植物基质

仪器信息网植物基质专题为您整合植物基质相关的最新文章,在植物基质专题,您不仅可以免费浏览植物基质的资讯, 同时您还可以浏览植物基质的相关资料、解决方案,参与社区植物基质话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

植物基质相关的耗材

  • 欧罗拉自动化植物RNA纯化系统试剂盒
    MagPure纯化技术介绍MagPure(磁珠法)纯化技术是专门为自动化核核酸提取设计的。该技术采用超顺磁性粒子为基质, 在其表面包被硅醇基或羧基基团,使得微粒与核酸发生特异性的吸附作用,从而达到纯化核酸的目的。 MagPure技术配合自动化核酸提取工作站,可将核酸分离纯化,从手工变成机械自动化操作,可大大 提高实验的准确度和通量,并减少操作人员接触危险样品的机会。MagPure Plant RNA Kit (自动化植物RNA纯化系统)从50mg植物样品中提取高纯度的总RNAMagPure Plant RNA Kit采用磁珠纯化技术,适用从50mg植物样品中提取高纯度的总RNA。得到的RNA可直接用于RT-PCR、荧光定 量RT-PCR、Nouthern杂交等实验。该产品可成功在VERSA 10,VERSA 1100,VERSA HT等设备上运用。不同的植物叶片样品(50mg)经MagPure Plant RNA Kit提取后,取5%纯化RNA上样于1%琼脂糖凝胶电泳结果)。取纯化的RNA测量结果结果表明,MagPure Plant RNA Kit可处理常规的植物样品,也可以处理多酚类和多糖类的植物样品。可兼容液体处理系统VERSA 10 PCR/NAP 自动化核酸提取-PCR建立工作站VERSA HT 高通量自动化液体处理工作站VERSA 1100 NGLP 下一代测序工作组VERSA 1100 4ch Independent 独立四通道液体处理工作站VERSA 1100 PCR/NAP 自动化核酸提取-PCR建立工作站Aurora在核酸分离纯化领域拥有完整和先进的技术,MagPure试 剂盒为不同样品提供不同粒径或不同官能基团的磁性粒子,以达到 最佳的纯化效果。在满足产品精确性及可重现性的要求,实现高通 量自动化核酸纯化的同时 保证产品绝对的兼容性。
  • RHS植物比色卡
    RHS植物比色卡名称:植物比色卡 型号:RHS 产地:英国用途: RHS标准比色卡是植物颜色鉴定的参考标准。该比色卡对于重视精确区分植物颜色的园艺工作者来说是必备的。不仅仅是重视颜色的园艺工作者,该比色卡对于食品制造商、化学工程公司和面料设计师也都有很大的作用,因为它逐渐发展成了符合自然本身颜色的比色卡,成为了一个非常有用的工具。2015年第六版在2007年已有的884种颜色上又增添了36种颜色,920种颜色分布在230张卡上,组成了1套4个易学易用的扇形,每个色标都有一个中央舷窗,在对比颜色时,可以放在下面。比色卡表面的光滑涂层增强了其抗划痕性,该比色卡还提供了六种语言(英语、法语、荷兰语、法语、俄语及日语)的使用说明。特点:比色卡是专门针对大自然存在的颜色而设计,能够准确地描述任一颜色;目前比色卡具有的颜色数是920种颜色;比色卡分为四个容易使用的颜色扇面,每个颜色片都有一个小洞,能够覆盖的颜色之上观察其是否匹配。主要应用:园艺领域:精确对比植物的颜色;食物生产领域:标准化食物颜色;化学工业领域:标准化化学品颜色。产地:英国
  • 欧罗拉自动化植物/种子/食品DNA纯化系试剂盒
    MagPure纯化技术介绍MagPure(磁珠法)纯化技术是专门为自动化核核酸提取设计的。该技术采用超顺磁性粒子为基质, 在其表面包被硅醇基或羧基基团,使得微粒与核酸发生特异性的吸附作用,从而达到纯化核酸的目的。 MagPure技术配合自动化核酸提取工作站,可将核酸分离纯化,从手工变成机械自动化操作,可大大 提高实验的准确度和通量,并减少操作人员接触危险样品的机会。MagPure Plant/Seed/Food DNA Kit (自动化植物/种子/食品DNA纯化系统)从植物、种子或深加工食品样品中提取高纯度的总DNA(此系列产品在多个CIQ应用于转基因检测项目)该系列试剂盒采用磁珠法纯化技术,适合从植物样品/种子样品/深加工样品中提取高纯度的总DNA。