显微速度矢量场

仪器信息网显微速度矢量场专题为您整合显微速度矢量场相关的最新文章,在显微速度矢量场专题,您不仅可以免费浏览显微速度矢量场的资讯, 同时您还可以浏览显微速度矢量场的相关资料、解决方案,参与社区显微速度矢量场话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

显微速度矢量场相关的耗材

  • 压电式显微操作仪
    压电式显微操作仪,显微操作仪由中国领先的进口精密仪器和实验室仪器旗舰型服务商-孚光精仪进口销售!孚光精仪精通光学,服务科学,欢迎垂询!压电式显微操作仪特别为细胞膜穿透而设计压电式显微操作仪是电生理学领域的理想工具,显微操作仪德国设计制造压电式显微操作仪具有全球最佳精度压电式显微操作器.显微操作仪在设计上具有特色,它是把微注射器安装到我们电动显微操作仪DC-3K联合使用压电式显微操作仪采用了超高精度的压电技术和压电器件,可以实现轴向运动,从而保证在高速穿透下实现无振动注射,即使在最大步进20微米情况下,毛细管尖处测得与理想轴线的侧向偏差仅仅为1微米压电式显微操作仪压电技术带来的高精度确保了细胞内微注射的成功实现压电式显微操作仪技术参数显微操作仪步进长度:0.5-10微米可调压电式显微操作仪步进速度:0-150um/s连续速度可调显微操作仪压电前进速度:1-100mm/s可调压电式显微操作仪轴向偏离:+/-2.5%显微操作仪输入输出: 5V TTL压电式显微操作仪尺寸:190x47x138mm显微操作仪重量:180g, 控制器:1KG压电式显微操作仪和欧洲进口的显微操作仪,特别为细胞膜穿透而设计,是电生理学领域的理想工具,德国设计制造,具有全球最佳精度操作器.
  • 压电式显微操作仪配件
    压电式显微操作仪配件特别为细胞膜穿透而设计,是电生理学领域的理想工具, 德国设计制造,具有全球最佳精度仪器。压电式显微操作仪配件特点在设计上具有特色,它是把微注射器安装到我们电动显微操作仪DC-3K联合使用,这种压电器件与电动显微操作仪的结合,充分融合了二者的优势,使之成为一套完美的压电式显微操作仪。采用了超高精度的压电技术和压电器件,可以实现轴向运动,从而保证在高速穿透下实现无振动注射,即使在最大步进20微米情况下,毛细管尖处测得与理想轴线的侧向偏差仅仅为1微米,这种压电技术带来的高精度确保了细胞内微注射的成功实现压电式显微操作仪配件参数步进长度:0.5-10微米可调步进速度:0-150um/s连续速度可调 压电前进速度:1-100mm/s可调轴向偏离:+/-2.5%输入输出: 5V TTL尺寸:190x47x138mm重量:180g, 控制器:1KG孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括显微操纵器,电动显微操纵器,微操纵器在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于压电式显微操作仪价格,压电式显微操作仪参数等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 全数字正排量显微注射器配件
    全数字正排量显微注射器配件专业为高精度纳升或微升特定微体积液体注射传输的高精度要求而设计,非常适合细胞显微注射应用。全数字正排量显微注射器配件具有与其它大多数显微注射器不同的优势,它不需要空气压缩机或压缩气罐等压缩气体源,提前设定注射量和速度,该电动机驱动的全数字正排量显微注射器通过脚踏精确控制,注入非常少体积的液体,用户的双手完全解放出来自由用于显微操作和聚焦显微镜。全数字正排量显微注射器配件还有一个手动模式,允许用户在不知道液体体积情况下也可注入,在手动模式下,MINJ-PD全数字正排量显微注射器记录注射量并精确控制注射和吸气量度。对于干细胞注射应,全数字正排量显微注射器具有特别的内置搅拌模式有助于防止细胞聚集和沉降在针壁。全数字正排量显微注射器配件采用与MINJ-D相同的用户友好的微处理器界面。数字地合成注入/抽吸量和速度,以及搅动体积和速度,可再生产地。使用一个简单的“菜单”按钮,加号和减号按钮,任何人都可以在几秒内设置体积和速度。全数字正排量显微注射器配件规格:在市场上最紧凑和最耐用 6“×7”×3“,重量轻于2磅。(15厘米点ˉx17厘米×7厘米,重量轻于1千克)简单的3按钮控制数字显示,带背光,便于阅读精密微处理器脚踏板,用于手自由注射控制总注射器容量:100ul(标准)(MINJ-PD-S100),或可选择250微升(MINJ PD-S250)500ul的和(MINJ-PD-S500)可编程注射体积:0.01- 25.00uL(用100微升注射器)可编程的注射速度:0.4- 25.0S/ UL可编程音量搅拌:0.1- 25.0uL可编程的搅拌速度:0.3- 25.0S/ UL手动注射方式全数字正排量显微注射器配件显微注射器输出需要耦合到其他东西。例如,如果你使用玻璃微细针,我们的MINJ-4显微注射器™ 黄铜直臂持针柄是一个做这项工作的经济选择。一个特殊的版本,MINJ-4FEM,是专为那些喜欢使用Eppendorf® prepulledFemtotips® (上螺丝),而不喜欢与我们的标准MINJ-4匹配的我们自己成本较低的MINJ-PP prepulled产品的用户设计的。另一个特别版本MINJ-4SLIP,是专为那些喜欢使用SlipTip® and Luer-Lok® 针(上推或扭曲),而不是我们的MINJ-PP玻璃针的用户设计的。

显微速度矢量场相关的仪器

  • 【肉眼无法识别的磁气可视化的测定器】 用高精度磁气传感器正确测定磁石表面的磁束密度分布。 应对从圆柱型到瓦状型各式各样的磁石的计测。 MTX 主要通过一个磁头搭载三轴磁力传感器对磁体表面及临界空间的磁场进行高精度的三维测定,并可以通过测得的数据进行三维磁场矢量合成的3D矢量磁性分析仪。测量数据经过电脑的收录、计算、通过2D图表、3D图表和矢量图等多种表示功能,使原来看不见的磁场可视化。此外,增添了在原来的磁性分析仪中积累的技术经验,标准配备了充磁解析、马达解析、品质管理等必要的多种多样的波形解析功能。收录的数据全部采用CSV形式保存,可以容易的向市场上销售的图表计算软件和磁场模拟软件进行数据输出。 用磁力的本质------三维矢量磁场来捕捉磁场,并能收录、表示、解析和输出的MTX是对磁场应用产品的研究和技术开发起重大作用的指南针。
    留言咨询
  • SEN-3D-CAM-3D/三维磁场相机(三维矢量)昊量光电全新推出的SEN-3D-CAM是首台真正的三维磁场相机。SEN-3D-CAM-3D/三维磁场相机利用Senis专有的三维霍尔技术同时测量所有三个磁场成分(Bx、By、Bz)。SEN-3D-CAM-3D/三维磁场相机提供全面和准确的三维磁场图片。SEN-3D-CAM的空间分辨率为100µ m,每个像素的微小测量体积为27µ m x 9µ m x 4µ m,在磁场测量中提供前所未有的精度。如果您需要测量具有高场梯度的复杂场,这一点就特别重要。凭借16,000个像素,SEN-3D-CAM可以在短短1秒内获得完整的磁性图像,使其成为磁性系统在线和离线检测的理想选择。SEN-3D-CAM的直接输出是二维图像,所有三个场组件都经过精确校准。这些经过校准的图像通过USB-C连接进行流式传输,为分析和可视化提供实时数据。此外,可选的Senis 2D Vision Commander软件可用于更复杂的磁图像分析,允许进行进一步的磁数据处理和解释。 使用首台真正的3D磁场相机SEN-3D-CAM,体验磁场测量的未来。凭借其无与伦比的精度、高采集率和丰富的软件选项,SEN-3D-CAM是研究、工业和其他领域进行磁场分析的理想工具。今天就用SEN-3D-CAM来保持前沿,开启新的可能性。SEN-3D-CAM-3D/三维磁场相机关键参数:&bull 快速、真实、精确的三维磁场相机 &bull 测量磁场的所有三个分量(Bx、By、Bz) &bull 非常高的磁性和空间分辨率(16k像素) &bull 蕞小的敏感体积&bull 每个像素为27µ m x 9µ m x 4µ m &bull 高图像采集率为1图像/秒SEN-3D-CAM-3D/三维磁场相机典型应用:&bull 快速、真实、精确的三维磁场图&bull 快速、真实、精确的在线检测 &bull 快速表征和质量控制永磁体 &bull 磁体系统的开发&bull 在实验室和生产线上的应用SEN-3D-CAM-3D规格参数:SensorSensor TypeSenis 3D Hall,Data OutputCalibrated true Bx/By/Bz for each individual pixelImage rate1 image/sPixels128x128, Field Sensitive Volume: 27µ m x 9µ m x 4µ m in each pixelTotal Active Area12.8x12.8mmSoftware and CommunicationSupply Voltage5V, through USB connectorInterfaceUSB 3.0 / RNDISSoftware (optional)Senis 2D Vision Commander V1.3Operating System (optional)MS Windows 7 and laterMagnetic FieldCalibration ranges100mT and 500mTAbsolute accuracy 1% of full scaleRepeatability 0.2% of full scaleDigital resolution12 bitNon-orthogonality of magnetic axes0.5°Calibrated temperature range20-30°CMinimal measuring distance300µ mMechanicalHousingRugged lightweight housing with easy mounting optionTotal weight~100 gOperation temperature range10°C-50°C, fanless operation产品详细信息可联系我们或下载数据资料!更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。
    留言咨询
  • 矢量电磁铁矢量三维电磁铁产品概述:LY系列矢量三维电磁铁是由北京锦正茂科技有限公司电磁铁研发团队经过专业磁场仿真软件,结构优化后而设计现出的一款矢量型电磁铁,该电磁铁采用两对垂直正交的电磁铁构成平面内的电磁铁,在任意方向上都可以通过调节其电流大小,获得任意矢量方向上的可控均匀磁场。矢量三维电磁铁是在二维磁铁的基础上增加垂直于面的螺线管磁场,构成三维磁铁。通过调节三组控制电源电流的大小,来实现三维空间内任意矢量方向的可控均匀磁场 ,轭铁和极柱采用电工纯铁制作,饱和磁导率高,节省能源以及材料。北京锦正茂科技有限公司自主研发的多极电磁铁以四极电磁铁居多,也有五极、六极、八极等多极的应用,主要应用于多极磁环充磁、径向梯度磁场、旋转磁场磁导向等多种应用,按用户的使用要求设计制作,该种类型的电磁铁能够完*的与客户设计的磁场平台兼容。产品用途:电磁铁/电磁场发生器主要用于磁滞现象研究、磁化系数测量、霍尔效应研究、磁光实验、磁场退火、核磁共振、电子顺磁共振、生物学研究、磁性测量、磁性材料取向、霍尔效应、磁导率测量、自旋磁共振演示、生物研究等。产品优势:1:多极水冷式或风冷、具有视野开阔、磁场强度高、磁场强度大小调节方便的特点2:体积小、重量轻、占空比小、结构紧凑、磁场性能更佳。3:可选配工作间隙刻度指示4:在小气隙时用于铁氧体产品的充磁,与磁性样品产品的磁化处理。同时与北京锦正茂自主研发的高精度双极性恒流电源及FCP磁场控制平台完*结合(稳定性10PPM),可以组成一套多功能实验室磁场发生系统。这个系统中,通过真正的双极性恒流电源输出,可以实现了快速均匀的磁场扫描以及磁场换向,从而避免在使用非连续性电源时出现过零反转的间断问题,实现真正的零磁场。技术指标:※电磁铁为四极结构的,轭铁八边形,气隙可调,极柱直径50mm,磁极直径25mm,四极在同一平面;可水平或45度角放置。※电磁铁配四个极头;其中两个极头打5mm通孔,当气隙为25mm时,一维中心磁场Hmax≥0.25T;※电磁铁采用自然冷却。0.25T磁场环境下可连续工作30分钟,线包温升小于60℃ ;※电磁铁单线包功率150W,双线包串联300W,﹡功率300W*2,四极各留抽头。注:标价不准,以电话沟通为准
    留言咨询

显微速度矢量场相关的试剂

显微速度矢量场相关的方案

显微速度矢量场相关的论坛

显微速度矢量场相关的资料

显微速度矢量场相关的资讯

  • 如何将9T磁场测量系统秒变9T-9T-9T矢量磁场?
    探索材料角度相关的磁输运性质是凝聚态物理学中应用广泛和重要的课题研究方向。该研究通常需要很宽的样品温度范围,比如从室温到几开尔文或更低,还需要强大的矢量磁场。控制矢量磁场对此类研究尤为重要。然而,传统的超导矢量磁体不仅价格昂贵,而且场强也有限:三个方向上至少两个方向的磁场强度通常不能超过2T。 德国attocube公司是上著名的端环境纳米精度位移器制造商。近期,该公司推出的atto3DR低温双轴旋转台,将施加在样品上固定方向的单一磁场(垂直或水平方向)的改变为三维矢量磁场。通过这种方式,在任何其他方向上也可立即获得非常高的磁场(例如9 T或12 T)。因此,它相当于提供了9T-9T-9T矢量磁铁的等效系统,这是目前尚无法实现的。此外,与常规矢量磁铁(如5T-2T-2T)只能在旋转中提供大2T的磁场相比,此解决方案的成本也非常低。 另外,双旋转轴的应用保证了样品在任意磁场方向上的变化和灵活性,通过水平固定轴的旋转,可控制样品表面与外界磁场的倾角(+/- 90°);而沿面内固定轴的旋转提供了另外+/- 90°的运动,从而实现样品与磁场形成任意相对方向。同时还兼容2英寸样品空间和He气氛,配备Chip carrier,提供多达20个电信号接口。 1. 为什么要旋转你的样品? 物理学家、化学家和材料科学家正在不懈地寻找具有理想性能的新材料。新材料几乎每天都会被合成出来,并经历各种各样的测量和表征。费米面的表征在材料表征中起着核心作用,因为将电子结构与材料的性质相关联,可以设计出具有所需性质的材料,并针对特定的应用进行调整。若能够地控制磁输运测量中的场方向有助于提取样品各向异性的信息。能够旋转样品在面内和面外场之间切换,或沿所需方向(例如,沿准一维样品,如纳米管或纳米线)对准就显的尤为重要。 Attocube公司研发的压电驱动的纳米旋转台有效地取代了价格昂贵的矢量磁铁,甚至提高了它们的性能,不仅扩大了其任意方向上的大可用磁场,而且也能很好的实现自动化的测量。更为重要的一点是:它们优于传统无法避免的机械滞后性的机械转子。此外,当需要超高压条件时,例如在ARPES中,与机械旋转器相比,压电陶瓷旋转台提供了额外的优势-压电陶瓷旋转台不会导致超高压室泄压或者漏气。2. Attocube提供的解决方案2.1 attocube 的纳米精度旋转台 attocube提供了多种可以组合的压电驱动纳米定位器,其中包括水平旋转台和竖直旋转台(attocube纳米旋转器-ANR/ANRv)。旋转台组合包括一系列不同尺寸和方向,以及适用于低温环境、超高真空和/或高磁场的不同环境下的需求。由于其体积非常紧凑,attocube的旋转台能够适配于大多数的超导磁体样品腔。图1: ANR portfolio [4]2.2 atto3DR:在3D中模拟强矢量磁场 atto3DR双旋转器具有两个立的旋转台,它们组合在一起,从而提供相对于样品表面的所有方向上的全磁场(例如14 T),如引言中所述。atto3DR如图2所示。atto3DR可以提供普通低温版本,同时也可根据具体需求提供用于低温真空(如稀释制冷机)的定制版本;有关mK温度下的应用案例,请参阅应用部分。图2: atto3DR:(a)带有无铅陶瓷芯片载体的样品架,配备20个触点;(b) 面内ANR;(c) 另外一个面内的ANR[4]。 3. 应用案例 在概述了ANRs、atto3DR的主要特点和优点之后,本文后一章将重点介绍通过使用基于我们的旋转器获得的传输测量的研究结果。3.1 基于ANR旋转台的应用案例3.1.1 在强磁场和200 mK条件下考察的g因子的各向异性 在Zumbühl集团(瑞士巴塞尔)与RIKEN(日本Saitama)、SAS(斯洛伐克布拉迪斯拉发)和UCSB(美国圣巴巴拉)课题组的合作进行了以显示GaAs量子点中各向同性和各向异性g因子校正的分离实验。这项研究是在两个立的横向砷化镓单电子量子点上进行的。为了在实验上确定g因子修正,通过测量具有不同强度和方向的平面内磁场的隧穿速率来得到自旋分裂。自旋分裂定义了自旋量子位的能量,是磁场中自旋的基本性质之一。在这里,他们测量并分离了两个GaAs器件中对g因子的各向同性和各向异性修正,发现与近的理论计算有很好的一致性。除了公认的Rashba和Dresselhaus项,作者还确定了动量平方依赖的塞曼项g43和穿透AlGaAs势垒gP项[5]。 此项工作是在attocube纳米精度旋转台ANRv51的帮助下完成的:样品安装在压电驱动旋转器上,并在磁场平面内旋转。由于旋转台有电阻编码器,因为能够读出旋转器的状态角度。此外,ANRv51可在高达35 T的磁场环境下使用,并可在低至mK的低温范围内使用-该实验在稀释制冷机中进行,电子温度为200 mK,磁场高达14 T。该磁场强度在任意面内方向上施加,只能通过旋转器实现不同角度下的测量。图3: sample in chip carrier mounted on ANRv513.1.2 mK位移台在材料输运性质随磁场角度的变化研究中的应用 北京大学量子材料科学中心林熙课题组成功研制出基于attocube低温mK位移台研制的低温强磁场下的样品旋转台,用于测量材料的输运性质随磁场角度的变化研究。 该系统是基于Leiden CF-CS81-600稀释制冷机系统的一个插杆,插杆的直径为81 mm,attocube的mK位移台通过一个自制的转接片连接到插杆上,如图4所示,位于磁场中心的样品台的尺寸为5 mm*5 mm,系统磁场强度为10T。系统的制冷功率为340 μW@120mK,得益于attocube低温位移台低的发热功率及工作时非常小的漏电流,使得旋转台能够很好的在<200mK的温度下工作(工作参数:60V,4Hz, 300nF)。 图4. 实现的旋转示意图和ANR101装配好的实物图 图5. 侧视图,电学测量的12对双绞线从旋转台的中心孔穿过 图6中是GaAs/AlGaAs样品在不同角度下测试结果,每一个出现小电导率的点,代表着不同的填充因子。很好的验证了其实验方案的可行性和稳定性。图6. Shubnikov–de Haas Oscillation at T = 100 mK3.1.3 25 mK和强磁场下的自旋弛豫测量 基于量子点的自旋量子位是未来量子计算机的一个有希望的核心元件。2018年,一项国际合作((Basel, Saitama, Tokyo, Bratislava and Santa Barbara)在理论预测电子自旋弛豫现象15年后,次通过实验成功证明了一种新的电子自旋弛豫机[8]。图7: Measurement setup with sample on an ANRv51 for rotating around the angle ϕ in the plane of the magnetic field. 在25 mK 的稀释制冷机和高达14 T的磁场条件下,半导体纳米结构(GaAs)中的电子自旋寿命在0.6 T左右达到了一分钟以上的新记录。有关此记录的更多信息,请参见[9]。对于该实验设置,使用了attocube的ANRv51,只有它完全符合mK温度和高磁场系统的要求。此外,在GaAs二维电子气体中形成的单电子量子点样品可以与平面内磁场相对于晶体轴作任意角度的旋转。3.1.4 从缓慢的Abrikosov到快速移动的Josephson涡旋的转变 来自瑞士苏黎世ETH的Philip Moll及其研究组使用attocube的ANR31研究了层状超导体SmFeAs(O,F)中磁旋涡的迁移率,发现旋涡迁移率的大增强与旋涡性质本身的转变有关,从Abrikosov转变为Josephson[12]。该实验中如果磁场倾斜出FeAs平面,即使小的未对准(0.1°)也会完全破坏该效应,因为未对准的旋涡不再与晶体层平行,则该特征立即消失。由于流动漩涡引起耗散,观察到它们的流动性是一个非常锐的电压峰,如图8所示)。attocube的ANR31位移台能够在低于2 K的温度下以优于0.1°的精度旋转样品,并且在扫描温度和磁场时零漂移。此外,的纳米旋转器被安装在小型(25 mm直径)标准样品托上(见图9)。由于其优异的性能和紧凑的结构,将整个实验装置的研究能力扩展到需要端角度精度和稳定性的领域。图8: Flux -flow dissipation as a function of the angle between the magnetic field (H = 12 T) and the FeAs layers (= 0°) for several temperatures.图9: Rotator setup showing the ANR31/LT rotator carrying the sample and two Hall sensors.3.1.5 用于量子输运分析的超低热耗散旋转系统 在2010新南威尔士大学(澳大利亚悉尼)的La AYOH ET.A.课题组分析了半导体纳米器件中的量子输运。他们的主要目标是获得一个合适的旋转系统来研究各向异性塞曼自旋分裂。为了充分观察测量这种效应,需要在保持温度低于100mK的情况下,在磁场(高达10T)方向旋转样品。该样品安装在陶瓷LCC20器件封装中的AlGaAs/Ga/As异质结构。两条铜线连接到载体上。使用带RES传感器的ANRv51进行位置读出,该小组设计了一个具有两个可选安装方向的样品架(见图10):一个具有芯片载体的平面内旋转,另一个具有芯片载体的平面外旋转(见图)。ANRv51非常适合此应用:先其由非磁性材料制成,完全兼容mK,并具有一个小孔,可将20根铜线送至转子背面。在他们的论文中,研究小组仔细描述了不同驱动电压和频率下,旋转器的散热作为转速的函数[13]。在缓慢的旋转速度下,散热可以保持在低限度,即使连续旋转,仍然能让系统温度低于100 mK。当关闭旋转器时回到25 mK基准温度的时间仅仅为20 min。此外,由于滑移原理,旋转台可在到达终目标位置时接地,从而确保位置稳定性和零散热。图10: Rotation system assembly for rotating the sample in two separate configurations with respect to the applied magnetic field B.3.2. atto3DR 应用案例3.2.1 范德华异质结器件在低温40mK中旋转 理解高温超导物理机制是凝聚态物理学的核心问题。范德华异质结构为量子现象的模型系统提供了新的材料。近日,国际合作团队(团队成员来自美国伯克利大学,斯坦福大学,中国上海南京以及日本韩国等课题组)研究石墨烯/氮化硼范德华异质结具有可调控超导性质的工作发表在《Nature》杂志上。在温度低于1K的时候,该异质结的超导的特特性开始出现,电阻出现一个明显的降低,出现一个I-V电学曲线的平台[14]。图11: 图左低温双轴旋转台;图右下:石墨烯/氮化硼异质结器件,图右上,电输运测试结果,样品通过旋转后的方向与与磁场方向平行。 电学输运工作的测量是在进行仔细的信号筛选后,在本底温度为40mK的稀释制冷剂内进行的。样品的面内测量需要保证样品方向与磁场方向平行,因而使用了德国attocube公司的atto3DR低温双轴旋转台。该atto3DR低温双轴旋转台可以使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在的超导与Mott缘体与金属态的转变,证明了三层石墨烯/氮化硼的超晶格为超导理论模型(Habbard model)以及与之相关的反常超导性质与新奇电子态的研究提供了模型系统。3.2.2 30mk下的扭曲双层石墨烯的轨道铁磁性 范德华异质结构,特别是魔角双层石墨烯(tBLG),是当今固态物理研究的热点之一。尽管之前对tBLG的测量已经表明,铁磁性是从大滞后反常霍尔效应中推断出来的,随后又指向了Chern缘体,但A.L.Sharpe及其同事通过输运测量实验表明,tBLG中的铁磁性是高度各向异性的,这表明它是纯轨道起源的——这是以前从未观察到的[15]。 为了进行测量,该小组将封装在氮化硼薄片中的tBLG样品安装在attocube atto3DR双旋转器上,通过巧妙设计,使其在电子温度低于30 mK的条件下正常工作,在高达14 T的磁场中,使用霍尔电阻对倾斜角度进行专门的现场校准,以便在实验过程中控制准确的面内和面外方向。图12: Angular dependence of hysteresis loops in twisted bilayer graphene, measured with atto3DR at 30 mK.4. 总结 磁性输运测量通常涉及可变温度和强磁场。能够旋转样品是提取有用信息的关键先决条件,如三维费米表面、电荷载流子的有效质量和密度,亦或块体材料、薄膜或介观结构的各向异性相关的许多其他参数。使用基于压电陶瓷的旋转器有助于获得比矢量磁场更高的矢量场,而且能够大大降低成本。因此,attocube ANR及其成套解决方案——atto3DR——对于每一位在具有磁场依赖和低温下进行电气和磁性输运测量的研究人员来说,都是佳和的解决方案。5. 参考文献[1]L.W. Shubnikov, W.J. de Haas, Proc. Netherlands Roy. Acad. Sci. 33, 130 (1930)[2]Fermi Schematics, Sabrina Teuber, attocube systems AG[3]http://www.phys.ufl.edu/fermisurface/[4]attocube systems AG[5]L.C. Camenzind et al., Phys. Rev. Lett. 127, 057701 (2021)[6]U. Zeitler et al., attocube Application Note CI04 (2014)[7]P. Wang et al., Rev. Sci. Instrum. 90, 023905 (2019)[8]L.C. