形成原因

仪器信息网形成原因专题为您整合形成原因相关的最新文章,在形成原因专题,您不仅可以免费浏览形成原因的资讯, 同时您还可以浏览形成原因的相关资料、解决方案,参与社区形成原因话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

形成原因相关的耗材

  • 火灾原因调查装备配备
    火灾原因调查装备配备: 便携式气相色谱仪、便携式红外光谱仪、易燃液体探测仪、便携式可燃气体检测仪、可燃气体探测仪、可燃气体检测管、采样器、薄层色谱分析装置、炭化深度测定仪、金属硬度检验仪、回弹仪、数字温度计、现场勘查灯、碘钨灯、电源线盘、特斯拉计、金属探测器、万用表、接地电阻测量仪、绝缘电阻测试仪、静电电压表、便携式金相显微镜、体视显微镜、小型X光检测仪、照相机、照相冲洗设备、数码照相机、数码摄像机、现场勘查工具箱、数字测距仪、望远镜、尸体袋、物证保存袋、火灾现场勘查专用车、火灾勘查仪器箱、火灾现场勘查工具箱。
  • AK琼脂#2(孢子形成琼脂)
  • PRP-X100 guard column cartridge/4.0
    PRP-X100 guard column cartridge/4.0 订货号: 6.1005.020用于保护Hamilton PRP-X100分离柱。该小柱可有效地去除由于细菌或藻类生长等原因而形成的颗粒形式的污染物。技术参数:柱尺寸(mm)20 x 4.0外壳材料Stainless steel颗粒大小(μm)10

形成原因相关的仪器

  • DIT-KDY-125智能闸门开度仪通过联轴器等联结件将编码器轴与启闭机卷筒轴或小齿轮轴联结,使编码器与被测轴同步转动,将被测轴的旋转转化为编码器轴的旋转,通过专用测试仪采集编码器值从而准确的测量出被测件的位移量。并达到了对被测件位移的实时测量与控制的目的。DIT-KDY-125智能闸门开度仪又名闸位计,非常适用于闸门(平板门、弧形门、人字门、门机、桥机等)的起吊高度的测量、闸门开度、闸门控制等;是江河湖泊、水库、船闸、水电站、水文站、水厂及石油化工等行业的理想选择。 典型用户 木棉电排站,东方红水库,市桥河泵站,九坑河水库,勒流泵站,西坑水库,铁岗水库,顺德南涌电排站,西河泵站,中顺大围,东升联围、佛山南海电排总站主要功能 坚固防水性好:双层重载轴承结构,金属密封外壳;已在全国各地的河闸、水电站、水库、泵站、闸坝安装使用,长期运行,深得广大用户的信赖;抗干扰防雷击:采用抗干扰和防浪涌设计,内部光电隔离,防雷击,适用于经常遭受雷击的场合;安装简单方便:智能化面板设定,可设定方向、起始零点、比例系数,多段非线性设置等,用户在现场按规定安装后,只需要设定好测量的起点、终点和总量程即可;具有开度零点输出和满量程输出校准功能,便于现场调整基准掉电记忆功能:采用进口品牌绝对值多圈编码器,绝对位移测量,具有掉电记忆功能,即使掉电或者掉电后设备发生了移动,只要上电就可以立即得出当前的测量值;高精度安全可靠:采用高精度器件,采用数字滤波技术和误码检测技术,以提高测量准确性和可靠性;强大的信号与电源抗干扰容错功能,自带8组位置开关输出,可以分别设置开关动作的位置以及动作死区的设置,防止在临界位置时发生开关不断动作的情况,更可靠安全;应用范围广量程大:多达16段的非线性设置,对于弧形闸门或其他非线性的测量场合非常适用;采用进口品牌绝对值多圈编码器,单圈分辨率512线,以128圈行程来算,总线数达65536线,如果测量10米的行程,转动圈数为100圈,则分辨率为0.39mm,对于闸门开度测量和水位测量来说,完全能够满足要求,对于其他高精度的测量场合也能适用;即使转动的圈数超过4096圈也不会损坏仪器,智能化功能。标准输出信号:4-20mA模拟信号和RS485信号输出,标准MODBUS协议,可以直接和可编程控制器(PLC)或上位机工控软件通讯;
    留言咨询
  • 升降平台漏油的原因:液压升降平台漏油的原因错综复杂,主要归纳下来有以下几点:液压元件的质量,振动,腐蚀,压差,管路的连接、使用维护不当引起,液压升降平台的漏油分为外漏和内漏.对于少量的漏油是不可避免的,这是由于液压传动的本质所决定的。  升降平台漏油危害性:液压升降平台漏油问题是使用升降平台的客户经常碰到的问题.就目前状况看,国内出产的液压升降平台都不同程度的漏油现象,不但造成大的资源浪费,也影响用户的正常使用,漏油量超过规定指标的现象由于外漏,一般能立即察觉出来,主要体现在升降平台的压力下降,速度骤变,严重的地面或者机器表面有积油,设备需要经常补油才能恢复高之前的作业高度.一旦漏油就要停机进行维修,强行操作只会人损坏机器,使空气受到严重的污染,我们应该避免液压升降平台漏油的现象,使危害降低。 :400-011-8086
    留言咨询
  • 保形成像能够将声压、声强、质点速度等物理量映射到被测物体的真实表面,采用保形成像能够有效降低数据误读的风险。几何模型可通过导入现有的CAD/CAE模型获得,亦可采用对实际对象进行离散化测量获得。声全息、波束形成和球面波束形成等所有基于阵列的声源识别技术均支持保形成像选项。 产品货源Bruel & Kjaer的所有产品均为丹麦原产产品报价本商铺不提供网上报价,如需产品报价,请直接联系Bruel & Kjaer中国
    留言咨询