得到的DNA可直接用于PCR、荧光 定量PCR、酶切、Southern杂交等实验。该产品可成功在VERSA 10,VERSA 1100,VERSA HT等设备上运用。Aurora为许多样品提供了优化方案, 我们可以根据用户的需求提供 优化 的流程。 优化的流程包括了样本预 处理、提高得率和产量、优化操作时 间,为不同平台提供的 设计方案。可兼容液体处理系统VERSA 10 PCR/NAP 自动化核酸提取-PCR建立工作站VERSA HT 高通量自动化液体处理工作站VERSA 1100 NGLP 下一代测序工作组VERSA 1100 4ch Independent 独立四通道液体处理工作站VERSA 1100 PCR/NAP 自动化核酸提取-PCR建立工作站Aurora在核酸分离纯化领域拥有完整和先进的技术,MagPure试 剂盒为不同样品提供不同粒径或不同官能基团的磁性粒子,以达到 最佳的纯化效果。在满足产品精确性及可重现性的要求,实现高通 量自动化核酸纯化的同时 保证产品绝对的兼容性。

植物基质相关的仪器

  • RTK 208 植物生态毒性测试仪试验原理:本方法用于评价在土壤中(或其他合适的土壤基质)施用供试品后对出苗和高等植物早期生长的影响。品牌: 洛克泰克型号: RTK 208 植物生态毒性测试仪陆生植物试验:幼苗萌芽和幼苗生长试验试验原理本方法用于评价在土壤中(或其他合适的土壤基质)施用供试品后对出苗和高等植物早期生长的影响。种子种入用供试品处理过土壤中,在对照组出苗率达到50%后的14到21天内进行评价。终点测量是可见的出苗率、干苗重(也可为鲜苗重),某些情况下为苗高,也要评价植物不同部位上可见的有害的影响。这些测量和观察与未处理的对照进行比较。根据可能的暴露途径,供试品混入土壤(或可能的人工土壤基质)或喷洒在土壤表面,尽可能正确代表化学品潜在的暴露途径。土壤混合时先进行大量散土的混合,然后再装入盆中,将所选植物种类种子种入土壤中。表面施药时,先将土壤装入盆中,将种子种好,然后再喷药。试验体(对照和处理土壤及种子)放在适合植物生长的环境中。本试验可根据研究目的测定剂量-反应曲线,或单剂量/比率作为限度试验。如果单剂量/比率试验超出一定的毒性水平(例如观察到的效应高于X%),要进行范围筛选试验测定毒性高和低限,再进行多剂量试验产生剂量-反应曲线。适当的统计分析方法分析获得最敏感参数的作用浓度Ecx或有效施用率Erx(如C25,ER25,EC50,ER50)。同样无作用浓度(NOEC)和最低作用浓度(LOEC)也能计算出来。试验的有效性性为保证试验的有效性,对照组必须满足以下条件:出苗率应不少于70% 幼苗没有可见的植物毒素影响(如变色病、坏死病、枯萎、叶子和茎的畸形),个别种类的植株在生长和形态上只有正常变异;试验期间,对照组幼苗平均存活率应高于90%;特定品种的生长环境条件应保持一致,同时其生长介质中应含有等量的人工土壤基质、支持介质或同样来源的基质。参比物质定期进行参考物质试验,以确认随着时间的推移试验性能和特定植物的反应和试验条件没有明显改变。也可选择的是,在特定实验室用以往对照的生物测定或生长测量来评价试验系统的性能,可以作为实验室内部质量控制测量。技术优势采用微电脑全智能控制系统,功能强大,抗干扰能力强。大屏幕液晶屏显示方式,工作参数及运行状态显示,直观明了。(2)控制面板采用轻触式按键设计,人性化的软件设计。(3)控制系统具有数据存储、记忆和在线查询功能。如遇停电、关机、再次开机都能延续原来的工作状态,从而保证设备按程序正常运行。箱体温度控制采用基于计算机模糊控制理论的 PID 控制方式,具有控制精度高,稳定性好,耗水量小等特点。(4)箱门上配有透视良好的可开关视窗,无需开箱门可随时观察箱内状况。(5)内胆采用不锈钢,抗腐蚀性强,使用寿命长,容易清洗。(6)先进的微风循环风道设计,温度更均匀。工作室内多层搁架,搁板高度可调。(7)总容积:≥650L。(8)温度:20-40℃,温度均匀性:≤±1℃。(9)湿度:50~95%RH,稳定度≤5%RH。(10)光照:最大600 μE/m2/s。(11)电源:220V,1100W(最大制冷功率)。(12)外观尺寸:850W*810D*2010H 重量:240kg。配置清单(1)主机:1套(2)空白土壤 :1份(3)培养盆 :1套(4)操作工具包: 1套
