相变测试

仪器信息网相变测试专题为您整合相变测试相关的最新文章,在相变测试专题,您不仅可以免费浏览相变测试的资讯, 同时您还可以浏览相变测试的相关资料、解决方案,参与社区相变测试话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

相变测试相关的耗材

  • 内铠装微波/射频同轴组件
    简介 GORE&trade PHASEFLEX® 微波测试组件将膨体聚四氟乙烯电介质的电气优点与集成的环境防护设计相结合,这种强化组件的耐用性极佳,同时非常轻、柔性非常好,是各种通用测试应用高性价比的解决方案。 直流到67 GHz组件 GORE&trade PHASEFLEX® 微波测试组件提供相变小的功率承受能力,这在任何经过校准的系统中很重要,相位匹配可用于从直流到67 GHz工作的配置,18 GHz电缆(部件号EJ)有可更换接口选件,现货供应的组件在48小时内交付,标准配置为24、36和48英寸长。 典型应用 生产检测 天线测试场 热真空容器 长距离 大功率测试 GORE&trade PHASEFLEX® 微波测试组件用于生产测试应用或测试区域不在设备附件的应用,也非常适合执行采用耦合器和衰减器的大功率测量的矢量网络分析仪(VNA)装置。 性能与铠装设计 并非所有应用都要求戈尔VNA微波测试组件那样精确,但是相位和幅度稳定性对于正常性能仍然是至关重要的,对于这类应用,我们提供GORE&trade PHASEFLEX® 微波测试组件,可以提供可重复的精确测量,同时减少测量之间耗时的校准。 柔性好 GORE&trade PHASEFLEX® 微波测试组件柔性好,但却没有与挠曲半刚性和传统设计的柔性组件相关的性能下降,内铠装设计允许最小弯曲半径至1英寸(2.5 cm),而且不影响电缆性能,GORE&trade PHASEFLEX® 微波测试组件的回弹几乎为零。 耐用性 在测试中,我们将GORE&trade PHASEFLEX® 微波测试组件弯曲90° ,然后反向弯曲180° ,绞合中心导体电缆可执行100,000次循环(200,000次弯曲)以上,可以扭曲50,000次,顺时针扭曲25,000次和逆时针扭曲25,000次,仍然符合技术标准。 内铠装设计特性 抗扭曲 抗挤压(250磅/线性英寸) 弯曲半径小(最小1英寸/2.54 cm) 温度范围广 人机工程学应力释放护套 绞合的中心导体 耐磨 具有化学惰性,耐化学腐蚀 重量轻的纤维编织护套 连接器抗拉强度高
  • 薄膜变温附件
    DHS 1100 是在成熟的 DHS 900 圆顶高温台基础上进一步发展的加热附件。具有从 25°C 到 1100°C 的更大温度范围。DHS 1100 设计小巧且重量轻,可安装到所有常用的四圆测角仪和多种 XYZ 平台上。其创新的采用石墨圆顶,使样品可在真空、空气和其他各种气体中进行测量。DHS 1100 是在现场高温条件下研究多晶体材料相变、纹理和内部压力理想样品台。DCS 500 圆顶冷却台是用于低温和高温的原位 X-射线衍射研究的最小附件,可安装到四圆测角仪和 XYZ 平台。DCS 500 的温度范围从 -180 °C 到 +500 °C 且所有 Φ 角度的收敛角范围从几乎为 0° 到 90° 2Θ,是分层结构现场研究和多晶材料相变和压力研究的理想样品台。
  • 高温熔炉室
    HTK 1200N 是具有坚固设计的先进高温室,可用于不同气压下在高达 1200 °C 时进行原位 X-射线衍射研究。其环境加热器确保了样品温度分布绝佳的均匀性。利用 HTK 1200N 进行不同类型的原位 X-射线衍射研究,包括相变、结构测定和化学反应的研究。

相变测试相关的仪器

  • 全自动薄膜相变特性测试仪是一款对相变材料相变特性进行测量与分析的精密光电仪器,可通过自动测量分析薄膜或者粉体等相变材料的热滞回线、相变温度、热滞宽度、相变幅度等特性参数。先进的模块化设计理念、精密的光探针技术、高端的进口芯片、便捷的自动测试分析软件、以及时尚的外观,使该仪器成为二氧化钒等相变材料研究的不二选择。中国科学院广州能源研究所,深圳大学等单位为典型用户。全自动薄膜相变特性测试仪技术特点:1、精密光学测量技术,可进行单层、多层和超小样品的测量,且灵敏度更高2、非接触式信号采集,避免了接触式探针测量对样品的损伤和不稳定性缺点3、先进的光探针技术,使得采样范围最小直径可达300微米4、全自动一-键测量,操作简单,省时、省事5、超高采样速率1测量快速、准确,工作效率高6、触摸屏操作与电脑操作两种模式,测量随心所欲7、升温速率无级可调,根据实际需求任意选择8、与DSC测量相比,具有超高性价比9、科研型与基础型,满足不同需求技术规格1、仪器型号PTM17002、工作波长1550nm (特殊需要波长可定制)3、样品台温度范围:室温~120°C,温度精度+0.1°C4、采样频率1Hz5、最小采样范围直径300um6、红外非接触测温模式7、自然冷却与风冷两种降温模式8、加热速率无级可调9、设定参数后自动测量出薄膜相变的热滞回线10、USB2.0高速数据接口11、测试分析软件可得到相变温度、热滞宽度等特性参数12.可以Exce形式导出各原始测试数据和分析数据,以word形式导出测试分析报告
    留言咨询
  • 全自动薄膜相变特性测试仪是一款对相变材料相变特性进行测量与分析的精密光电仪器,可通过自动测量分析薄膜或者粉体等相变材料的热滞回线、相变温度、热滞宽度、相变幅度等特性参数。先进的模块化设计理念、精密的光探针技术、高端的进口芯片、便捷的自动测试分析软件以及时尚的外观,使该仪器成为二氧化钒等相变材料研究的不二选择。中国科学院广州能源研究所,深圳大学等单位为典型用户。
    留言咨询
  • L78 RITA 热膨胀变形/相变测试仪是特别适用于TTT、CHT和CCT曲线的测定。特殊感应炉体使加热和冷却速度超过2500 °C/s。该系统符合美国ASTM A1033标准 。概述: 操作的基本原理:钢材在加热和冷却过程中尺寸发生变化,热膨胀由温度变化和相变两个因素产生。测试过程中,灵敏的高速淬火膨胀仪设备用于检测和测量热循环中尺寸随时间和温度函数的变化。所产生的数据被转换为热循环中特定时间和温度下离散的应变值。应变作为时间或温度,或两者的函数,由此可以确定一个或多个相变的开始和结束。L78 RITA L78 RITA 热膨胀变形/相变测试仪的主要优势:该仪器可在真空条件下,惰性、氧化、还原气氛中进行测量,温度范围从150 ℃(低温)到1000 ℃,或室温到1600℃。独特的加热和冷却装置能够快速的控制加热和冷却,速度可达2500℃ /秒。通过可选的基座可以分析非金属样品。这种特殊的淬火/热膨胀相变仪是专为连续冷却/加热的CHT、CCT图以及等温线TTT-图的绘制设计。 所有关键参数,如加热和冷却速度、气体控制和安全功能由软件控制。32位Linseis TA- WIN软件可独立在Microsoft© 操作系统上运行。所有的程序(生成CHT / CCT / TTT图)和特殊应用是通过其自带的软件包实现。当然,可以导出ASCII码格式以及输出图形。 在加热过程中,钢材晶体发生铁素体,珠光体,贝氏体,马氏体或这些成分的组合变为奥氏体的相变。在冷却过程中,从奥氏体转变为铁素体,珠光体,贝氏体,马氏体或它们的组合。该L78 RITA淬火/热膨胀相变仪是专门设计用来测量这些苛刻的迅速膨胀。高速数据采集和控制单元,独特的气淬装置和高精度的温度测量装置该仪器的突出特点。型号L78 Rita/Q 淬冷L78 Rita/D 形变炉体电磁炉电磁炉温度范围 -150°C —— 1600°C-150°C —— 1600°CRT —— 1000°CRT —— 1000°CRT —— 1600°CRT —— 1600°C样品支架 熔融石英, Al2O3熔融石英, Al2O3样品尺寸实心/空心样品 实心样品直径约4 mm 约 5 mm长度约10 mm 约10 mm 加热速率≤2500 K/s ≤ 400 K/s 冷却速率≤ 2500 K/s ≤ 400 K/s 数据采集速率≤1000 次/秒≤1000次/秒形变力 -25 kN形变速率-0.01 - 125 mm/s数据采集间隔-60 ms气氛 惰性、氧化性、还原性、真空惰性、氧化性、还原性、真空 电源要求230VAC, 16A, 50..60Hz230VAC, 16A, 50..60Hz选项低温冷却 (≤150°C) 低温冷却 (≤150°C) *价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询。我们定会将竭尽全力为您制定完善的解决方案。
    留言咨询