形成原因相关的试剂

形成原因相关的方案

形成原因相关的论坛

  • 气相色谱鬼峰及其形成原因追溯(4)

    2.4 其他因素引起的鬼峰当使用的溶剂与毛细管色谱柱的极性不匹配的时候,也有可能产生鬼峰,这类鬼峰往往在主峰前面形成堆栈形状,但经MS确认的话,一般多是主峰分析物本身,如下图9以及图10所示。究其原因在于所使用的溶剂如乙腈等在被进样之后,由于与色谱柱的极性不相匹配,在冷凝聚焦的时候,形成的液滴或者说是液膜不是连续的分布,在梯度升温的时候被分部“洗脱”出来而形成堆栈式的鬼峰。如果二者极性相互匹配,样品再次在色谱柱柱头上聚焦的时候,则形成连续的液滴或者说是液膜,如下图11所示。最后,在使用恒温[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析的时候,如果分析温度较低的话,最好在目标峰都出来之后,设置一段升温程序或者延长分析时间,避免由于升温不充分,导致一些化合物未有效流出而在之后的分析时,形成鬼峰,如下图12所示。如上图所示,该种情形引起的鬼峰具有一个显著的特点,保留时间十分的不稳定,且其峰宽比其前后的色谱峰的峰宽均要宽得多(位于前后色谱峰中间,但其峰宽却远宽与前后峰宽的话,多意味着该色谱峰对应的化合物在色谱柱内的实际停留时间远大于色谱图上所对应的保留时间)。3结论以上大致总结了在进行[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析的时候,出现鬼峰现象的可能原因。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url],不像[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]那样,整个[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的任何一个部位均有可能引入鬼峰,因而对其原因的排除也就比较困难。在实际操作过程中,可以根据相关现象,有的放矢地进行原因筛查,实在筛查不出且不影响到方法的实际应用的时候,也可不用过分纠结。