    留言咨询
  • 很多植物生理过程源于植物细胞电信号的发生和传递能力;植物电信号与光合作用,呼吸,自我保护等之间存在密切关系。设计恰当实验流程,探索各种机制下的电信号,使植物被打造成生物传感器成为一种可能。 植物电信号产生的机制包括:1. 环境刺激而触发的电信号响应.(如低温,高温,干旱,光线等,能够影响到植物呼吸,光合作用)2. 诱导子,激发子,触发电信号。3. 昆虫咬食(食草虫类分泌物等进入叶脉管而触发电信号)4.机械刺激,外力干预。 5.重金属胁迫,渗透胁迫等仪器组成:1. 高阻抗前置放大器,带有金属屏蔽外壳,可将微弱信号进行数十倍放大,提供给采集单元。2. 多路信号差分输入;干扰过滤抑制模块,抗混叠滤波器,辛格滤波器,高速A/D转换器。抗干扰金属屏蔽罩。3. 可提供包含直流和多种脉冲的激励源;接口触发,软件触发,定时触发。4. 包含金丝的玻璃微电极探头。以及探头固定组件。5.固定微调电极的显微操作台。6.可以根据需求适应形式的探头7.可以提供各种用于参考极或者回路的电压源。电极:贴片电极,玻璃微电极,导电胶,银丝,盐桥等方案 软件系统: 1.实时多点记录电信号变化曲线 2.多种触发模式,触发记录动作 3.数据多种保存模式,包括原始数据保存,图像保存。
    留言咨询
  • PlantView100植物活体成像系统主要应用于植物活体基因表达分析、植物活体克隆筛选、植物生物节律研究、植物光周期相关研究、植物抗逆性研究、植物病菌害研究、植物生长的连续观察以及基因育种的筛选等。PlantView100植物活体成像系统是新型的植物学研究平台,其将植物学研究从分子水平提升到整体水平,能够反映细胞或基因表达的空间和时间分布,从而了解活体植物体内的相关生物学过程、特异性基因功能和相互作用;其次,在转基因植物研究过程中,可以更早期、更快速、高通量精确筛选目标植株,缩短育种周期;对植物的性状进行跟踪检测、对表型进行直接观测和(定量)分析,具有廉价、灵敏、定量和可重复性的检测特性,节约时间成本,提高实验效率。 产品优势 超大视野,双位相机 最大成像面积可达280mm×280mm, 满足常见植物全株成像的同时, 可实现幼苗、 种子、 果实, 培养皿等样品的批量成像。 特有的双相机模式, 除顶部主相机外还可搭配一台侧位相机, 可实现植物从种子萌发到幼苗自然垂直生长的长时间连续观察。 超灵敏,高品质 采用超高量子效率、 深度制冷科研级CCD相机, 制冷温度低至绝对-100℃, 具备针对微弱荧光或发光的强大捕获能力; 配备全密闭抗干扰暗箱, 避免外界光源及宇宙射线对成像的影响; 搭配OD6高品质滤光片, 结合背景干扰扣除功能, 在快速成像的同时保证超高的灵敏度与成像质量。 多功能 配备植物光照模拟模块,可用于植物生长节律及光周期等实验。 同时具备通用接口,连接多种装置,便于模拟多种特殊实验环境。 还可连接X-Ray成像模块, 紫外或蓝光透射台等, 满足更多实验研究需求。 多光源 荧光光路系统全部采用高功率窄带宽LED,强度更高、光衰更小,环形全局排列具有更均匀的光线输出。且系统最多可配备20种激发光源,10种发射滤光片,满足更多荧光成像需求。 智能软件,专业可靠 人性化的全中文软件可自动控制样品台升降及各种光源强度大小, 预设多种成像模式、 一键快速成像、 多种伪彩及定量单位自由切换、 量化分析功能、 具备国际公认标准单位(p/s/cm2/sr)、 符合GLP原始数据、 操作记录规定、 可直接输出实验报告。 中文软件, 操作简化, 快速上手, 软件终身免费升级。 应用示例菌种筛选(GFP)植物全株基因表达(Luc)蛋白互作(Luc)病毒侵染(Luc)植物防御机制(Luc)叶绿素荧光
    留言咨询

植物基质相关的方案

植物基质相关的论坛

  • 决定植物“个头”关键机制被破解

