形貌成像

仪器信息网形貌成像专题为您整合形貌成像相关的最新文章,在形貌成像专题,您不仅可以免费浏览形貌成像的资讯, 同时您还可以浏览形貌成像的相关资料、解决方案,参与社区形貌成像话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

形貌成像相关的耗材

  • 表面形貌仪配件
    表面形貌仪配件又称为光学形貌仪或三维形貌仪,它除了用于测量物件的表面形貌或表面轮廓外,具有测量晶圆翘曲度的功能,非常适合晶圆,太阳能电池和玻璃面板的翘曲度测量,应变测量以及表面形貌测量。 三维形貌仪主要配件应用 用于太阳能电池测量 用于半导体晶圆测量 用于镀膜玻璃的平整度(Flatness)测量 用于机械部件的计量 用于塑料,金属和其他复合型材料工件的测量 表面形貌仪配件特色 *除了表面形貌的测量,还可以测量张量和应力(简单); *可测量晶圆的尺寸为0.5' ' 到12' ' , 最高可达45x45cm的尺寸,对于小于0.5' ' 的晶圆或样品,可配备微距镜头。 *测量晶圆或其他样品的表面形貌,粗糙度和翘曲度; *克服常见干涉仪在粗糙表面(油漆)表现不足的问题; *非接触式测量
  • 三维表面形貌仪配件
    三维表面形貌仪配件是德国进口的高精度多功能表面轮廓测量仪器,也是一款光学表面形貌仪,非常适合对表面几何形状和表面纹理分析。 三维表面形貌仪配件根据国际标准计算2D和3D参数,使用最新的ISO 25178 标准表面纹理分析,依靠最新的 ISO 16610 滤除技术进行计算,从而保证了国际公信力,以标准方案或定制性方案对二维形貌或三维形貌表面形貌和表面纹理,微米和纳米形状,圆盘,圆度,球度,台阶高度,距离,面积,角度和体积进行多范围测量,创造性地采用接触式和非接触式测量合并技术,一套表面形貌仪可同时具有接触式和非接触式测量的选择。 三维形貌仪配件参数: 定位台行程范围:X: 200 mm Y: 200 mm Z: 200 mm (电动) 接触式测量范围: 范围0.1mm, 分辨率2nm, 速度 3mm/s 范围2.5mm 分辨率40nm, 速度3mm/s 非接触式测量范围: 范围:300um, 分辨率2nm, 速度30mm/s 范围:480um, 分辨率2nm, 速度30mm/s 范围:1mm, 分辨率5nm, 速度30mm/s 范围:3.9mm , 分辨率15nm, 速度30mm/s 表面形貌仪配件应用:测量轮廓,台阶高度,表面形貌,距离,面积,体积 分析形态,粗糙度,波纹度,平整度,颗粒度 摩擦学研究,光谱分析 磨料磨具,航天,汽车,化妆品,能源,医疗,微机电系统,冶金,造纸和塑料等领域。
  • 扫描电镜专用场发射电子源9215736
    场发射电子源921 5736 ,这个型号的场发射灯丝,适用于原厂H机型。场发射扫描电子显微镜其实它是电子显微镜的一种,扫描电镜是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。广泛用于生物学、医学、金属材料、高分子材料、化工原料、地质矿物、商品检验、产品生产质量控制、宝石鉴定、考古和文物鉴定及公安刑侦物证分析。可以观察和检测非均相有机材料、无机材料及在上述微米、纳米级样品的表面特征。优点:1、有较高的放大倍数,20-30万倍之间连续可调;2、有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;3、试样制备简单,目前的扫描电镜都配有X射线能谱仪(EDS)装置,这样可以同时进行显微组织形貌的观察和微区成分分析。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。

