲霉GUS表达株以及生产使用该菌株的米曲(以下称为GUS米曲)来实现对制曲过程中米曲霉生长的清晰观察。GUS米曲的使用实现了通过颜色反应来可视化米曲霉位置,而当这种技术和MSI配合使用时,可获取关于成分分布的信息。这两种技术的结合同时实现了整个米曲的hazekomi可视化以及成分分布的可视化研究。 在此我们将对这种旨在把GUS报告基因系统应用于米曲的创新研究进行阐述。GUS报告基因系统最初是为了将植物组织中菌丝体的可视化而开发的。在植物组织中,常见做法是将样品浸泡在5-溴-4-氯-3-吲哚-β-D-葡萄糖苷(X-Gluc)溶液中,这是一种用于着色的显色底物。拥有极硬细胞壁的植物组织即便是长期浸泡在X-Gluc溶液中,也能够毫无问题地维持样品观察所需的形态。 不过,如前所述,米曲非常脆弱,且其性状和植物组织完全不同。这意味着采用现有的着色方案将极为困难。事实上,我们证实了在米曲浸泡在X-Gluc溶液中固定着色所需时间内,样品的形态由于吸水而发生了很大的改变。为了避免这一问题,必须改变添加X-Gluc的方式。因此,我们构思了一种通过将X-Gluc溶液喷洒在GUS米曲切片上的方法来可视化分析hazekomi过程。 图6显示了采用这种方法得到的结果。这里制曲使用的是抛光率为70%的抛光白鹤锦稻米(白鹤酒造株式会社的酒米),并在制曲开始24h、31h以及43h后取样。随着制曲的进行,可以观察到靛蓝色从曲的表面渗透到内部。尤其是在43小时之后、制曲完成时,不仅在曲的表面,在内部也能检测到浓烈的靛蓝色,表明米曲霉已经到达了稻米内部。 曲的一个主要作用是在酿造(发酵)阶段提供各种酶,以便形成酵母菌所需的营养。观察到的主要酶为α-淀粉酶或葡萄糖淀粉酶,这两者会形成作为酵母生长所需的葡萄糖。此外,也有报道表示α-淀粉酶可能是影响曲霉菌丝体侵入性生长的非常重要的酶。图6 GUS米曲中hazekomi过程的可视化分析(比例尺:1 mm(插入图片:200 μm)) 尽管既往研究中报道了制曲后葡萄糖的增加,但hazekomi和葡萄糖分布之间的关系尚未明确。在制曲过程每个阶段的米曲质谱图中,确实观察到了葡萄糖峰强度的升高(图7)。已有报道表明NEDC可以增加癌组织中葡萄糖检测的灵敏度(8)。因此,当使用NEDC作为葡萄糖MSI的基质时,[M+Cl]-= m/z 215.02在负离子模式下被检测到。 为了研究GUS米曲的hazekomi过程和葡萄糖分布之间的关系,使用GUS染色切片相邻的切片进行了MSI,比较获得的葡萄糖离子强度和GUS染色图像的分布,图8显示其结果。 观察葡萄糖分布及与GUS染色图像的叠加可以了解到从制曲初始阶段到后期阶段,葡萄糖从外到内增加。这一结果表明hazekomi和葡萄糖分布之间存在相关性。 另外,有些区域由于X-Gluc为深色且葡萄糖强度很高而成像为蓝色(黑色箭头显示),同时在本实验中也能看到有些部分虽然也观察到了hazekomi,但葡萄糖强度低,例如以黑色圆圈表示的区域。这些结果表明位置不同,hazekomi产生的葡萄糖量存在差异性。今后,可以通过包含各种代谢物(例如氨基酸、糖类、糖醇)分析的探讨来实现从化学角度更好地了解hazekomi现象。 虽然目前的考察着重于葡萄糖并解释了伴随hazekomi过程葡萄糖分布的变化,但可以想象,形成的酶的扩散范围和活性也会受到诸如米粒特征等其他因素的影响。这种新的可视化技术(GUS米曲和MSI的融合)预期可以改进米曲和其他曲衍生产品的制曲流程。图7 利用NEDC基质获得的葡萄糖峰的时间依赖性变化图8 GUS米曲中葡萄糖([M + Cl]–)的可视化(比例尺:1 mm) 结论 在本研究中,分析了磷脂在山田锦大米(清酒酿造米)中的空间分布,并利用白鹤锦米(白鹤酒造株式会社的专有清酒米)可视化分析hazekomi过程和葡萄糖分布之间的关系。同时还利用白鹤锦米制备了一种表达GUS的米曲品系,并用于揭示hazekomi过程和葡萄糖分布之间的关系。这种新的可视化技术利用了GUS米曲和MSI相结合,可有助于更好地了解米曲和其他曲衍生产品的制曲流程并改进制曲方法。由于本实验中采用的岛津iMScope成像质谱显微镜能同时实现微观区域的光学显微镜观察以及显微镜下的质谱分析,将iMScope应用于各种酒曲和其他麦芽的分析,可以获得发酵领域相关新科学知识。 iMScope QT(图9)是iMScope的新一代产品,于2020年6月发布。在延续iMScope TRIO卓越的显微镜观察功能和空间分辨率的同时,新的iMScope QT提供了更高的质量分辨率、检测灵敏度和分析速度,让分析变得更轻松。同时,由于能够分析更宽的质量范围,期待MSI技术可以进一步扩展在不同研究领域应用的可能性。图 9 iMScope QT (1) K. Miyoshi, Y. Enomoto, E. Fukusaki, and S. Shimma, Shimadzu Application Note (No. 57).(2) S. Shimmaand T. Sagawa, Shimadzu Application Note (No. 63).(3) S. Shimma, Y. Takashima, J. Hashimoto, K. Yonemori, K. Tamura, and A. Hamada, J. Mass Spectrom., 2013, 48, 1285(4) N. Zaima, N. Goto-Inoue, T. Hayasaka, and M. Setou, Rapid Commun.Mass Spectrom., 2010, 24, 2723.(5) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, S. Shimma, J. Biosci.Bioeng., 2020, 129, 296(6) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, and S. Shimma, J. of Brew.Soc.Japan (in press).(7) M. Yoshii and I. Aramaki, J. of Brew.Soc.Japan, 2001, 96, 806.(8) J. Wang et al., Anal.Chem., 2015, 87, 422. 文献题目《成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma *1, 2, Yoshihiro Tamada *3, Adinda Putri Wisman *1, Shuji Hirohata *3, Katsuya Gomi *4 Eiichiro Fukusaki *1,2*1 大阪大学工程研究生院生物技术系*2 大阪大学岛津组学创新研究室*3 白鹤酒造株式会社*4 日本东北大学农学研究生院未来生物产业的生物科学与生物技术系
  • 东西分析高效液相色谱法应对可乐中4-甲基咪唑测定
    美国消费者倡导组织公共利益科学中心(Center for Science in the Public Interest)发布报告称在碳酸饮料可乐中发现了致癌化学物质4-甲基咪唑,一时间舆论哗然。4-甲基咪唑是一种存在于焦糖剂中的化学物质,它是在生产焦糖色素时产生的,主要用于合成大宗胃药西咪替丁,也可用作环氧树脂固化剂和金属表面防护剂等。 国外曾经有几项研究关于4-甲基咪唑,主要都是集中在啮齿类动物身上。TOX-67试验中,2-甲基咪唑、4-甲基咪唑会对老鼠的骨髓、血液微核产生负面影响;2011年,美国加州公布4-甲基咪唑会对老鼠致癌,而且加州据此计算了4-甲基咪唑对人体的&ldquo 无显著风险水平&rdquo 值为16 &mu g/天。而且目前并无任何研究显示这种物质能导致人类患上癌症。 为应对该事件,东西分析应用实验室迅速反应,利用东西分析LC-5510色谱产品,在短时间内研究建立了三氯甲烷-无水乙醇液液萃取提取,旋转蒸发浓缩,C18柱分离,紫外检测器检测的高效液相色谱测定可乐中4-甲基咪唑的方法,得到良好的结果。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制