    日本一项新研究发现,植物体内几种蛋白质的结合程度决定了植物的“身高”。这一发现有望帮助提高农作物生产率。 植物会为适应环境而控制自己的高度,此前研究已知,“ERECTA”蛋白质作为一种受体,与植物的高度有关,但其发挥作用的机制一直未能探明。 日本奈良尖端科学技术大学院大学研究人员在美国新一期《国家科学院院刊》网络版上报告说,他们使用拟南芥,研究了在其茎部内皮细胞中产生的“EPFL4”和“EPFL6”这两种蛋白质,结果发现这两种蛋白质与“ERECTA”蛋白质结合后,拟南芥的“身高”会迅速增加,如果这两种蛋白质出现缺陷,拟南芥“个头”会明显偏矮。 生物体内存在决定其特性的“开关”,如同钥匙插入锁孔才能打开锁一般,细胞受体只有与配位体相配合才能发挥作用。研究人员发现这两种蛋白质就是与植物长高有关的配位体。研究人员说,通过阻碍或者促进这两种蛋白质发挥作用,有望开发出不通过转基因也可控制农作物高度的技术,从而提高其生产率。

植物基质相关的资料

植物基质相关的资讯

  • 精选案例汇总 | MST在植物抗逆机制研究上的应用
    MST案例汇总 植物生长会受到各种复杂多变的逆境条件胁迫,包括干旱、盐碱和低温等。在长期的系统发育过程中,植物也逐渐形成适应、抵抗和忍耐的抗逆性,植物抗逆性机制为当前研究的热点,今天小编带大家来了解一下,微量热泳动(MicroScale Thermophoresis, MST)互作技术在植物适应逆境的机制研究的应用。01高温胁迫_蛋白&蛋白互作Chen, Si‐Ting, et al. "Identification of core subunits of photosystem II as action sites of HSP 21, which is activated by the GUN 5‐mediated retrograde pathway in Arabidopsis." The Plant Journal 89.6 (2017): 1106-1118.前人研究发现位于叶绿体的热休克蛋白21(HSP21)能够保护光系统II复合体 (PSII),使其免受细胞内热和氧化应激,但其作用的分子机制尚不清楚。中科院植物生理生态研究所郭房庆研究团队发现,热应激下拟南芥HSP21被GUN5依赖的逆向信号通路激活,并直接结合其核心亚基D1和D2蛋白来稳定PSII。 组成性表达HSP21可以恢复热胁迫下PSII 的热敏稳定性和gun5突变体的功能缺失,表明HSP21是热胁迫条件下维持类囊体膜系统完整性的关键伴侣蛋白。研究人员借助MST技术直接在接近天然状态下的裂解液中检测了HSP21蛋白与PS II核心亚基D1和D2蛋白之间的亲和力。图注:MST技术检测HSP21和植物裂解液中D1/D2结合植物内某些蛋白较难纯化或者纯化后活性受影响,利用MST技术,可直接在植物裂解液内进行亲和力检测,无需纯化。在本次实验中,作者裂解表达35S::D1-eYFP或35S::D2-eYFP的转基因植物,直接向裂解液中加入梯度稀释的纯化HSP21蛋白,检测得到HSP21与D1/D2的亲和力Kd分别为0.67μM和1.32μM.02低温胁迫_蛋白&离子Ding, Yanglin, et al. "CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis." Science Advances 8.26 (2022): eabn7901.寒冷的环境中会触发植物细胞质Ca2+的激增,导致植物的转录重编程。然而,Ca2+信号是如何被感知和传递到下游的低温信号通路仍然是未知的。中国农业大学杨淑华课题组研究发现,钙依赖性蛋白激酶28 (CPK28)启动了一个磷酸化级联,从而作用于低温诱导Ca2+信号下游的转录重编程。这项研究阐明了一种先前未知的机制,揭示了植物从质膜到细胞核的快速感知和转导低温信号的关键策略。研究中,作者通过MST实验检测到CPK28可直接与Ca2+结合。CPK28 EF-hand位点突变蛋白CPK28EFm与Ca2+亲和力降低了6倍,证明了EF-hand对结合Ca2+非常重要。图示:MST技术检测CPK28/CPK28EFm与Ca2+的亲和力03淹水胁迫_蛋白&离子Lehmann, Julian, et al. "Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis." Current Biology 31.16 (2021): 3575-3585.