形貌成像相关的仪器

  • 随着半导体技术的电子技术工艺的发展,电子产品都往小型化,轻薄化发展。iWatch的一经推出,穿戴电子产品成为了一个新的电子设备应用潮流。随着电子产品的小型化,器件体积越做越小,空间就紧凑起来,这对器件加工尺寸及工艺的容差要求就越来越高。如何管控器件的尺寸及加工工艺对检测手段提出了新的挑战。原来很多制程工序只要管控2D的尺寸,现在需要管控3D的尺寸,而且精度要求都在微米级别,这就需要一个高速、高精度的测量手段来管控生产品质。卓立汉光的3D形貌测试仪应运而生,这款仪器采用非接触式线光谱共焦快速扫描技术,能够高精度还原产品的3D结构,对肉眼不可见的结构缺陷都能准确检测。因为具有较快的扫描速度,微米级别的精度和超强的稳定性,一经推出立马成为精密生产商的新宠。在精密铸件、精密点胶、3D玻璃,半导体缺陷检测和多层光学薄膜厚度检测,就是这款产品的主要应用领域。 卓立汉光长期专注于光谱技术的应用研发,3D形貌测试仪就是常年实践积累的成果(利号:CN207556477U)。该项技术,具有以下优点:技术线性共焦光谱技术点测技术激光扫描3D相机速度1000 line/s1000 point/s1000 line/s多角度拍照快扫描宽度6.5mm/20mm点可选大分辨率1um1um30um100um界面层数多层多层表面表面建模否否否是数据量大大少少 鹰眼系列3D形貌测试仪主要特点有:1、非接触性测量;2、线扫描,高效率;3、微米级精度;4、满足透明面及高对比度表面测试;5、支持二次开发; 鹰眼系列3D形貌测试仪主要应用1、精密部件3D尺寸及段差测试;2、精密点胶胶线截面、胶线宽度、胶线高度测试;3、3D玻璃缺陷检测;4、半导体表面缺陷测试;5、多层薄膜厚度测试; 3D形貌测试仪产品型号及规格HawkEye-1300HawkEye-5000方式共焦光谱共焦光谱精度1um8um重复性±0.3um±4um线扫宽度6.5mm20mmZ轴量程范围1.3mm5mm扫描速度300line/s(Max:1000line/s)300line/s(max:1000line/s)重量5Kg8Kg尺寸460X300X140mm460X300X140mm
    留言咨询
  • 三维形貌仪/台阶仪 400-860-5168转1329
    三维形貌仪概述Rtec 形貌仪在加利福尼亚硅谷制造。已被多个知名实验室、大学和行业使用。UP系列在一个头上组合了4种成像模式。能够在同一测试平台上运行多种测试,只需单击按钮,就能转换成像模式。这种组合可以轻松地对任何表面进行成像如透明、平坦、黑暗、扁平、弯曲的表面等。每种成像模式都具有各自的优势,并且各项技术彼此互补。该项整合技术不仅有利于数据的综合分析,也可以减少维护成本,从而提高效率。 3D光学轮廓仪组合l白光干涉仪l旋转盘共聚焦显微镜 l暗视野显微镜l明视野显微镜 主要平台规格 产品规格l标准电动平台150x150mm(可选210x310mm)l标准转塔,电动转塔可选l垂直范围可达100mml倾斜阶段6度lXY舞台分辨率0.1uml自动拼接楷模lSigma头 - 白光干涉仪lLambda头 - 白光干涉仪+共焦+暗场+明场 应用 ●粗糙度 ●体积磨损 ●台阶高度 ●薄膜厚度 ●形貌 测试图像示例 DLC涂层球 粗糙涂层表面 圆球磨斑 金刚石 生物膜 微流体通道 聚合物涂层 墨痕 硬币 研磨垫 铝的失效痕迹 划痕 涂层失效痕迹 芯片通道 晶圆 以上为双模式三维表面轮廓仪拍出的样品形貌。在同一平台上结合使用多种光学技术,测试仪可以测量几乎任何类型的nm分辨率样品。该表面轮廓仪配有功能强大的分析软件,符合多种标准。双模式三维表面轮廓仪能够在同一测试平台上运行多种测试,产品的组合可根据不同的技术应用要求而改变。针对样品的同一区域可进行不同模式的实验检测,模式切换可实现自动化。多项技术的整合能够使不同技术在同一检测仪上充分发挥各自的优势。该项整合技术不仅有利于数据的综合分析,也可以减少维护成本,从而提高效率。
    留言咨询
  • Theta Flow光学接触角3D形貌联用仪Theta Flow光学接触角3D形貌联用仪是一款将3D表面粗糙度测量和接触角测量结合起来产品,可在样品的同一位置精确测量这两个参数。&bull OneAttention软件自动计算粗糙度修正接触角和表面自由能&bull 全自动测量仅需几秒钟,操作简单,自动运行和分析&bull 区分各种涂层配方和表面改性对表面化学和粗糙度的影响技术润湿性通常由接触角测量来研究,接触角测量用理想表面上的杨氏方程(Young equation)来定义。表面自由能理论也基于用杨氏接触角(Young contact angle)来计算的假设。因此,表面被假设是化学均匀和平整光滑,然而,真实表面并非如此。表面粗糙度增强现有的润湿行为,并对粘附性产生影响。Theta Flow光学接触角测量仪结合3D形貌模块,可以定义杨氏接触角和表面自由能的测量,以及根据温泽尔理论(Wenzel theory)对粗糙表面经行测量。理想表面上的接触角,称为杨氏接触角(Young contact angle)真实表面上显示或测量的接触角3D形貌模块是一种采用条纹投影相移技术的高分辨率三维形状采集系统。相移条纹照明图案依次投射到所研究的表面上,数码相机捕捉条纹图案,通过相移编码重建物体的三维形状,根据物体的三维形状计算出二维和三维粗糙度参数。 光学视图 2D视图 3D视图 产品参数 参数方法名称基于条纹投影相移原理XY像素大小1.1 μm x 1.1 μmZ方向测量范围1 μm – 60 μm测样区域1.41 mm x 1.06 mm (XY). (最大到: 4.2 mm x 4.2 mm)工作距离18 mm样品尺寸上限无限x 320 mm x 22 mm (L x W x H)成像选项光学图像, 2D粗糙度图, 3 D粗糙度图每次测量持续时间5-30 s分析参数(ISO 4287, ISO 4288)r (Wenzel 方程);θc, 粗糙度修正接触角/Wenzel接触角;Sdr (%), Sa (μm), Sq (μm);水平、垂直和 2D 线形区域的Ra, Rq,Rp, Rv, Rz, R10z波纹过滤高斯高通滤波器(ISO 11562)样品要求/局限性需要漫反射面硬件尺寸17 cm x 16.5 cm x 11.5 cm重量2.6 kg电压100~240 VAC频率50-60 Hz系统要求计算机2G处理器,4G内存,500G硬盘,1920x1080分辨率显示器,1个USB3.0端口要求配置XYZ全自动样品台
    留言咨询