相变测试相关的试剂

相变测试相关的方案

相变测试相关的论坛

  • 相变储能材料热物性的三种主流测试方法

    相变储能材料热物性的三种主流测试方法

    [color=#993399]摘要:本文介绍了国内外相变储能材料热物性的三种主流测试方法,对比分析了差示扫描量热法(DSC)、参比温度曲线法(T-History)和动态热流计法(DHFM)三种主流相变材料热物性测试方法的特点,简述了各方法在相变材料热分析测试时的注意事项,为相变储能材料研究、生产和使用中选择合适的热物性测试方法提供了参考。[/color][color=#993399]关键词:相变材料,储能,差示扫描量热法,参比温度法,动态热流计法[/color][hr/] [b][color=#993399]1. 引言[/color][/b]相变储能材料是利用相变过程中吸收或释放的热量来进行潜热储能的物质,其研究和开发经历了漫长的过程。与显热储能材料相比,相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点,因而可以应用于很多领域,如太阳能利用、废热回收、智能空调建筑物、调温调湿、工程保温材料、医疗保健、纺织行业(保温衣服)、日常生活、航天与卫星等精密仪器的恒温等方面。相变储能材料的热物性是衡量其工作性能的标准,也是其应用系统设计及性能评估的依据。相变储能材料的热物性包括相变温度、相变潜热、热导率、比热、循环热稳定性、膨胀系数、储热系数等,而相变温度、潜热及热导率是衡量相变储能材料性能最关键的几个参数,因此对相变储能材料的热物性测试一般都围绕这几个参数进行。相变储能材料热物性测试方法众多,但常用的主要有三种方法,本文将介绍这三种测试方法及其应用。[b][color=#993399]2. 差示扫描量热法(DSC Method)[/color][/b]差示扫描量热法是在程序控制温度下测量输入到物质(试样)和参比物的功率差与温度的关系的一种技术,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度、熔融温度、结晶温度、比热容及热焓等。根据测量方法的不同又分为两种类型:功率补偿型和热流型,两种类型的测试仪器结构如图2-1所示。[align=center] [img=差示扫描量热法测试结构示意图,690,536]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252152_02_3384_3.png[/img][/align][align=center][color=#cc33cc][b]图2-1 差示扫描量热法测量原理图[/b][/color][/align]功率补偿型DSC:通过功率补偿使试样和参比物始终保持相同的温度,测量为满足此条件样品和参比物两端所需的能量差。热流型DSC:在给定样品和参比物相同的功率下,测量样品和参比物两端的温差,根据热流方程将温差换算成热量差作为信号输出。差示扫描量热仪是比较成熟的设备,其使用温度范围广,分辨能力和灵敏度高,数据采集和处理集中,能够通过电脑直接得到DSC曲线。差示扫描量热仪测试过程中的主要影响因素有:(1)实验条件:包括升温速率的大小对试样内部温度分布均匀性的影响,检测室气体成分和压力对试样蓄放热的影响,天平的测量精度对试样选取量的影响等。(2)试样特性:样品量必须与突然释放大量能量的潜力相一致,故应尽可能使用小数量的材料,通常为1~50mg,样品在几何形状、粒度大小和纯度等方面应具有代表性。(3)参考物质:参考物质在试验温度范围内不能发生任何热转变。典型的参考物质包括煅烧氧化铝、玻璃珠、硅油或空容器。(4)其他因素:如仪器的校正等。差示扫描量热仪测试过程中的注意事项有:(1)试样的选取:由于DSC测试需要的样品量很少,在几毫克到几十毫克,因此,试样的选取关乎实际应用中大块材料的热物性,应尽量选取粒度和纯度具有代表性的试样。为减小天平测质量时产生的相对误差,应尽量多的取样。(2)温度变化速率的控制:升温速率不宜过高,过高的升温速率会导致试样内部温度分布不均匀,易产生过热现象。[b][color=#993399]3. 参比温度法(T-History Method)[/color][/b]参比温度法是一种能够测定多组相变材料凝固点、比热、潜热、热导率和热扩散系数的方法,其基本原理是将相变材料样品和参考物质分别放在相同规格的试管内,并同时置于某一设定温度的恒温容器内进行加热,直至所有材料的温度都达到这一设定温度。然后将它们突然暴露在某一较低设定温度环境中进行冷却,则得到样品和参考材料的温降曲线,通过两者的降温曲线建立热力学方程得到材料的热物性。在各种热物性测试方法中,普遍现象的是测试装置越简单所对应的测试数学模型就越复杂,需要考虑的边界条件和假设就越多。参比温度法中所进行的假定为:(1)相变过程近似为准稳态过程。(2)在固液相分界面上液相相变材料通过对流传给固相相变材料的热量忽略不计。(3)近似为一维径向传热试管的径长比要远小于1。参比温度法测试仪器结构如图3-1所示。[align=center] [img=02.参比温度法测试仪器结构示意图,690,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252153_01_3384_3.png[/img][/align][align=center][b][color=#cc33cc]图3-1 参比温度法测试仪器结构示意图[/color][/b][/align]参比温度法是一种近十几年来发展起来的热分析技术,测试仪器要远比差示扫描量热仪简单,操作更简便,无需差示扫描量热仪那样的复杂培训和操作。一般采用用普通玻璃或石英试管装样品,使用方便且相变过程易被观察到,并能同时进行多样品的同时测量,样品个数取决于恒温容器的大小和数据采集系统的通道数。参比温度法测试过程中的主要影响因素有:(1)参比温度法中样品的用量为5~50g,为使样品在恒温容器内升温时受热均匀,需将样品粉碎,这破坏材料本身的结构,不能准确反映材料自身的热物性,因此会产生一定误差。(2)加热试管时,由于试管内材料分布不均等原因会导致试样内部温度不均匀,对实验结果的准确性会有影响。升温和降温过程的快慢影响试样的蓄放热,对实验结果产生一定的影响。参比温度法测试过程中的注意事项有:(1)测试条件:要求比奥数<0.1时,适用集总热容法建立热力学方程,故在测试之前应该对测试条件是否满足要求进行估算。(2)温度的选择:为了获得良好的降温曲线,加热温度要高于相变温度,冷却温度要低于相变温度。[b][color=#993399]4. 动态热流计法(DHFM Method)[/color][/b]动态热流计法是一种采用热流计测试装置来对试样热流进行动态测量的瞬态测试方法,首先测量装置中的两块加热板处于一个相同的、低于或高于样品相变温度的稳定温度,然后控制两块加热板步进升温或降温到一系列相同温度点并恒定,并实时测定每个步进温度变化过程中热流密度变化,根据热流密度变化测得每个温度点下的的热焓。动态热流计法是最近几年发展起来的新方法,此方法特别适合用于测量各种固态相变复合材料和制品、结合相变材料的混合材料以及相变材料颗粒在整个相变过程中的热物性测试评价。动态热流计法测试仪器结构如图4-1所示。[align=center] [img=03.动态热流计法测试仪器结构示意图,690,229]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252154_01_3384_3.png[/img][/align][align=center][b][color=#cc33cc]图4-1 动态热流计法测试仪器结构示意图[/color][/b][/align]动态热流计法同样是种多参数热物性瞬态测试方法,通过热流的瞬态变化过程可以测量相变材料的显热和潜热,由一块相变材料样品可以测量固相和液相比热、相变温度和相变焓,由此可以确定相变材料的蓄热能力。另外通过试验过程的控制,可以在稳态条件下测量相变材料相变区间前后的热导率动态热流计法测试过程中的主要影响因素有:(1)伴随着过冷现象,测试结果会是不太寻常的热涵-温度曲线。固液和固固相变的初始温度常取决于加热和冷却速率、相变材料纯度以及相变材料是不是非晶态。(2)相变材料及其复合材料大多表面粗糙,这会给测量带来很大的接触热阻,可以采用弹性薄片来减小接触热阻,这些弹性薄片热焓会带入测量,需进行校准修正以保证测量精度。(3)对于热导率较高的相变材料样品,样品边缘热损会给测量带来一定影响,要设法保证测量区域内尽可能为一维热流。动态热流计法测试过程中的注意事项有:(1)测试温度区间的设定:相变材料一般并未有精确的熔化温度或凝固温度点,因此必须大至的相变温度区间来对测试温度范围以及温度变化步长进行设定,既要保证测量精度,又要兼顾测试效率。(2)测试条件:在测试过程中要求测量装置在一系列温度点达到稳态,即在稳态条件下样品的整体温度均匀且相同,没有热流进出样品,在测试中要确保稳态条件形成后才能进入下一个温度点的测试过程。(3)热流计的选择:要选择合适的热流计使得整个测试过程中的热流都必须可测,热流传感器既要保证测量精度,又有具有较大的测量范围,避免出现热流值超出热流计量程的现象。(4)校准:动态热流计法测试中要保证热流计经过校准和测量精度,而且需要采用规定的校准程序来确定相应的修正因子。[b][color=#993399]5. 测量方法比较[/color][/b]通过对以上三种测量方法的原理分析、测试仪器的比较以及其各自的特点和适用范围选择,总结三种测试方法在相变材料热物性测量中的优缺点对比如表5-1所示。[align=center][b][color=#cc33cc]表 5 1 三种相变材料测试方法优缺点比较[/color][/b][/align][align=center][b][color=#993399][img=热分析三种主流测试方法对比,690,447]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252154_02_3384_3.png[/img][/color][/b][/align][b][color=#993399]6. 结论[/color][/b]通过对相变材料热物性当前三种主流测试方法的分析,探讨了各个测试方法的适用性和优缺点。针对相变储能材料热物性考核评价,对如何选择合理的测试方法所需关注的内容进行了总结。(1)三种测试方法各有优点和不足。DSC方法技术成熟度高,测量精度高,测量结果准确,但所用试样量偏少,导致样品热物性无法完全反映实际应用的大块材料的热物性。参比温度法的实验装置和操作过程都比较简单,试验过程易于观察,样品用量也较大,但样品结构不完整,受热可能不均匀。动态热流计法技术成熟度高,可直接对大块相变材料热物性进行测量,但测试周期较长。因此在实际应用中可以结合三种方法的使用,对比试验结果,以得到合理的测试结论。(2)对于粒度均匀,结构和组成单一,少量试样能够代表总体样品性质的材料宜选用测量精度高的DSC方法测量。对于松散材料,DSC测试取样无法具有代表性时,可以选用参比温度法测量其热物性。对于有完整性和代表性要求以及需要了解热导率性能的相变材料,可以选用动态热流计法。(3)这三种测试方法经过了不断的工程应用和实践,已经成为目前国际上的主流测试方法,通过这三种测试方法完全覆盖了从微量级样品到大尺寸产品级的相变储能材料热物性测试评价。这三种测试方法分别是相变储能材料不同生产阶段内的标准性测试方法,在具体应用中可根据实际情况进行合理的选择。[b][color=#993399]7. 参考文献[/color][/b] (1) ASTM E793 - 06(2012) Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry (2)Yinping, Zhang, and Jiang Yi. "A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials." Measurement Science and Technology 10.3 (1999): 201. (3)ASTM C1784-14 Standard Test Method for Using a Heat Flow Meter Apparatus for Measuring Thermal Storage Properties of Phase Change Materials and Products