  • 白点的检测、形成原因与预防

    白点的检测、形成原因与预防摘 要:论述了白点的检测方法、形成原因与预防办法,为白点的正确判定提供了依据,并为生产中预防白点产生提供参考。关键词:白点 低倍缺陷 宏观断口 光谱分析 超声波探伤白点是钢材的低倍缺陷。由于白点特征的多样性,单凭低倍检验还难以给出非常准确的定性判定。要给出准确的判定必须结合低倍酸浸、宏观断口、超声波探伤、化学成分、或微观金相等的综合分析。白点的存在严重破坏钢材或结构件的机械性能,破坏钢材的连续性,使钢材易于脆断,对钢材的危害性极大。白点是不允许存在的低倍缺陷,生产中我们要采取有力的措施加以预防。1 白点的检验低倍酸浸检验 按国标GB226-1991检验方法进行酸浸后,肉眼观察,白点的特征为距试样表面一定距离处或近中心部位分布的锯齿形细长裂纹,呈放射状的同心圆或不规则形状。宏观断口检验 在低倍检验的基础上,在裂纹处,进行纵向断口检验,断口上多呈圆形或椭圆形的银白色斑点。斑点内的组织为颗粒状,有的呈鸭嘴形裂口,白点的尺寸变化大,多分布在偏析区内。光谱分析 在前两项检验的基础上,于裂纹处制取光谱试样(直径5mm),进行光谱分析,在裂纹处激发,然后与标样对比分析,测定氢含量,一般钢材要求氢小于4ppm,但因白点是在由高温向低温冷却的过程中形成的,在这个过程中,氢已经得到一定程度的释放,此时可在低倍酸浸试样未出现裂纹处取一光谱试样进行对比分析,可以看出氢含量的差异。显微金相分析 在裂纹处取一金相样,按国标GB13289-1991制取试样,抛光后于显微镜下观察,白点具有的微观特点为穿晶分布,因其是在高温冷却过程中的低温下形成,热应力大,故形成锯齿形的特征,并且在裂纹附近无氧化脱碳的现象出现,也会发现裂纹的出现与钢中的夹杂物无任何直接关联。超声波探伤分析 白点的缺陷波形与其它缺陷的波形有较大的差异,白点的缺陷波形最大特征是尖锐、底波少。2 白点的形成原因白点是由于钢中氢含量过多和内应力共同作用造成的。钢从奥氏体→面心立方→体心立方冷却转变的过程中,体心立方较面心立方溶解更少量的氢,有实验证明:从1650℃冷却至409℃时,氢含量下降至原有的1/80,所以,氢在低温时能造成大的压力。材质的影响 相同的含氢量,不同材质却有着不同表现,有些材质对白点敏感,就很容易出现白点,而有些就不易出现。对白点敏感的合金钢有铬钢、铬钼钢、锰钢、锰钼钢、铬锰钢、铬锰钼钢、铬镍钼钢、铬镍钨钢等,所以,这些合金钢在冶炼过程中,更应注意减少氢的含量。分布区域 随钢温的降低,氢在钢中溶解度减小,当冷速加快时,柱状晶内的氢来不及扩散至大气中,聚积在钢的显微孔隙中并结合成分子态,更使其扩散困难,形成巨大的局部压力,达到钢的破断强度以上,从而使钢产生内部断裂,即我们说的白点。因而,白点多分布于柱状晶及以内区域。应力 由于树枝状组织的晶轴与晶枝间因成分不均匀性,不同的组织转变产物引起组织应力,变形应力与热应力也起一定作用,同时有人提出应力引起白点不能解释碳化物与莱氏体钢对白点的不敏感性。可见,白点不是应力单独作用的结果。温度 白点形成的温度区间为250℃~100℃之间,而氢扩散系数最大区间为650℃~300℃,故在300℃以下来不及扩散的氢就存在于钢中而引起应力,从而为形成白点创造了必要的条件。3 为防止白点的产生应采取的措施白点是由于钢中的氢从固溶体中析出而引起的内应力作用的结果,如能在锻轧后进行缓冷,可以避免白点的出现,但应肯定氢是形成白点的主要因素。防止白点的产生应采取的措施如下:1) 冶炼操作时做到高温氧化,沸腾良好,严格控制脱氧量,确保去氢和减少夹杂。2) 原材料必须干燥或烘烤红热,使用少锈优质的废钢,保证浇注系统干燥。3) 条件允许的情况下,采用炉外精炼或真空处理。4) 对热加工后的钢材进行缓冷,退火处理,有条件的进行锻后防白点等温退火处理。4 结语对白点的定性判定常常是检验工作者较为棘手的工作,但掌握了以上的检验基础,就可以正确地对白点进行判定,从而对钢材或工件的质量做出准确的评价。 本文摘自 一重技术 2005年第3期