形貌成像相关的方案

  • Kelvin探针成像与形貌像的比较
    这幅图像是使用easyScan2 FlexAFM动态轻敲模式记录的,使用EFM悬臂(75kHz共振频率)。Kelvin探针参考信号频率为1400Hz,振幅300mV.这幅图显示了在与形貌和相图相同位置同时记录了表面的局部接触(Kelvin)电位分布。这个测量显示了纳米颗粒不仅有不同的弹性还有不同的接触(Kelvin)电位。此外底层的一些区域也显示了不同的接触电位
  • 原子力显微镜扫描电镜关联成像在纳米颗粒、石墨烯的三维表面形貌,深度轮廓,表面粗糙度测量应用
    LiteScope显微镜优势整合了AFM和SEM的技术优势,首创型的同步原子力和电镜的成像获得前所未有的图像信息即插即用的解决方案–方便使用整合表面特征的工具SEM – 图像, 化学分析, 表面修饰AFM – 3D 表面形貌,粗糙度,导电性,电子特性相关显微镜 – CPEM (探针显微镜和电子显微镜关联)
  • 铜样品电化学腐蚀原子力形貌像的实时观测
    AFM型号:Easyscan 2 FlexAFM LS测量模式:Dynamic轻敲式悬臂探针: NCLR附件仪器:CH Instruments电化学分析仪制作好的铜片样品(工作电极)用鳄鱼夹夹好,鳄鱼夹应远离溶液避免可能的腐蚀。样品与Ag/AgCl参比电极,对电极组成电化学体系。所有电极均浸泡在100mM NaCl水溶液中。图1为测试前铜片的形貌像,使用的是动态轻敲模式。开路电位(OCP)为-0.347V,做Tafel曲线和点蚀测量以确定点蚀电位。加一个0.6V阳极电位1分钟在体系上后,测量铜片的形貌像,如图2所示,可以看到铜片表面发生了一些变化。再过1分钟后,可以看到溶液中产生了一些气泡,图3为此时的铜片形貌像,可以看到在铜片表面有相当多的变化,由于铜的电化学腐蚀导致材料表面产生了一些物质,在铜样品周围有一些小颗粒。颗粒沉积的痕迹能在形貌像中看到。再过1分钟后,着这个阶段已经不可能看到形貌像,因为腐蚀物质形成的混浊液体的干扰遮挡住了激光光束。在这个阶段铜样品被取出彻底冲洗后,放入新的液体中,再一次进行AFM测量,形貌像显示出表面的凹点(如图4)。通过软件可得到凹点的平均深度和直径。用不锈钢做相同的试验,电位为+1V,甚至10分钟后形貌像仍没有发生改变(图5和6),抗腐蚀能力没有发生变化。

形貌成像相关的论坛

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131407_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_02_1546_3.jpg[/img]

  • 微纳形貌分析利器——4D微纳形貌动态表征

    微纳形貌分析利器——4D微纳形貌动态表征

    科研史上前所未有的观测手段——数字全息可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131349_01_1546_3.jpg[/img][img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131350_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131354_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_04_1546_3.gif[/img][img=,384,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131358_01_1546_3.jpg[/img]

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_02_1546_3.jpg[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_03_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_04_1546_3.gif[/img]

形貌成像相关的资料

形貌成像相关的资讯

  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 英国剑桥大学刘子维:全息术助力表面形貌的干涉测量
    全息术是一种能够对光波前进行记录和重建的技术,自从 1948 年匈牙利-英国物理学家 Dennis Gabor 发明全息术以来,该技术不仅得到了显微学家,工程师,物理学家甚至艺术家等各领域的广泛关注,还使他获得了 1971 年的诺贝尔物理学奖。干涉术作为光学中另一个主要研究领域,是利用光波的叠加干涉来提取信息,其原理与全息术都是用整体的强度信息来记录光波的振幅和相位,虽然记录的方法有很大不同,但随着 20 世纪 90 年代,高采样密度的电子相机的出现,可用来记录数字全息图,则进一步增强了二者的联系。近日,针对全息术对表面形貌的干涉测量的发展的推动作用,来自美国 Zygo Corporation 的 Peter J. de Groot、 Leslie L. Deck,中国科学院上海光机所的 苏榕 以及德国斯图加特大学的 Wolfgang Osten 联合在 Light: Advanced Manufacturing 上发表了综述文章,题为“Contributions of holography to the advancement of interferometric measurements of surface topography”。本文回顾了包括相移干涉测量,载波条纹干涉,相干降噪,数字全息的斐索干涉仪,计算机生成全息图,震动、变形和粗糙表面形貌和使用三维传输方程的光学建模七个方面,从数据采集到三维成像的基本理论,说明了全息术和干涉测量的协同发展,这两个领域呈现出共同增强和改进的趋势。图1 全息术的两步过程图2 干涉术的两步过程相移干涉测量术 因为记录的光场的复振幅被锁定在强度图样中的共同基本原理,全息术和干涉测量术捕获波前信息也是一个常见的困难,用于表面形貌测量的现代干涉仪中,常用相移干涉测量术(PSI)来解决这个问题,PSI 的思路是通过记录除了它们之间的相移之外几乎相同的多个干涉图,以获取足够的信息来提取被测物体光的相位和强度。Dennis Gabor 早在 1950 年代搭建的全息干涉显微镜使用偏振光学隔离所需的波前,引入除相移外两个完全相同的全息图。如图3所示,Gabor 的正交显微镜使用了一个特殊的棱镜,在反射光和透射光之间引入了 π/2 的相移。因此,可以说,用于表面测量的 PSI 首先出现在全息术中,然后独立出现在干涉测量术中。PSI 现在被广泛用于光学测试和干涉显微镜,虽然许多因素促成了其发展,但其基本思想可以追溯到使用多个相移全息图进行波前合成的最早工作。图3 Gabor正交显微镜简化示意图载波条纹干涉测量术 通过使用角度足够大的参考波来分离 Gabor 全息图中的重叠图像,从而使全息图形成的重建真实图像和共轭图像在远场中变得可分离,是全息术的重大突破之一, 到 1970 年代,人们意识到传播波阵面的远场分离等价物可以在没有全息重建的情况下模拟干涉测量。这一概念在 1982 年武田 (Takeda) 的开创性工作中广受欢迎,他描述了用于结构光和表面形貌的干涉测量的载波条纹方法。载波条纹干涉测量术的基本原理源自通信理论和 Lohmann 对全息重建过程的傅里叶分析。到 2000 年代,计算机和相机技术已经足够先进,可以使用高横向分辨率的二维数字傅里叶变换进行实时数据处理,赋予了载波条纹干涉技术的新的生命。图4 从干涉图到最后的表面形貌地图的过程此外,在菲索干涉仪中,参考波和物体表面的相对倾斜会导致相机处出现密集的干涉条纹。如果仪器在离轴操作时,具有可控制或可补偿的像差,所以只需要对激光菲索系统的光机械硬件进行少量更改,就可以实现这种全息数据采集。因此,载波条纹干涉仪通常是提供机械相移的系统的选择。相干降噪 虽然可见光波段激光器的发明给全息术带来重要进展,然而,在全息术和干涉测量术中不使用激光的主要原因是,散斑效应和来自尘埃颗粒和额外的反射而产生的相干噪声。通过仔细清理光学表面只能很小部分的噪声,而围绕系统的光轴连续地旋转整个光源单元就可以解决这个问题。如果曝光时间很长,这种运动会增强所需的静态图样,同时平均化掉大部分相干噪声。常用的实现平均化的方式包括围绕光轴旋转光学元件、沿着照明光移动漫射器、用旋转元件改变照明光的入射方向,或在傅里叶平面中移动不同的掩模成像系统。激光在 1960 年代开始出现在不等路径光学装置中,最初为全息术开发以减少相干噪声的平均方法,被证明也可有效改善干涉测量的结果。图5中,是 Close 在 1972 年提出的一种基于脉冲红宝石激光器的便携式全息显微镜。显微镜记录了四个全息图,每个全息图都有一个独立的散斑图案,对应于棱镜的旋转位置,由全息图形成的四个图像不相干叠加以减少相干噪声和散斑粒度。图5 使用旋转楔形棱镜的相干降噪系统数字全息菲索干涉仪 Gabor 的背景和研究兴趣使他将全息术视为一种具有大景深的新型显微成像技术,使显微镜学家可以任意地检查图像的不同平面。记录后重新聚焦图像的能力仍然是全息术的决定性特征之一,使我们无需仔细地将物体成像到胶片或探测器上。它还可以记录测量体积,能够清晰地成像三维数据的横截面。而数字全息术使这种能力变得更具吸引力,其重新聚焦完全在计算机内实现。虽然数字重聚焦在数字全息显微镜中很常见,但它通常不被认为是表面形貌干涉测量的特征或能力。尽管如此,从前面对该方法的数学描述来看,在采集后以相同的方式重新聚焦常规干涉测量数据是完全可行的。随着数据密度的增加,人们对校正聚焦误差以保持干涉测量中的高横向分辨率感兴趣。图6 激光菲索干涉仪的聚焦机理与全息系统不同,传统干涉仪的布置方式是在数据采集之前将物体表面精确地聚焦到相机上。图 6 说明了一种简化的聚焦机制。聚焦通常是手动过程,涉及图像清晰度的主观确定。由于光学表面通常在设计上没有特征,因此常见的过程包括将直尺放置在尽可能靠近调整表面的位置并调整焦距,直到直尺看起来最锋利。繁琐的设置和人为错误的结合使得我们可以合理地断言,今天很少有干涉仪能够充分发挥其潜力,仅仅是因为聚焦错误。数字重新聚焦提供了使用软件解决此问题的机会。计算机产生全息图 早在 1960 年代后期,学者们就已经对波带片与计算机生成全息图 (CGH) 之间的类比有了很好的理解,这是因为在开发新的基于激光的不等径干涉仪来测试光学元件的表面形状的应用时,需要对具有非球面形状的透镜和反射镜进行精确测试。图7 计算的菲涅尔波带片图样和牛顿环(等效于单独的虚拟点光源产生的Gabor全息图)然而,干涉仪作为最好的空检测器,在比较形状几乎相同的物体和参考波前时能提供最高的精度和准确度,虽然有许多巧妙的方法可以使用反射和折射光学器件对特定种类的非球面进行空测试,但 CGH 可通过简单地改变不透明和透明区域的分布来显着增加解空间。CGH 空校正器的最吸引人的特点是波前构造的准确性在很大程度上取决于衍射区的平面内位置,而不是表面高度。因此,无需费力地将非球面参考表面抛光至纳米精度,而是可以在更宽松的尺度上从精密参考波来合成反射波前。图8 使用激光菲索干涉仪和计算机产生的全息图测试非球形表面的光学装置振动、变形和粗糙表面形貌 全息干涉测量术是全息术对干涉测量术最明显的贡献,从技术名称中就可以看出。这项发现的广泛应用引起了计量学家高度关注,包括用于通过全息术定量分析三维漫射物体的应力、应变、变形和整体轮廓的方法。全息干涉测量术的发现对干涉测量术的能力和可解释性产生了深远的影响,为了辨别这些联系,首先考虑在同一全息图的两次全息曝光中,倾斜一个平面物体。两个物体方向的强度图样的不相干叠加,调制了全息图中条纹的对比度,而当这个双曝光全息图用参考波重新照射,以合成来自物体的原始波前时,结果也是条纹图样。因此,我们看到传播波前的全息再现,可用于解调双曝光全息图中存在的非相干叠加的干涉图案,将对比度的变化转换为表示两次曝光之间差异的干涉条纹。由于全息图中这些叠加的图案相互不相干,它们可以在不同的时间、全息系统的组成部分的不同位置、甚至不同的波长等条件下生成,因此,该技术的应用范围十分广泛。图9 模拟平面的双曝光全息使用三维传输方程的光学建模 使用物体表面的二维复表示,对本质上是三维问题的传统建模,是假设所有表面点可以同时沿传播方向处于相同焦点位置。因此,这种二维近似的限制是表面高度变化相对于成像系统的景深必须很小。全息术影响了三维衍射理论的发展,进一步影响了干涉显微镜的评估和性能提升。光学仪器的许多特性可以使用传统的阿贝理论和傅里叶光学建模来理解,包括成像系统的空间带宽滤波特性。干涉仪的傅立叶光学模型的第一步,是将表面形貌的表示简化为限制在垂直于光轴的平面内的相位分布。但对于使用干涉测量术的表面形貌测量,这并不是一个具有挑战性的限制,因为普通的菲索干涉仪的景深大约为几毫米,表面高度测量范围可能为几十微米。因此,在高倍显微镜中采用三维方法的速度更快,特别是对于共聚焦显微镜,在高数值孔径下,表面形貌特征不能都在相对于景深的相同的焦点。然而,二维傅里叶光学的近似对于干涉显微镜来说是不够精确的,因为在高放大倍率下,仅几微米的高度变化,就会影响干涉条纹的清晰度和对比度。基于 Kirchhoff 近似推导出了 CSI 的三维图像形成和有效传递函数,其中均匀介质的表面可表示为连续的单层散射点。这种方法已被证明具有重要的实用价值,不仅可以用于理解测量误差的起源,是斜率、曲率和焦点的函数,还可以用于校正像差。本文总结 基于激光的全息术的出现带来了一系列快速的创新,这些创新从全息术发展到干涉测量术。虽然文中提到的七个方面无法完全概括全息术的贡献,但一个明显的趋势是全息术对用于表面形貌测量的干涉测量技术的影响正在不断增加, 这最终可能会导致全息术与通常不被认为是全息术的技术相融合,而应用光学计量的这种演变必将带来全新的解决方案。论文信息 de Groot et al. Light: Advanced Manufacturing (2022)3:7https://doi.org/10.37188/lam.2022.007本文撰稿: 刘子维(英国剑桥大学,博士后)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制