  • 建筑储能相变材料:热性能的两种标准测试方法比较

    建筑储能相变材料:热性能的两种标准测试方法比较

    [table][tr][td][color=#990000]摘要:本文针对相变材料热性能测试的两个国际标准测试方法,ASTM C1784和RAL-GZ 896,对这两种方法的进行了简述来和比较,使得对相变材料热性能测试评价有更深刻的了解,以便在实际应用中做出更合理的选择和应用。[/color][/td][/tr][/table][color=#990000]关键词:相变材料、热性能、标准测试方法[/color][align=center][img=,593,417]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310924_7967_3384_3.png!w593x417.jpg[/img][/align][b][color=#ff0000]1. 引言[/color][/b] 对于相变材料热性能测试,目前国际上有两个机构分别颁布了相应标准测试方法,一个是美国材料与试验协会ASTM(American Society for Testing and Materials),另一个是相变材料质量协会(Quality Association PCM)。 美国ASTM是一个众所周知的标准化组织机构,在2013年针对相变材料热性能测试评价颁布了标准测试方法ASTM C1784-13 “Standard Test method for Using a Heat Flow Meter Apparatusfor Measuring Thermal Storage Properties of Phase Change Materials andProducts”。 为了制订相变材料性能要求和合适的质量保证规范,2004年国际上一些公司机构成立了相变材料质量协会(Quality Association PCM),2006年德国质量保证与认证研究院(RAL)接受了该协会制订的相变材料质量和测试规范(Quality and Testing Specifications for PCM:RAL-GZ 896),并允许使用RAL质量标志授予高质量的相变材料产品。 对于相变材料热性能的测试评价,主要包括以下几方面的内容: (1)储热量:相变材料可以再次吸收和释放的热量,一般是越多越好。 (2)相变温度:相变材料吸收和释放热量的温度范围定义,一般应该是尽可能的狭窄和恒定。 (3)导热性能:导热系数应尽可能高,以便能够快速完整地传输热量。 (4)稳定性:使用寿命尽可能长并没有明显的性能损失。 目前国际上针对相变材料的这两个标准测试方法,在热性能测试评价上各有侧重。本文将通过对这两种方法的简述来对这两种方法进行比较,使得对相变材料热性能测试评价有更深刻的了解,以便在实际应用中做出更合理的选择和应用。[b][color=#ff0000]2. 相变材料热性能标准测试方法[/color][color=#330033] (1)RAL-GZ 896[/color][/b] RAL-GZ 896包括了三个标准测试方法,分别用于相变温度和蓄热、导热系数以及循环稳定性的测试,所对应的标准测试方法分别为DSC法、T-History法和多层量热计法。[b] (2)ASTM C1784[/b] ASTM C1784是基于ASTM C518稳态热流计法传热性能测量装置所建立的测试方法,除了可以测量相变材料的相变温度和蓄热量之外,自然也可以测量相变材料的导热系数和循环稳定性。 基于ASTM C1784方法测量装置结构如图 2‑ 1所示。[align=center][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310924_9188_3384_3.png!w690x388.jpg[/img][/align][align=center]图2‑ 1 热流计法热性能测量装置结构示意图[/align][b][color=#ff0000]3. 两种测试方法的共性[/color][/b] (1)相变材料(PCM )的分类: ■ RAL-GZ 896:PCM 、PCM 复合材料、PCM 构件、PCM 系统 ■ ASTM C1784:PCM 构件→PCM 产品 (2)测试结果描述 ■ RAL-GZ 896:以热焓随温度变化(H/T)关系图描述,如图 3‑ 1所示。 ■ ASTM C1784:箱形关系图描述,=1 K步长,如图 3‑ 2所示。[align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310926_3057_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图3‑ 1 热焓-温度关系图[/color][/align][align=center][color=#ff0000][/color][/align][align=center][img=,690,411]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310926_873_3384_3.png!w690x411.jpg[/img][/align][align=center][color=#ff0000]图3‑ 2 箱形关系图[/color][/align] (3)重复性测量: ■ 两种测试方法都要求每个样品至少进行3次重复测量。[b][color=#ff0000]4. 校准方法[/color][/b] (1)RAL-GZ 896:没有规定→生产厂商推荐→项目42/29。 (2)ASTM C1784热焓校准: ■ 热容和温度取决于热流计偏差的因素需要进行考虑。 ■ 还需考虑附加材料层(如用于改善样品和冷热板热接触的材料) (3)温度校准依据ASTM E967。[b][color=#ff0000]5. 校准和试验过程[/color][/b][color=#ff0000]5.1. ASTM校准步骤[/color] (1)至少采用2个已知小热容的样品(不同厚度)进行校准。 (2)整个试验温度范围要横跨相变温度范围两端各10℃左右。 (3)在步进温度差分割的时间内对热流进行积分。 (4)绘制热流积分与不同样品厚度的关系图,如图 5‑ 1所示。[align=center][img=,690,422]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310928_7813_3384_3.png!w690x422.jpg[/img][/align][align=center][color=#ff0000]图 5‑ 1 热流积分与不同样品厚度的关系图[/color][/align] (5)对于每一个平均温度测量值都外推到0厚度。 (6)绘制0厚度样品随平均温度的变化曲线得到随平板温度变化的热流计修正因子。如图 5‑ 2 所示。[align=center][img=,690,429]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310928_8078_3384_3.png!w690x429.jpg[/img][/align][align=center][color=#ff0000]图5‑ 2 校准试验曲线[/color][/align][color=#ff0000][/color][color=#ff0000]5.2. ASTM中的测试参数确定[/color] (1)从低于熔点10℃以下的温度起开始升温。 (2)温度变化步长1.5±0.5 K,每个步长加热过程的弛豫时间要大于2小时。 (3)加热结束:如果蓄能返回到一个很小值(完全熔化)。 (4)对于冷却测量重复以上过程。 整个升降温试验过程中,升降温设定曲线、样品温度变化曲线和热流变化曲线如图 5‑ 3所示。[align=center][img=,690,378]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310929_5371_3384_3.png!w690x378.jpg[/img][/align][align=center][color=#ff0000]图5‑ 3 升降温曲线和热流变化曲线[/color][/align] 需要注意的是:相变材料相变区间与温度步长大小及每一温度步长的驰豫时间有关。[color=#ff0000]5.3. RAL中的测试参数确定[/color] 加热速度试验 (1)加热温度区间要要覆盖整个熔化和结晶化过程。 (2)升降温速度的设置条件为:一是在两次加热速度下的温度峰值之差小于0.2K,二是在相同升降温速度时峰值温度应小于0.5K,如图 5‑ 4和图 5‑ 5所示。[align=center][color=#ff0000][img=,690,425]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310929_8176_3384_3.png!w690x425.jpg[/img][/color][/align][align=center][color=#ff0000]图 5‑ 4 加热速率相差一半时加热冷却曲线峰值小于0.2K[/color][/align][align=center][color=#ff0000][img=,690,420]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310930_1940_3384_3.png!w690x420.jpg[/img][/color][/align][align=center][color=#ff0000]图5‑ 5 一种升降温速率时加热和冷却曲线峰值小于0.5K[/color][/align][color=#ff0000][/color][color=#ff0000]5.4. ASTM中的样品测量和计算[/color] (1)起始温度和终止温度要与PCM 活性区间的两端温度相差10K以上。 (2)从三个不同起始温度点开始进行三次测量以增加测量精度。 确定PCM 的活性区间。[color=#ff0000]5.5. RAL中的样品测量和计算[/color] 最大加热速率的确定原则: (1)必须要对3个样品进行6次循环测量,温度区间必须大于熔化和结晶温度区间±5K。 (2)前两次的循环测试(预熔化)可以快一些进行。 (3)第三次循环确定相变温度和蓄热。 (4)第3~6次循环测试用来确定最小成核温度。[b][color=#ff0000]6. 两种方法的主要差别[/color][/b][align=center][img=,690,212]http://ng1.17img.cn/bbsfiles/images/2017/12/201712310930_3827_3384_3.png!w690x212.jpg[/img][/align][align=center][/align]

  • 动力电池用相变材料:国内外导热和储能性能测试中存在的问题

    动力电池用相变材料:国内外导热和储能性能测试中存在的问题

    [color=#993366]摘要:针对动力电池热管理系统用复合相变材料,对复合相变材料热性能测试中国内外普遍存在的大量错误现象进行了分析,列出了各种典型错误现象和错误案例,指出了产生这些错误的主要原因,明确了后续工作的方向和内容。[/color][align=center][img=,690,431]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292102575588_388_3384_3.png!w690x431.jpg[/img][/align][color=#ff0000]1. 引言[/color] 在动力电池热管理系统中,空冷、液冷和相变材料冷是较为常用的三种冷却方式。其中前两种是主动热管理,第三种是被动热管理。相变材料做为被动式热管理方式用于动力电池热管理系统是一个新兴的发展方向,与传统空冷、液冷等方式相比,具有高效、节能、温度波动小、防止热失效等优点。[color=#ff0000]2. 相变材料在动力电池中的应用结构形式[/color] 相变材料在电池包中的应用主要有两种结构形式: (1)电池单元直接置于相变材料中的包裹式形式,如图 2‑ 1和图 2‑ 2所示; (2)相变材料将电池单元夹在中间形成三明治夹层结构形式,如图 2‑ 2所示。[align=center][img=,690,335]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292104045551_7090_3384_3.png!w690x335.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 1 相变材料包裹电池式结构[/color][/align][align=center][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292102422682_8708_3384_3.jpg!w690x517.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 2 相变材料包裹物及电池[/color][/align][align=center][color=#ff0000][/color][/align][align=center][img=,690,402]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292104307481_9899_3384_3.png!w690x402.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 3 相变材料与电池三明治夹心结构[/color][/align] 以上相变材料在电池包中的三种结构形式,其中第一种结构虽然换热效率高,比较适合各种柱状和其它异形电池使用,但结构复杂,对制造工艺要求较高。第二种结构结构简单、易操作,比较适合板状和块状形式的各种电池。[color=#ff0000]3. 动力电池中复合相变材料类型[/color] 动力电池中复合相变材料的设计和制造主要考虑以下几方面因素:[quote][color=#993300] (1)适宜的相变温度和较大潜热;[/color][color=#993300] (2)其他热物理性能:导热系数高、热容大、密度高、体积变化率低、无相分离、低过冷度;[/color][color=#993300] (3)化学性质:无腐蚀、化学稳定性好、与容器相容、无毒、无易燃、无污染;[/color][color=#993300] (4)经济性要求:低成本、容易获得、可循环使用。[/color][/quote] 对于相变材料的研究已经相对比较成熟,但大多数固液相变材料,尤其是中低温相变材料具有较低的导热系数,这直接使得相变材料在动力电池热管理系统应用中存在的最大问题是导热系数偏低(0.2 W/mK左右),而在电池热热管理系统中则需要较快的吸收和放出热量,否则只有部分导热相变材料发生相变吸收或放出热量,将导致相变材料在热管理系统中的作用下降,在高温或大电流等极端条件下同样会发生电池热失控而造成安全问题。 如何克服上述缺点,改善导热能力成为近年来国内外在动力电池用相变材料中的一个研究热点,研究方向主要集中在采用多孔泡沫金属和泡沫碳作为导热增强介质,相变材料被分散成小颗粒储藏在泡沫介质孔隙中,泡沫介质骨架起到强化传热作用,由此来显著提高整体复合相变材料的导热系数,同时相变材料中的空穴也因为毛细作用分散在孔隙中,避免了因空穴集中而产生的局部热阻和热应力。[color=#ff0000]3.1. 泡沫金属复合相变材料[/color] 泡沫金属是指含有泡沫气孔的特种金属材料。图 3‑ 1的扫描电镜照片显示了典型泡沫金属材料的微观结构,可以看到相互连通的孔隙部分占到了泡沫金属材料的绝大部分空间,其间的金属基体材料呈立体骨架结构。不同孔隙单元的结构并不完全相同,但是从较大范围来看则具有相似特性,这说明泡沫金属材料微观结构的均匀性和各向同性使得其导热过程的各向同性。[align=center][img=,690,519]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292105079861_3622_3384_3.jpg!w690x519.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 1 泡沫金属材料扫描电镜照片[/color][/align] 已实用并具有较大导热系数的泡沫金属主要有泡沫镍、泡沫铝和泡沫铜,如图 3‑ 2所示。[align=center][img=,690,200]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292105542851_1607_3384_3.png!w690x200.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 2 各种泡沫金属[/color][/align][color=#ff0000]3.2. 泡沫碳复合相变材料[/color] 泡沫碳是碳元素的同素异形体之一,如图 3‑ 3所示,泡沫碳材料内部是中空的蜂窝状结构,其中70%~90% 为开口或相通的蜂窝状孔洞,微孔的平均直径为200~500 um,固体结构由相互交错的韧带支撑而成。如所示,泡沫碳的几何结构使其密度大幅度降低,比表面积极具增大,是一种具有低密度、高导热(导热系数高达200 W/mK)、耐高温、耐腐蚀等优点的新型材料。[align=center][img=05.泡沫碳材料的扫描电镜照片,443,333]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292107453445_4814_3384_3.png!w443x333.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 3 泡沫碳材料扫描电镜照片[/color][/align] 由此可见泡沫碳材料具有高的导热系数和稳定的化学性质,泡沫碳材料在石墨基材料中导热系数最高,并与相变材料具有良好的相容性,因此常用于相变材料的强化传热。相变材料渗入泡沫碳所构成的复合相变材料,其相变速率可大大提高,所以具有非常好的应用前景,已成为国内外研究的热点。[align=center][img=05.泡沫碳,690,222]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292108217452_8396_3384_3.jpg!w690x222.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 4 泡沫碳[/color][/align] 另外,泡沫碳是一种在石墨基体中均匀分布大量连通孔洞的新型高导热材料,相比于常见的膨胀石墨,泡沫碳有孔密度大、通孔率高、能够维持自身形状结构等特点,其导热系数要大于泡沫铜很多倍。与泡沫金属另外一个重要不同之处是因为泡沫碳材料内部气孔分布的不均匀性和孔径差异造成泡沫碳材料具有明显的各向异性,由此会造成泡沫碳复合相变材料的导热性能也具有明显的各向异性特征。[color=#ff0000]4. 国内外复合相变材料热性能测试中普遍存在的问题[/color] 由于复合相变材料呈现出多孔性、各向异性和多种成分复合性等多种特性,在进行复合相变材料导热系数测试中要十分小心的选择合适的测试方法,稍有不慎就会做出错误的选择,得出错误结果。纵观国内外在复合相变材料导热系数测试方面的文献报道,可以明显发现存在大量问题,主要表现出以下错误现象:[quote][color=#993300] (1)选择测试方法很随意,使得测试方法多种多样。