形成原因相关的资料

形成原因相关的资讯

  • 成都一生化实验室突发火灾 液体爆炸形成流淌火
    过火面积达4000平方米,火灾中幸无人员伤亡   ●消防部门直接从一家生产灭火泡沫的企业调集来两车泡沫,直接送到现场兑水,然后马上投入火场扑救。   ●起火的公司是四川省酿酒研究所生产科研基地。公司联合四川大学,建立了生化技术联合实验室。   18日下午5点过,成都温江区海峡科技园海科西路某生物科技有限公司突发火灾。大量储存各式易燃酒精的罐体出现爆炸、燃烧,并形成了流淌火。过火面积达4000平方米,共有13个消防中队投入紧急扑救。火灾中幸无人员伤亡。   远处可见浓烟 起火房屋坍塌   华西都市报记者在途经温江区南熏大道时,已远远看到事发地腾起的黑烟,引来不少路人围观。   事发公司的各方向路口都已设置了警戒线,民警和治保队员劝阻过路的市民和车辆,暂时不准人进入警戒区域。   尽管事发后已近2小时,那片建筑仍不时映出火光。建筑体有一面四五层高的巨大墙体,已被熏得变色,另几侧墙体则已不复存在。   记者后来从抢险现场相关人士处得知,起火后,存放这些化学品罐的房子出现了坍塌,成了一个流淌火燃烧的现场。   一位附近居民说,开始时有很大的浓烟,后来他看到了巨大的火团在那面巨大墙体处翻滚,火势十分猛烈,围观的人都不敢离得太近,生怕发生危险。   后来警察赶到现场,围观的人被劝离。而消防人员赶来扑救前,现场不时传出大大小小的爆炸声,每次爆炸后,火势就燃得更厉害。   扑救难度很大 爆炸形成流淌火   洒水车不断送水。而在实验室外的路边,当地调集来的一台推土机不停掘土,将路边一个水渠进行截断作业。工作人员说,这是为了防止火场内的泡沫水进入水源,造成水污染。   晚上8点过,现场仍有火光在闪,扑救工作还在进行中。据了解,此次火灾过火面积达4000平方米,相当于10个标准篮球场那么大。成都消防调集了崇州、青羊政府消防队在内的13个中队近200名官兵赶赴现场进行紧急扑救。   知情人士透露,事发的那个房子面积很大,堆放的酒精类液体非常多,有大桶也有小桶,燃烧后不少出现了爆炸,液体到处流淌形成了流淌火,建筑后来又出现了坍塌,给扑救带来极大难度。   消防部门调集了大量的泡沫消防车助阵。因燃烧面积大并有流淌火,泡沫用量很大,消防部门直接从一家生产灭火泡沫的企业调集来两车泡沫,直接送到现场进行兑水,然后马上投入火场扑救。   晚9点控制险情 原因正在调查   18日晚9点,险情得到控制,消防人员开始陆续撤离,仅留下一部分人员进行现场清理。   温江区提供的情况通报表明,灾情发生后,区消防、公安、应急办、安监局、科技园管委会等均到场展开抢险工作。火灾无人员伤亡报告,事故原因、过火面积、火灾损失在进一步调查之中。   记者了解得知,起火的这家公司是四川省酿酒研究所生产科研基地。公司专业从事酒用微量成份、生物发酵技术的研究、生产,以粮食、淀粉、植物油脂、蓖麻油、菜油、椰子油、棕榈油为原料,通过微生物发酵提取有机成份,公司联合四川大学,建立了生化技术联合实验室。
  • 多国科学家揭雾霾形成机制 中国治霾需增控NO2、NH3