淹水胁迫导致厌氧菌引发的胞质酸中毒,使植物细胞感知酸性并通过膜去极化传递这种信号的分子机制尚不清晰。德国维尔茨堡大学研究表明,拟南芥根中酸中毒诱导的阴离子流出依赖于阴离子通道AtSLAH3,细胞质子浓度的增加使SLAH3从无功能二聚体转变为活性单体形式,激活了阴离子通道。研究发现硝酸盐对于pH依赖的通道激活至关重要,并通过MST技术研究SLAH3与NO3-的结合。图示:(左) 淹水相关胁迫响应中酸中毒诱导的阴离子通道SLAH3的激活(右) MST技术检测不同PH下SLAH3与NO3-亲和力作者表达SLAH3-GFP融合蛋白作为荧光信号源,无需其他标记。在pH6.5下检测到SLAH3与NO3-相互作用的Kd为120±50 mM。在pH为7.3时,SLAH3仍与NO3-结合,但亲和力降低了60%,表明SLAH3与阴离子的结合依赖于pH。04干旱胁迫_蛋白和磷脂分子Yang, Yongqing, et al. "Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis."The Plant Cell 34.1 (2022): 477-494.为了应对干旱胁迫,植物关闭气孔以减少叶片蒸腾水分的损失。气孔运动受信号分子磷脂酰肌醇三磷酸(PI3P)的调控。然而,这一过程的分子机制尚不清楚。中国农业大学郭岩研究组研究表明,拟南芥气孔关闭过程中,PI3P通过与植物特异性肌动蛋白结合蛋白 (SCAB1) 结合,抑制其寡聚,从而调节气孔关闭期间保卫细胞中F-肌动蛋白稳定性和重排。为了检测SCAB1蛋白是否可与PI3P结合,作者进行MST实验,结果显示二者具有非常强的亲和力,解离常数Kd为4.5±0.09 pmol。为了确定具体结合位点,作者将PI3P motifs RXLR-dEER进行突变,MST结果显示,三重突变蛋白不能与PI3P结合。综合其他实验,最终证明,SCAB1的4个RXLR motifs均具有PI3P结合能力,且至少需要2个RXLR才能与PI3P结合。图示:MST检测SCAB1与PI3P的亲和力
  • 精选案例汇总 | MST技术在植物抗病机制研究上的应用
    植物案例MST技术植物在整个生命周期中会经受多种微生物病原的侵袭,包括真菌,细菌,病毒,线虫等,作物约30%的产量损失是由病原体造成的,病害是农业可持续发展面临的主要问题。在植物与病原数百万年的协同进化中,植物与病原的互作经历了很多阶段,为掌握植物与病原互作中的重要信号分子,深入了解植物免疫分子机制,不可避免的要进行分子间互作的检测,今天来看一下微量热泳动(MicroScale Thermophoresis, MST)分子互作技术在植物抗病方面的应用吧!1植物与真菌--蛋白和离子Gao, Mingjun, et al. "Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector." Cell 184.21 (2021): 5391-5404.植物如何平衡抗病和生长发育平衡,中国科学院分子植物科学卓越创新中心何祖华团队研究揭示了以ROD1为免疫抑制中枢,通过降解超氧活性因子ROS,抑制植物的免疫反应,平衡植物防御和生长之间的冲突。水稻中,ROD1编码一种Ca2+传感器蛋白,以Ca2+依赖的方式结合到磷酸肌醇脂质,靶向至特定膜区域。ROD1刺激过氧化氢酶CatB的活性,促进活性氧(ROS)清除,抑制免疫;当有稻瘟菌侵染时,植物通过降解ROD1减弱其功能,产生有效的防卫反应。作者使用MST技术检测ROD1可直接与Ca2+结合,并鉴定出活性结果位点。图注:MST技术分析ROD1与Ca2+的亲和力和活性结合位点另一方面,研究发现病原稻瘟菌中具有与ROD1结构类似的毒性蛋白AvrPiz-t,在植物体内盗用ROD1的免疫抑制途径,实现侵染的目的,进而与病原菌共同生存。通过MST检测到AvrPiz-t与Ca2+结合,进而盗用ROD1途径。图注:MST技术比较ROD1和AvrPiz-t的Ca2+结合活性2植物与细菌--蛋白和蛋白(Dimmer)Xu, Ning, et al. "A plant lectin receptor-like kinase phosphorylates the bacterial effector AvrPtoB to dampen its virulence in Arabidopsis." Molecular plant 13.10 (2020): 1499-1512.质膜定位受体样激酶(RLKs)感知植物中保守的病原相关分子模式(PAMP),触发免疫(PTI)。拟南芥凝集素受体激酶LecRK-IX已被证明调节细菌鞭毛蛋白来源肽flg22诱导的PTI。而许多病原体分泌的效应蛋白可抑制植物免疫。植物中是否存在某种机制抑制或削弱病菌分泌的效应蛋白的功能?中科院微生物所刘俊研究组研究发现效应蛋白AvrPtoB是丁香假单胞菌的主要毒力效应子。AvrPtoB C端有一个功能的E3连接酶结构域,以植物中的鞭毛识别受体FLS2和几丁质识别受体CERK1为目标进行降解,导致PTI的抑制。本研究中,作者发现效应蛋白AvrPtoB与拟南芥凝集素受体激酶LecRK-IX.2相互作用并泛素化降解LecRK-IX.2,抑制其介导的免疫。AvrPtoB在体外和体内都能形成二聚体,这种二聚体形成对其E3连接酶与底物的结合和泛素化所必需的。然而, LecRK-IX.2能与AvrPtoB S335位点互作并使其磷酸化,S335的磷酸化破坏AvrPtoB二聚体状态,导致其抑制PTI反应的毒力下降。作者的研究表明,宿主RLKs可以修饰病原体效应器,以抑制其毒性,并削弱其抑制PTI的能力。图示:AvrPtoB对LecRK-IX.2的泛素化与其被磷酸化竞争模式图为了检测AvrPtoB与自身以及与LecRK-IX.2亲和力大小,作者进行MST实验。结果表明,AvrPtoB与LecRK-IX.2的亲和力(0.02μM)要远高于其自身形成二聚体的亲和力(18.7μM),表明AvrPtoB更容易与LecRK-IX.2结合。图注:MST技术检测AvrPtoB自身以及与LecRK-IX.2CD3植物与病毒--蛋白与离子/核酸/蛋白Yao, Shengze, et al. "The key micronutrient copper orchestrates broad-spectrum virus resistance in rice." Science Advances 8.26 (2022): eabm0660.铜是植物生长发育的重要调节剂,然而铜对病毒入侵的反应机制尚不清楚。之前的研究表明,SPL9介导的miR528转录激活为已建立的AGO18- miR528 - L- AO抗病毒防御增加了一个调控层。北京大学李毅课题组研究发现,Cu2+通过抑制SPL9的蛋白水平来抑制miR528的转录激活,进而提高ROS水平,增强AO积累量及其酶活,从而加强抗病毒反应,阐明了铜稳态的分子机制、调控网络以及SPL9-miR528-AO抗病毒途径。为了检测SPL9和Cu2+之间的直接相互作用,作者纯化了SPL9 DNA结合区域(SPL9 SBP),使用Monolith分子互作仪检测其与Cu2+的互作。结果显示SPL9 SBP直接与Cu2+结合,但不与Ca2+结合。图注:Monolith检测SPL9与Cu2+亲和力此外,李毅课题组在2020年研究结果解析了植物体内抗病毒RNAi信号通路,同样用到了MST技术。Yang, Zhirui, et al. "Jasmonate signaling enhances RNA silencing and antiviral defense in rice." Cell Host & Microbe 28.1 (2020): 89-103. 水稻抗病毒RNAi信号通路的核心蛋白AGO18受病毒侵染诱导,进而增强水稻的抗病毒免疫;但是病毒侵染如何诱导水稻AGO18的了解很少。北京大学李毅课题组发现病毒外壳蛋白(CP)过表达能够诱导水稻茉莉酸(JA)的显著积累,JA信号通路的关键转录因子(JAMYB)能够结合并激活AGO18的启动子,从而诱导AGO18的表达,抑制病毒的侵染。为了分析AGO18启动子上的顺式作用元件,作者进行了MST实验。