[/color][color=#993300] (2)对所选测试方法的适用范围并不清楚,很多时候在测试过程中忽略了材料的各向异性特征。[/color][color=#993300] (3)对测试结果所包含的内容并不清楚,很多时候测试结果中包含了大量的测试误差,导致很多文献报道的性能测试结果和变化规律相互矛盾。[/color][color=#993300] (4)测试分析仪器厂商对测试技术的理解、研究和技术培训有限,误导了仪器使用人员在测试操作和试验参数设置上的不正确,从而得出误差较大结果。[/color][color=#993300] (5)各种测试方法还缺乏针对性和覆盖能力,针对或满足新材料性能测试,还缺乏相应的标准测试方法或具体条款。[/color][/quote] 造成复合相变材料热性能测试中普遍存在问题,科技文献中大量数据错误的主要原因是:[quote][color=#993300] (1)材料研究人员不懂测试技术,而测试人员对材料特征缺乏足够的了解。[/color][color=#993300] (2)有关复合相变材料研究报告和文献的审稿人一般都是搞材料的专业人员,他们对材料工艺非常熟悉和了解,对材料性能也只算是了解,也仅仅是数量级和大致范围的了解,但对材料性能的具体测试技术,特别是对测试方法的选择、测试仪器的操作细节等一系列保证准确测量的技术手段并不清楚。[/color][color=#993300] (3)材料研究人员和性能测试人员缺乏充分的技术交流。[/color][color=#993300] (4)测试人员针对复合相变材料热性能测试缺乏深入的测试方法研究。[/color][/quote][color=#ff0000]5. 典型错误案例[/color][color=#ff0000]5.1. 金属泡沫复合相变材料导热系数测试典型错误案例[/color] 上海交通大学肖鑫等人研究了不同孔隙率和孔径大小的泡沫铜和泡沫镍,其中导热系数测试则采用了瞬态平面热源法。对于泡沫铜材料,当孔隙率为89%和孔径为1.0 mm时测试结果显示具有的最高有效导热系数为16.01 W/mk;对于泡沫镍材料,当孔隙率为91%和孔径为1.0 mm时测试结果显示具有的最高有效导热率为2.33 W/mk。作者指出,复合相变材料的有效导热系数随孔隙率的增加而减小,且不受孔隙大小的影响。 日本北海道大学的Oya等人采用泡沫镍和熔融温度为118℃的赤藓糖醇相变材料制备了高温复合相变材料,并采用激光闪光法测量了导热系数和比热容。综合测试结果表明,孔隙大小对潜热和熔点几乎没有影响,采用0.5 mm孔径大小的金属泡沫所制成的复合相变材料的导热系数从纯赤藓糖醇相变材料0.733 W/mk显著提升到复合相变材料的11.6 W/mk。与上述肖鑫等人的研究结论相反,Oya等人认为孔径大小对导热系数有显著的影响,因为随孔隙大小的增加骨架的连通性从0.1 mm增加到0.5 mm,从而在较大孔径情况下导致更高的导热系数,这种结论意味着金属泡沫的质量非常重要,因为骨架的连通性保证了传热路径。 美国太平洋西北国家实验室的Hong和Herling 制作了石蜡/铝泡沫复合相变材料并测量它们的导热系数,所用泡沫铝的孔隙率为92~93%、孔径大小在0.5~2.0 mm范围内,导热系数测试采用了稳态恒定热流法。所报道的归一化有效导热系数,即复合相变材料有效导热系数与纯相变材料导热系数的比值,在20~44范围内。从测试结果可以看出, 随着 PCM 从固态到液态的变化,归一化有效导热系数增加。作者将这种增加归因于泡沫金属和液态PCM之间更好的热接触。不同于肖鑫等人和Oya等人得出的结论,测试结果清楚地显示有效导热系数随着泡沫铝孔径的减小而增加,特别是当孔径为0.5 mm时导热系数最大。 上述三篇研究文献非常典型,都是针对金属泡沫制成的复合相变材料进行了测试,测试方法分别采用了瞬态平面热源法(金属泡沫孔径范围1~5 mm)、激光闪光法(金属泡沫孔径范围0.1~0.5 mm)和稳态恒定热流法(金属泡沫孔径范围0.5~2 mm),但针对导热系数与金属泡沫孔隙率和孔径大小的关系,他们所得出的结论完全不同。[color=#ff0000]5.2. 泡沫碳复合相变材料导热系数测试典型错误案例[/color] 中科院山西煤化所钟雅娟等人用石蜡和中间相沥青基石墨泡沫制备复合相变材料,使用了四种不同孔径大小和体积密度的石墨泡沫做为样品,并用激光闪光法测量了石墨泡沫的导热系数。低容重的石墨泡沫具有较大的孔隙率,可容纳较多石蜡,测试结果显示热扩散系数高度取决于石墨泡沫骨架的孔径大小和厚度。 上述只是一篇典型的泡沫碳复合相变材料研究文献,在众多泡沫碳复合相变材料导热系数测试文献中多采用的是激光闪光法,很多得到的错误结论都是“热扩散系数高度取决于石墨泡沫骨架的孔径大小和厚度”。可以证明的是,对于泡沫碳这种高孔隙率、高导热和低密度材料,其热扩散系数取决于样品厚度的错误结论完全是对激光闪光法测试理论和测试仪器不了解造成,热扩散系数与样品厚度高度相关完全是因为测试误差所致。[color=#ff0000]5.3. 差热扫描量热仪测试典型错误案例[/color] 目前国内外针对复合相变材料的蓄热性能,全部采用的都是差示扫描量热仪(DSC)进行测试。我们调研了众多关于复合相变材料、特别是关于常温附近的相变材料和复合相变材料的文献报道,发现在所有文献中DSC测试相变材料的试验参数设置全是错误的,测试过程中的样品升降温速率几乎都在5℃/min以上,最大甚至达到了20℃/min,只有极个别的采用了0.5℃/min的低升降温速率。按照相关针对常温型相变材料DSC标准化测试方法研究成果,已经证明在升降温速率小于0.05℃/min时才能得到较准确的结果,升降温速率太快会给测量结果带来严重误差,如图 5‑ 1所示。[align=center][img=06.不同样品质量和不同加热速率效应,690,484]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292109236481_5646_3384_3.png!w690x484.jpg[/img][/align][align=center][color=#ff0000]图 5‑ 1 样品不同质量和不同升降温速度时的DSC测试结果[/color][/align] 有关DSC测试过程中升降温速率对测量精度的影响,以及常温型相变材料DSC测试标准化研究成果,将在后续报告中进行详细描述[color=#ff0000]6. 结论[/color] 针对动力电池用复合相变材料,特别是通过对复合相变材料热性能测试中国内外普遍存在的错误现象进行了分析,列出了各种典型错误现象和错误案例,并指出了产生这些错误的主要原因。 我们将在随后的工作和研究报告中,特别针对动力电池用复合相变材料的热性能测试问题,详细描述如何选择合理的测试方法和测试仪器,详细描述测试过程中如何设置正确的试验参数,从而保证复合相变材料热性能测试的准确性和重复性。[color=#ff0000]7. 参考文献[/color] (1)Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci 2014 81:94-105. (2)Oya T, Nomura T, Okinaka N, Akiyama T. Phase change composite based on porous nickel and erythritol. Appl Therm Eng 2012 40:373-7. (3)Hong ST, Herling DR. Effects of surface area density of aluminum foams on thermal conductivity of aluminum foam-phase change material composites. Adv Eng Mater 2007 9:554-7. (4) Zhong YJ, Guo QG, Li SZ, Shi JL, Liu L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energy Mater Sol Cells 2010 94:1011-4. (5) Zhang, P., X. Xiao, and Z. W. Ma. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement." Applied Energy 165 (2016): 472-510.[align=center] [img=,640,20]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292109565831_9881_3384_3.gif!w640x20.jpg[/img][/align]

相变测试相关的资料

相变测试相关的资讯

  • 无损测试材料相变温度的利器——相变温度分析仪
    p   武汉嘉仪通科技有限公司作为一家以薄膜物性检测为战略定位的高科技企业,一直专注于薄膜材料物理性能分析与检测仪器的自主研发,拥有一系列自主研发的热学相关分析仪器。其中,相变温度分析仪是嘉仪通热学分析仪器中非常有代表性的产品之一。 br/ & nbsp & nbsp 相变温度分析仪(PCA)是根据材料相变前后光学性质(反射光功率)有较大差异的特性,在程序控温下,使用一束恒定功率的激光照射样品表面,记录反射光功率变化,形成反射光功率与温度变化曲线,从而确定相变温度的一款仪器。可以实现对相变材料进行相变温度的实时测定、新型材料(相变材料、相变储能材料)的稳定性测试及性能优化以及进行新型相变机理(晶化温度的尺寸效应、材料的结晶动力学过程等)的研究等功能。 br/ strong span style=" color: rgb(0, 176, 240) " 为什么选择研发相变温度分析仪? /span /strong br/ /p p   相变材料(PCM-Phase Change Material)是指温度不变的情况下而改变物质状态并能提供潜热的物质。相变材料实际上可作为能量存储器,这种特性在节能、温度控制等领域有着极大的意义。这种非常重要的材料,可广泛应用在航天、服装、制冷设备、军事、通讯、电力、建筑材料等方面。但是在这种材料的科研过程中,理想的相变材料非常难找到,只能选择具有合适相变温度和有较大相变潜力的相变材料,而无损测试材料的相变温度却又是很难办到的。 /p p   嘉仪通正是发现了无损检测材料相变温度的重要性,想要帮助科研人员解决相变温度测试难题,进一步助力相变材料的应用发展,因此我们加大投入力度,从理论研究到工程化测试,不断攻坚克难,采用更加先进的测试方法和更加精密的控制系统,最终历时近6年时间,终于成功研发出了这款可以无损检测材料相变温度的精密仪器。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e832f85f-2f28-4ec9-8c44-f495fd028266.jpg" title=" 相变温度分析仪PCA-1200.png" alt=" 相变温度分析仪PCA-1200.png" width=" 400" height=" 275" border=" 0" vspace=" 0" style=" width: 400px height: 275px " / /p p style=" text-align: center " strong 相变温度分析仪 PCA-1200 /strong /p p strong span style=" color: rgb(0, 176, 240) " 嘉仪通相变温度分析仪具有哪些功能特性? /span /strong /p p style=" text-align: center " strong 全新技术设计 /strong /p p img src=" https://img1.17img.cn/17img/images/201809/uepic/f4dc9b2c-620c-4f33-9da4-2d0dcecca464.jpg" title=" 全新技术设计.png" alt=" 全新技术设计.png" width=" 350" height=" 330" border=" 0" vspace=" 0" style=" float: left width: 350px height: 330px " / br/ span style=" color: rgb(0, 176, 80) " strong br/ 无需基线,曲线趋势分析 /strong /span /p p br/ br/ span style=" color: rgb(0, 176, 80) " strong 无需标样,绝对测算方法 /strong strong /strong /span /p p br/ br/ span style=" color: rgb(0, 176, 80) " strong 无损检测,无需破坏膜层材料结构 /strong strong /strong /span /p p style=" text-align: center " br/ br/ strong 功能特色 /strong /p p · 采用高性能长寿命红外加热管进行加热,核心加热区采用抛物反射面设计,确保对样品进行有效全方位加热。 /p p · 采用PID调节与模糊控制相结合的温控系统,可实现系统的高速跟随控制,可实现最快50℃/s升温速度。 /p p · 以直线滚珠轴承作为组件支撑及运动导向关联件,确保送样的平稳可靠,行程限垫可有效确保导轨的行程范围。 /p p · 压迫式弹针接触端可确保温度传感器的有效接通,同时其弹力可确保设备处于锁紧状态时方可进行加热操作等事宜,避免误操作。 /p p · 组合隔温挡圈能有效形成前后隔离,确保温场均匀。 /p p style=" text-align: center " strong 应用范围 /strong /p p style=" text-align: center " TiN薄膜,GeTe薄膜,ZrO sub 2 /sub 薄膜,掺Ti的ZnSb薄膜,SiC薄膜,显示屏玻璃,形变记忆合金薄膜,NiAl复合薄膜,VO sub 2 /sub 薄膜,PZT铁电材料,MgO/Ni-Mn-Ga薄膜,GST相变存储薄膜,金属Co薄膜,Al sub 2 /sub O3薄膜,等 /p p style=" text-align: center " strong 测试案例 /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 红外材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/b7da2f45-1e2a-4575-ad21-52c91c75b63a.jpg" title=" 四川大学提供的红外材料样品VO2.jpg" alt=" 四川大学提供的红外材料样品VO2.jpg" / /strong /p p style=" text-align: center " strong 图1:VO2不同升温速率12℃/min、15℃/min /strong /p p style=" text-align: center " strong (四川大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 复合材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/fa3ce443-ac01-434e-8bb7-f2fc8e00b90b.jpg" title=" 西南科技大学提供的复合材料样品铝镍合金复合薄膜.jpg" alt=" 西南科技大学提供的复合材料样品铝镍合金复合薄膜.jpg" / /strong /p p style=" text-align: center " strong 图2:铝镍合金复合薄膜 /strong /p p style=" text-align: center " strong (西南科技大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 相变存储材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/f175574c-c528-4a7c-a745-aaf92126f24e.jpg" title=" 中科院微系统所提供的相变存储材料样品.jpg" alt=" 中科院微系统所提供的相变存储材料样品.jpg" / /strong /p p style=" text-align: center " strong 图3:相变存储材料图 /strong /p p style=" text-align: center " strong (中科院微系统所提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 热电薄膜材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/a822a53d-5c63-41c6-a2ea-3237ee56ece0.jpg" title=" 深圳大学提供的热电薄膜材料样品掺Ti的ZnSb.jpg" alt=" 深圳大学提供的热电薄膜材料样品掺Ti的ZnSb.jpg" / /strong /p p style=" text-align: center " strong 图4:热电转换薄膜材料(掺Ti的ZnSb) /strong /p p style=" text-align: center " strong (深圳大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 氧化锆薄膜 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/63e8d2e4-4c04-4112-aa76-10f92a542629.jpg" title=" 清华大学提供的氧化锆薄膜样品.png" alt=" 清华大学提供的氧化锆薄膜样品.png" / /strong /p p style=" text-align: center " strong 图5:ZrO2薄膜 /strong /p p style=" text-align: center " strong (清华大学提供样品) br/ /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e6c00cea-ef7b-4cca-a103-57181b6b0131.jpg" title=" 氧化锆薄膜与XRD对比图.jpg" alt=" 氧化锆薄膜与XRD对比图.jpg" / /p p style=" text-align: center " strong 氧化锆薄膜与XRD对比图 /strong br/ /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 高温陶瓷材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/ffba8968-5aa8-4340-927b-bad7ff25421f.jpg" title=" 海南大学提供的高温陶瓷材料样品TiN薄膜硅基底.jpg" alt=" 海南大学提供的高温陶瓷材料样品TiN薄膜硅基底.jpg" / /strong /p p style=" text-align: center " strong 图6:高温陶瓷材料(TiN薄膜硅基底) /strong /p p style=" text-align: center " strong (海南大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 硬质合金薄膜材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/9b945867-70c2-4548-adcc-cb5a2dbc1488.jpg" title=" 武汉大学提供的硬质合金薄膜材料样品切削刀具.png" alt=" 武汉大学提供的硬质合金薄膜材料样品切削刀具.png" / /strong /p p style=" text-align: center " strong 图7:切削刀具相变监测曲线 /strong /p p style=" text-align: center " strong (武汉大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong SiC薄膜 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/05df342d-1488-40b8-bf7c-8cf2f1dbd1d5.jpg" title=" 中国电子科技集团第五十五研究所提供的SiC薄膜样品.png" alt=" 中国电子科技集团第五十五研究所提供的SiC薄膜样品.png" / /strong /p p style=" text-align: center " strong 图8:SiC薄膜热膨胀系数监测曲线 /strong /p p style=" text-align: center " strong (中国电子科技集团第五十五研究所提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 显示屏玻璃 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/01d1e69a-88b7-4aae-9edc-c1864a7dce34.jpg" title=" 武汉天马提供的显示屏玻璃样品.png" alt=" 武汉天马提供的显示屏玻璃样品.png" / /strong /p p style=" text-align: center " strong 图9:显示屏玻璃热膨胀系数监测曲线 /strong /p p style=" text-align: center " strong (武汉天马提供样品) /strong /p p style=" text-align: right " strong (供稿:武汉嘉仪通) /strong /p
  • 大冶特殊钢股份有限公司利用相变测试及其它技术的提升带动产品升级
    众所周知,德国巴赫热分析公司生产的高级相变仪(DIL805)是欧洲市场独占鳌头的金属相分析设备。在中国也拥有众多高端客户。继宝山钢铁集团、马鞍山钢铁集团等国内一流钢厂、大学和研究单位采购该设备后,近日大冶特殊钢股份有限公司已经和德国巴赫热分析公司的中国总代理仪尊科技有限公司签订协议,引进该相变仪以提升其在特殊钢铁领域的研究手段。   DIL805型高级相变仪是目前市场上测试范围最宽、功能最强大的相变仪。除传统的相变测试外,还可以研究材料在不同应变、不同应力等力学条件下的相变行为。从而摆脱了传统相变仪只能进行零应变/应力的特殊条件下测试的弊端。为特殊钢股份有限公司提供了超强的材料测试手段。   仪尊科技有限公司   Esum Technology Limited
  • 综述|相变蓄冷材料及系统应用研究进展
    摘要:相变蓄冷技术利用相变材料在相变时伴随着的吸热或放热过程对能量进行储存和应用,起到控制温度、降低能耗和转移用能负荷的作用。本文综述了相变温度在 25℃以下的相变蓄冷材料及其在不同应用场景的筛选依据。其次,介绍了相变蓄冷材料在食品医疗冷链物流、建筑节能控温与数据中心应急冷却、人体热管理和医疗保健的相变纺织品等领域的应用。从调节相变蓄冷材料相变温度、过冷度、热导率和循环稳定性等方面总结了材料热物性的调控策略,分析了不同调控策略存在的优缺点。指出相变蓄冷系统可通过增强蓄冷系统热导率和强化传热结构来改善普通材料传热性能差的问题。最后从复合相变材料制备到系统设计优化和应用场景拓展等方面对相变蓄冷技术研究方向进行了展望。关键词:相变蓄冷材料;相变蓄冷系统;复合相变材料;热物性;应用随着全球变暖和人们生活质量的提升,制冷需求快速增长,制冷空调系统带来的碳排放量与日俱增,预计到2050年,全球制冷能源消耗仍将增加十倍。面对制冷能耗急剧增长的发展趋势,大力开发太阳能、风能等新能源电力是解决未来制冷能耗缺口的技术关键。然而,新能源电力存在间歇性、波动大的缺点,易出现发电量与用电量不匹配的问题。因此发展高效储能技术,对新能源消纳与利用是适应可再生能源网络的有效途径。发展先进的蓄冷技术,调节制冷和用冷负荷使之匹配,是制冷系统技术发展的重要方向。蓄冷技术可以在峰谷电价时段或能量盈余的时候进行储能,实现能源移峰填谷,降低电网峰值用电负荷和成本。相对于电化学储能,蓄冷技术可以直接存储冷能,具有安全性高、循环稳定性好、成本低的优点。因此,将蓄冷技术与制冷系统耦合的储能技术一直是研究热点,在工商业及民用场景应用广泛。在冷链运输领域,我国每年因运输过程中低温环境不合格导致水产品腐烂损失率达25%,果蔬类损失率达25%~35%,全球有超过50%的疫苗被浪费。因而蓄冷技术在冷链运输领域能够通过减少运输过程中的温度波动来降低产品变质几率,有效减少产品损耗,实现食品和医疗用品的长距离运输。蓄冷技术也可应用于建筑节能,将蓄冷材料与建筑基体复合制得储能墙体,在白天吸收室外进入室内的热量,夜晚则释放热量给室内供暖,实现辅助控制室内温度,减小建筑采暖、制冷能耗,有助于提高室内环境舒适度。此外,通过蓄冷空调将晚上低谷电转化为冷能储存起来,在白天电网高负荷时释放,转移用电负荷,结合分时阶梯电价策略能降低建筑制冷成本与能耗。此外,蓄冷技术与纺织品结合制作成智能纺织品、应用于人体热管理,也是重要的应用领域之一。蓄冷材料是蓄冷技术的核心,开发适宜温度及高蓄冷密度的蓄冷材料是满足不同蓄冷需求的关键。目前常见的蓄冷材料主要有∶显热蓄能材料和潜热蓄能材料。显热蓄能材料包括水等,利用自身升降温过程中热能的变化进行能量储存和释放,技术成熟且成本便宜,适合大规模生产。但其蓄冷密度小,只适用于分钟、小时级的短时蓄冷场景。潜热蓄能材料利用相变材料固-液-气相态变化来储蓄或释放能量,其中应用最为广泛的固-液相变能在相变过程中吸收大量热能,同时温度保持不变(如图1)。潜热蓄能材料蓄冷密度远高于显热蓄能,适用于数小时至数周的蓄能场景,且成本适中,具备大规模应用的潜力。图 1 固液相变过程本文主要对应用于蓄冷领域的相变材料进行综述,探讨相变蓄冷材料物性调控和优化、相变蓄冷系统传热技术强化,总结当前相变蓄冷材料和蓄冷系统不足,展望相变蓄冷技术研究方向和应用前景。01常见相变蓄冷材料常见相变蓄冷材料主要指相变温度在25℃及以下的相变材料。其中,按材料成分可分为有机、无机和共晶相变材料。1.1 有机相变蓄冷材料有机相变材料主要包括石蜡、脂肪酸、酯和醇等,以碳链长度小于17的烷烃为主。有机相变材料相变焓优异、腐蚀性小,而且热稳定性好、经多次相变后物理和化学性质基本不变,可靠性好。但有机相变材料热导率低,如石蜡、酸或醇类有机物的热导率为0.3 W/(mK)、部分材料易燃、生产成本较高等。表1列举了一些相变温度在25℃及以下的常用有机相变材料热物性。其中十四烷相变温度为5~8℃,在冷库、冷链运输保温箱、空调蓄冷等多个场景中应用最为广泛。表 1 有机相变材料的热物性参数1.2 无机相变蓄冷材料无机相变材料主要有冰、水合盐类、熔融盐类、金属或合金类等,其中冰和水合盐因相变温度较低主要用于低温领域,如在空调和建筑蓄冷等领域应用广泛。无机相变材料相变焓大、热导率较高,常见水合盐热导率为0.5 W/(mK) ,而且来源广、成本低、商用化前景好。然而无机相变材料可靠性差,存在过冷度高和相分离严重的缺点,多次使用后性能衰减严重,而且腐蚀性强。表2列举了一些相变温度在25℃及以下的常用无机相变材料热物性。