    近期,一个由中国、美国和英国科学家组成的联合研究团队在《美国国家科学院院刊(PNAS)》发表文章,宣称找到1952年伦敦大雾及当前中国雾霾形成的主要化学机制。(来自网络)  人们知道由二氧化硫转化产生的硫酸盐是形成烟雾的主要原因,而具体转化机制并不清楚。该团队研究证实伦敦大雾是在多云的大气环境下,由二氧化氮促使二氧化硫转化为硫酸盐,从而形成危害性大雾。而中国当前雾霾的形成机制稍有不同,除了二氧化氮外,还有氨的参与,才能将二氧化硫转化为硫酸盐。  研究人员指出,该研究促进了对雾霾形成机制的正确理解,将为中国制定更加有效的雾霾监管行动发挥重要作用。当前,中国主要集中在二氧化硫的排放管控,而该研究提示出要同时减少二氧化氮和氨的排放将会产生更好的雾霾防控效果。  中国大气中的二氧化硫主要由发电厂排放,二氧化氮主要由发电厂和汽车产生,而氮主要由肥料和汽车的使用产生。
  • 复旦揭示沪大气污染粒子形成化学机制
    p   污染城市大气中的纳米微细粒子是怎样从不可胜数的空气分子形成的?最近,这件听起来无异于大海捞针的事情被复旦大学环境科学与工程系教授王琳和他的科研团队做成了。四年筹备,三年半实验与数据分析,两年持续观测,他们首次发现并证实了我国典型城市上海大气中的硫酸-二甲胺-水三元成核现象,揭示了我国典型城市上海大气污染纳米微细粒子形成,也就是所谓大气新粒子形成的化学机制,为我国大气颗粒物污染防治政策的制定提供了新的科学证据。 /p p   在此之前,污染城市大气中的大气新粒子形成事件的化学与物理机制一直是一个未解之谜。对于他们的发现,王琳给出了一个比喻:“这相当于我们从133倍于地球人口数的气体分子中找出了最关键的那2个,一个是硫酸分子,另一个是二甲胺分子,他们碰到一起,就可能发生大气新粒子形成事件了。”7月20日,研究结果以《中国典型超大城市的硫酸-二甲胺大气新粒子形成事件》(“Atmospheric New Particle Formation from Sulfuric Acid and Amines in a Chinese Megacity”)为题发表于国际顶级学术期刊《科学》(Science)。复旦大学环境科学与工程系博士生姚磊、芬兰赫尔辛基大学博士生奥尔加· 加尔马什(Olga Garmash)为共同第一作者,王琳为通讯作者。 /p p   攻坚克难:挑战大气新粒子形成事件的“世界未解之谜” /p p   大气PM2.5污染是关系国计民生的重要议题。在大众观念中,工厂和汽车的尾气排放是造成PM2.5颗粒物污染的主要原因之一,“这是由人类活动或者自然活动所带来的大气颗粒物直接排放,我们的‘术语’称之为‘一次排放’。”王琳介绍说,除了“一次排放”,在空气当中,时常发生着的,还有颗粒物的“二次形成”。 /p p   相较于“一次排放”,“二次形成”过程较为复杂。其形成过程大致分为两种:第一种过程指空气中的挥发性气体可通过化学反应生成饱和蒸气压较低的反应产物,这类物种会凝降在已有颗粒物的表面上,增加颗粒物的质量浓度 而另一种过程则会大幅增加颗粒物的数量浓度,大气中部分气体分子随机碰撞,通过分子间作用力或化学键而生成分子团簇,分子团簇的进一步生长则形成了纳米微细粒子,也就是大气新粒子,期间发生从气体到凝聚态的相变 这些纳米微细粒子的继续生长,则可以造成大气PM2.5污染。“‘二次形成’让大气中的颗粒物变得更‘重’、更‘多’,我们课题组目前主要关注变‘多’的过程,研究城市空气中的大气新粒子是怎么形成的。”王琳说。 /p p   近年来,相对洁净大气中的大气新粒子形成事件的大气化学机制被逐渐建立。然而,城市大气因其成分的复杂性和多样性,其中的大气新粒子形成事件的特征与洁净大气中的该类事件有着显著区别。在大气新粒子的形成过程中,从小于1纳米的气态前体物分子到1-2纳米左右的分子团簇再到几个纳米的纳米微细粒子,质量和粒径都十分微小,其大气混合比更是在兆分之一以下,这给科研人员开展原位、实时的测量提出了极大的实验挑战。