将顺式作用元件带上FAM荧光,作为荧光信号源,检测到JAMYB结合在AGO18启动子上的顺式作用元件R3,R3突变后AGO18和JAMYB丧失结合能力,进而确定了该位点对于AGO18转录调控的重要性。图3. MST检测的JAMYB和AGO18 R3区域的结合(蓝色曲线)此外,作者通过MST实验发现,水稻JAZ6蛋白能够通过与JAMYB相互作用来抑制其转录激活活性,表明JAZ6抑制水稻抗病毒RNA沉默并损害水稻抗病毒免疫反应。图2. MST检测的JAMYB和JAZ6的结合该研究揭示了植物JA信号通路与RNAi信号通路协同参与水稻抗病毒防御的分子机制。4植物与线虫--蛋白和多肽Zhang, Xin, et al. "Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase." Molecular plant 13.10 (2020): 1434-1454.植物寄生线虫是全球性的粮食作物病虫害之一,然而线虫与宿主植物相互作用的机理仍尚不清楚。植物细胞膜上的受体蛋白FERONIA及其配体RALFs参与调节植物免疫反应。湖南大学和中国农科院植物保护研究所联合解析研究发现FERONIA突变导致植物对RKN表现出低敏感性。另外,作者在6类根结线虫中鉴定了18种RALF-like基因,编码的小肽可以直接结合到FERONIA的胞外结构域,从而“挟持”植物FER信号途径,破坏植物免疫系统,促进寄生。研究时,为了检测了线虫RALF- like小肽 MiRALF1/3是否同拟南芥At-RALF1具有相似的FER结合模式,作者使用MST进行检测。结果显示MiRALF1/3与FERECD亲和力分别是25μM和64μM,而AtRALF1亲和力略高,Kd为1.7μM,证明了线虫RALF -like具有植物RALF的典型活性,且可以结合FER。图注:MST检测FERECD与AtRALF1、MiRALF1或MiRALF3之间的亲和力在病原物和植物的识别到特定的防卫反应过程中,二者通过互作进行信号的传导,通过MST技术检测明确二者互作过程中的识别,免疫激发,通路调控和协同进化的详细机制,更好的分析和比较分子间作用和通路的调控。无论是植物和各种病原物的组织来源,均可在MST上完成检测,助力植物病理科学家们更好的解析植物和病原物的互作和协同进化。
  • 植物功能性状种内种间变异与环境响应机制获揭示
    植物功能性状对于探讨全球变化背景下植物的响应和适应、生态系统功能和过程,以及生物多样性监测等至关重要。近日,广东省科学院广州地理研究所粤港澳大湾区城市群生态系统观测研究站生态系统保护修复团队王智慧博士利用高光谱遥感技术,研究揭示了植物功能性状种内种间变异与环境响应机制。相关研究发表于《新植物学家》(New Phytologist)。据介绍,以往的性状研究主要采用野外采样和室内分析,针对大区域尺度多种植物叶片性状的同步观测非常稀缺。同时,研究大多只针对性状的物种平均值进行研究,忽略了物种内部存在的较大变异,且主要局限于“叶片经济型谱”性状,而对结构、防御和压力承受等多维性状关注较少。植物性状之间的协同权衡关系以及性状-环境因子的相关关系,在物种内部和物种之间是否呈一致性变化,尚未得到明确的答案。在该项工作中,研究人员利用高光谱遥感技术,同步获取跨生态气候梯度32个野外站点1103个植物个体的14种关键叶片性状,探讨性状的协同权衡关系、性状-环境因子相关关系在种内和种间水平的表现和差异,揭示植物在环境变化条件下的最优生长和适应策略。研究发现,在物种水平,叶片经济型谱与防御和压力承受性状关系很弱,但在物种内部关系明显变强;环境因子对跨物种叶片性状变异的解释很低,但对某些物种个体表现出显著强相关。结果表明,叶片性状呈独特性变化,不同物种采取多样化性状组合以达到适合度。高光谱遥感能够提供刻画多种关键植物叶片功能性状的全新高效手段,可在大尺度量化种内种间性状变异以及与环境因子的关系,有助于推动生态学相关领域的发展。上述研究得到国家自然科学基金、广东省自然科学基金和广东省科学院建设国内一流研究机构行动专项等项目的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制