表 2 无机相变材料的热物性参数无机相变材料中冰的研究最多,因为冰相变焓为334 kJ/kg,为常见相变材料的2~3倍,而且成本低廉。冰与水混合所得冰浆具有良好流动性和高相变潜热,可通过离心泵和管道输送,在极高含冰量下不堵塞,且所需输送管道和储罐尺寸小,以其为基础的冰蓄冷技术是实际工程项目中使用最广泛的蓄冷技术。1.3 共晶相变蓄冷材料共晶相变材料是将两种或两种以上相变材料混合制备得到的共晶产物,其熔点低于任一组分。共晶相变材料按材料可分为有机-有机共晶、无机-无机共晶和有机-无机共晶相变材料。无机-无机共晶相变材料包括金属合金相变材料、水合盐及熔融盐共晶相变材料,有机-有机共晶相变材料包括有机酸共晶和石蜡,无机-有机共晶相变材料主要是有机酸和水合盐的共晶相变材料。其中无机-有机共晶相变材料能实现有机、无机材料优势互补,可获得兼具过冷度低、潜热较高、性能稳定的相变蓄冷材料,但目前应用研究较少,潜力巨大。共晶相变材料能通过调整各组分比例来控制相变温度,而且能一定程度上改善材料过冷度和相分离等问题,是调节相变材料热物性的一种重要方法,但共晶相变材料的制备工艺较为复杂,需要围绕共晶点按比例形成共晶物,且组分比例与相变温度不呈线性规律,应用前需要进行大量预实验,过程繁琐复杂。表3列举了一些相变温度在25及以下的常用共晶相变材料热物性。表 3 共晶相变材料的热物性参数1.4 相变蓄冷材料的选择研究并筛选出适用于蓄冷系统的相变蓄冷材料,是相变蓄冷技术的关键之一。一般来说,用于蓄冷领域的相变材料应具有以下特性∶①相变温度合适;②相变潜热大;③热导率高;④冻结和熔化率高;⑤热稳定性好;⑥固液相变体积变化小;⑦过冷度低;⑧循环稳定性好;⑨无毒和无腐蚀性;⑩成本低。目前相变蓄冷材料中有机相变材料和无机相变材料应用最为广泛,二者关键物性对比如图2所示,可作为实际选材的参考依据。无机相变材料具有低成本、毒性低和高热导率的优点,适合大规模生产,在蓄能水罐、冷库等大型建筑设备中应用较广,但其过冷度高、相分离严重和腐蚀性强的缺陷限制其在蓄冷领域的应用。有机相变材料具有过冷度低、循环稳定性好和腐蚀性小优点,主要适用于冷链运输和智能纺织品,但其低热导率、有毒、易燃和高成本的缺点阻碍其进一步应用。相比有机、无机相变材料,共晶相变材料可根据组分比例调控相变温度,实现精准控温,适用于要求温度变化范围小的场景,但目前研究较少,适用环境较少。图 2 无机相变材料与有机相变材料关键物性对比图在实际应用中,很难筛选出满足所有条件的相变蓄冷材料,因此要优先选择相变温度适宜且相变潜热高的蓄冷材料,最后采用合适的方法对其性能进行调控。02相变蓄冷技术的应用2.1 冷链运输冷链运输过程中环境温度波动易造成产品损耗,如果引入相变材料,发挥其相变控温功能,减少环境温度波动,能有效提高冷链运输产品质量。冷链运输根据保温方式分为被动式和主动式。被动式冷藏主要应用于冷藏箱,如图3所示,在箱体内加入相变蓄冷材料,吸收进入到箱体内部的热量、减缓温度上升速率,为冷藏物体长时间提供低温储存环境。Li等复合了膨胀石墨与辛酸-月桂酸共晶相变材料,二者质量比为71∶29,制得复合相变材料的相变温度和潜热分别为3.8℃和141.7 J/g,热导率提升了2.8倍,使材料释冷速率提高636.7%。Huang等基于石蜡OP5E开发了一种蓄冷保温箱,高低温测试表明,相变材料可以在至少80 h使保温箱内部温度保持在2~8℃。Liu等将KCl-NH4Cl共晶盐吸附于高吸水性聚合物SAP上,制得一种相变温度为-21℃和相变潜热为230.62 J/g的蓄冷材料。该材料在-15℃下冷藏生物样品时,冷藏时间能达到16.37 h,能有效保证生物样品质量。图 3 被动式冷藏箱及内部构造主动式冷藏是如图4所示在车内安装含相变材料的制冷机组,主动将车内温度控制在适合食品冷藏的低温状态。在主动冷藏系统内,加入相变材料可以辅助控温,减少车厢内的温度波动,降低主动制冷系统能耗。刘广海等设计了一款集隔热、相变蓄冷、制冷送风为一体的冷藏车,相比传统冷藏车,相变材料加入使车内平均温度波动下降48.7%,温度不均匀度系数下降50%。Zhang等考察了集成相变材料对制冷系统能耗影响情况,含相变材料的集装箱制冷能源成本和运营成本分别降低71.3%和85.6%。Michele等提出了一种结合相变材料并用于冷藏车的新型隔热墙,当相变材料厚度为1 cm时,能在10 h内使车内温度波动范围不超出相变温度2℃。图 4 主动式冷藏车及系统组成将相变材料与冷链运输相结合,能出色发挥相变材料高潜热和相变控温的特点,不仅大幅延长有效冷藏时间,还减少冷藏空间的温度波动,提升其温度均匀性,有效减少冷藏产品的损耗率。与传统制冷相比,将制冷系统与相变材料结合,能大大降低能源成本和运营成本,起到减少碳排放的作用。2.2 纺织品人体热管理与出汗散热类似,将相变材料如图5所示应用于纺织品中,通过引入温度调节作用以提升人体舒适度。这种纺织品被称为智能调温纺织品,能响应人体或环境的变化,实现保暖和降温双向温度调节功能,适应多变的环境。目前相变材料与纺织品结合方式主要有三种∶填充法、涂层法和纤维中空填充法。图 5 纺织品集成相变材料用于温度调节填充法是将相变材料填充于纤维或密封袋中,再集中放置在服装内部,特别是胸部和背部等发热量较大的部位,通过相变材料直接吸热或放热的方式控制体表温度。如图6所示,Saeid等将相变温度在24~35℃的石蜡用于降温背心,穿着降温背心在轻度活动和中度活动期间,温度仍维持在人体舒适温度范围内,出汗率分别降低了42%和52%,减少了脱水几率。Hou等开发了一种基于相变材料的液体冷却背心,背心重量为1.8 kg,能在炎热环境中为穿戴者提供至少2 h温度舒适环境。图 6 石蜡降温背心及其包装涂层法将相变微胶囊加入涂层液中,并用刮板将液体均匀涂抹在织物表面,使纤维表面粘附上相变微胶囊来改变纺织品的热性能。Xu等将相变微胶囊固定在棉质衣物上,所制衣物相变温度为16.5℃~36.8℃,符合人体热舒适温度,而且保温系数与不含相变材料的衣物相比从1.05%提高到32.2%。Yin等将相变温度为25.7℃的相变微胶囊嵌在纤维表面,使面料保温率达23.9%,控温能力良好。纤维中空填充法是如图7所示对含有中空结构的纤维进行加工,在内部填充相变材料来赋予纤维蓄能特性。Ke等制备了一种聚丙烯腈/月桂酸-硬脂酸/二氧化钛的复合纳米纤维,相变温度约为25℃,经30个循环后性质相对稳定,具有良好的控温性和稳定性。Song等采用真空浸渍法将月桂酸封装到木棉纤维微管中,制得样品中月桂酸质量分数达86.5%,焓值达153.5 J/g,经2000次循环后性能基本不变。图 7 纤维中空填充法相变材料对热能的吸收会延缓身体温度升高,并减少皮肤中水分散失,从而提高舒适度。同时相变材料具有相变控温特性,可以减缓穿着者的热失衡症状,如感冒、中暑和晕厥等,在医疗保健领域有着广阔的发展空间。Olson等制备了由NaCl、Na2SO4和水组成的复合相变材料,如图8所示,应用于婴儿出生后降温问题上,通过简单方式抑制了环境温度的变化。Prashantha等将相变材料制成冰袋用于低温治疗,不仅降低成本,而且延长了使用时间,提供更好的冷疗功能。图 8 相变床垫(蓝色)上为婴儿降温,床垫由相变材料和软垫组成Zhang等用浸渍法将OP10E和SEBS混合制备了可在10℃下保持1800 s的弹性相变油凝胶,并设计如图9所示的冷却帽用于发烧儿童的冷敷治疗,模拟了人体热调节过程,建立发烧儿童所需凝胶量的数据库,为相变头套设计提供参考标准。图 9 相变油凝胶冷却帽建模及数据库将相变材料与人体热管理相结合,可以实现个性化体温调节。这类智能被动体温调节纺织品体积小、使用便利,在高温作业和户外运动等场景中提升人体舒适度。将相变纺织品制备调节体温的医疗保健产品,能帮助婴儿或患有温度敏感性疾病的人群缓解热失衡和常见并发症,加快病情治愈速率。创新性的相变智能体温调节纺织品在技术上已有了较深积累,其商业化值得期待。2.3 建筑节能及数据中心应急冷却将相变材料用于建筑节能领域,能使室内温度维持在舒适范围内,提高人们居住和办公舒适度,实现节能和减少碳排放的目标。建筑节能领域所用蓄冷技术可根据蓄冷方式分为被动式蓄冷和主动式蓄冷。被动式蓄冷主要通过将相变材料与建筑墙体复合制得如图10所示的相变储能墙体,白天吸收热量给室内降温,夜晚释放热量维持室内温度,起到辅助调节室温、减小建筑采暖和制冷能耗的作用。聂瑞等将硅藻土、十八烷和过硫酸铵混合制备一种相变微胶囊/硅藻土复合材料,具有调节室温以及维持室内湿度平衡的功能。Wang等将石蜡、膨胀石墨和高密度聚乙烯掺入水泥砂浆中制备复合相变砖块,在15~30℃和18~24℃时,120 mm厚的相变墙体比240 mm厚普通墙体的蓄能能力分别提高了12.7%和61%,有效降低了室内温度波动。Fu等将膨胀珍珠岩和六水氯化钙复合制得相变温度在27.38℃的相变砖块,用其代替泡沫保温砖作为屋顶,使得室内峰值温度降低5℃,达到室内峰值温度的时间滞后约900 s。图 10 相变材料在建筑节能中的应用主动式蓄冷主要通过制冷装置将电能和太阳能等转化并储存到如图11、图12所示蓄冷装置中,常见于冷库、家用空调和数据中心应急冷却系统等,能在需要时将冷能释放出来,有助于缓解能源供需不匹配的问题。图 11 集成相变材料冷却系统的空调系统图 13紧急冷却系统综上,在建筑节能领域中引入相变蓄冷材料,可减少室内温度波动并维持在舒适范围内。且相比传统制冷装置,相变材料具有的高相变焓优势能减少制冷机组装机容量,实现制冷、蓄冷装置的轻量化,降低安装、运行成本,提高能源利用效率。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制