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201807/noimg/d331b5ae-e3db-4a6d-a4d9-06b481330ee8.jpg" title=" 图1.webp.jpg" / /p p style=" text-align: center "   图1.应用硝酸根试剂离子化学电离-飞行时间质谱技术所识别的大气痕量物种的质量亏损图。 /p p   “通过测量3纳米以下颗粒物的浓度来判断大气新粒子形成事件是否发生已经很难了,还要想办法把与这一过程相关的气态前体物和分子团簇的化学组分测出来,再识别其中哪些分子和分子团簇对这一事件有着比较直接相关的贡献。”从测量到识别再到形成机制的推导,每一个步骤的推进都是一次“难上加难”的“拓荒”,因此城市大气中的大气新粒子形成事件的化学与物理机制一直是一个未解之谜,是大气化学研究领域的难点之一。 /p p   利用国际上最新发展的纳米颗粒物粒径放大技术,从2014年3月到2016年2月,王琳团队针对这一难题在上海开展了长达两年的连续大气观测。“我们就在复旦大学邯郸校区第四教学楼的楼顶做(实验),那里有一个环境系的大气超级观测站。”但这一技术还远远未发展到高度自动化的“黑箱”阶段,只有使用者对仪器有深入了解并积累了丰富的使用经验,才能在一定程度上保障测量数据的准确性和真实性。 /p p   进行大气外场观测、成功捕获信息是研究“攻坚克难”的关键性“播种”环节,要想让种子“生根”“发芽”到最终“结果”,还需要持续不断的“浇灌”。 /p p   “我们做了两年观测,其中在2015-2016年冬季还使用了包括飞行时间质谱在内的更多仪器设备,进行了加强观测,积累下来的数据少说也有几百个G了。”王琳说,数据分析、现象识别和信息甄别也是一项大工程。从2016年3月到2017年7月,他们和来自芬兰赫尔辛基大学的合作者一起,花了一年半的时间,才完成了对收集来的海量数据的系统整理和深入分析。 /p p   功夫不负有心人,三年半的时间,王琳团队终于收获累累硕果:他们测得了上海城市大气中1-700 纳米区间大气颗粒物的粒径分布浓度,获得了大气新粒子的形成速率和成长速率 并应用大气常压界面-飞行时间质谱和硝酸根试剂离子化学电离-飞行时间质谱技术,测量了大气新粒子形成事件期间大气中性和带电分子团簇的化学组分。 /p p   研究结果表明在我国典型城市上海大气新粒子的形成过程中,一个气体硫酸分子和一个二甲胺分子随机碰撞,通过氢键形成稳定的分子簇,分子簇通过与其他硫酸分子、二甲胺分子或其他硫酸-二甲胺团簇的碰撞继续生长 一定尺寸以后,其他物种(例如极低挥发性有机化合物)开始加入这个过程,并最终形成大气新粒子。 /p p   研究中还观测到了世界各地大气外场观测中最高的硫酸二聚体质谱信号,并识别了多个关键硫酸-二甲胺分子团簇,所得的上海大气中新粒子形成速率与实验室中硫酸-二甲胺-水三元成核模拟实验所得的新粒子形成速率具有一致性。这是首次在外场观测中发现并证实硫酸-二甲胺-水三元成核机制可以用于解释我国典型城市大气中的大气新粒子形成事件。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201807/noimg/fb72a874-82a6-4501-aedb-5e1a5ec581db.jpg" title=" 图2.webp.jpg" / /p p style=" text-align: center "   图2. 外场观测所测得的大气新粒子形成速率与实验室模拟的对比。 /p p   七年磨剑:坚守孕育大气污染防治的新希望 /p p   据介绍,这一研究由复旦大学环境科学与工程系上海市大气颗粒物污染防治重点实验室、复旦大学大气科学研究院教授王琳团队与芬兰赫尔辛基大学教授马库· 库马拉(Markku Kulmala)团队、南京信息工程大学、上海市环境监测中心、上海市气象局、上海市环境科学研究院、美国飞行器公司(Aerodyne)合作完成。研究成果有望解释高污染城市大气中的大气新粒子形成事件,从而为我国的大气颗粒物污染尤其是大气颗粒物的二次形成提供潜在的防治措施,也有助于更好地理解我国的雾霾污染和更大尺度上的全球气候变化。 /p p   “对我们的研究来说,环境相关性是至关重要的,自然环境中不可控的因素太多了,往往需要很长时间只能做一件事情。”从2014年3月项目正式启动,到2017年7月成果初显,王琳和他的团队一个项目做了三年半,实际上,这个项目花的时间远不止这么多。 /p p   “我在美国做博士后的时候已经开始开展相关的课题了,那时候也预感到仪器设备的发展可能在近期会有一次突破,所以一直在等待机会。”2011年1月,王琳作为第一批“青年千人”扎根复旦,但在回复旦以前,他就开始为了这个项目四处忙碌。联系厂家、购置仪器、熟悉仪器的性能、熟练相关操作等准备工作并不简单,王琳说,相较于直接花在做实验上的时间,前期准备时间更长。 /p p   在复旦的前七年时间里,王琳把一大半的精力都投在了这个项目上,但前几年的研究几乎看不到任何回报,很少有直接可见的文章产出。“我心里着急的很,但幸好复旦的科研环境还是比较宽松的,系里的前辈也都很支持我做这件事情,没有人掰着手指头数我发了几篇文章,催着我一定要出成果。”王琳很感激这种理解和支持:国家青年千人计划的启动资金资助、国家自然科学基金委的连续滚动支持、上海市各方同仁的通力合作、依托复旦大学而建的上海市大气颗粒物污染防治重点实验室五十多位同事共同打造的研究平台,让他做成了这件“拖得很久”又“很难做”的事情。 /p p   “我们做环境研究的,讲究做出来的科研成果在真实环境中有应用,是在真正的环境中发生的过程,而不是一个只会在实验室中发生的科学实验。”这也是王琳及其团队坚持在成分复杂多样的城市大气中开展此项研究的原因。“我们的研究成果和每个人的日常生活息息相关。” /p p   王琳认为,在中国典型的城市环境中,除了加强对污染物一次排放的监测和管理,对污染物的二次形成也应予以同样程度的关注和重视。得益于此项研究中提出的化学机制,参与大气新粒子形成过程中的关键化学物种将得到更有针对性的控制,从而有望有效地降低空气中颗粒物的数量浓度,减轻我国的大气颗粒物污染。另外,从更大的维度来看,将这一机制运用于全球气候模式中,能够更好地模拟全球大气颗粒物乃至云凝结核的数目,更好地理解整个地球的气候变化趋势。 /p p   谈及项目之后的发展,王琳说:“我们的研究还有很多值得进一步探索的地方,这个项目之后还会继续。”他希望,在现有的硫酸-二甲胺-水三元成核化学机制框架下,能进一步明确我国城市大气新粒子形成事件中的前体物主控因素,理解城市大气新粒子形成事件与雾霾形成的关系,从而助力国家推出更有针对性的污染防控措施。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制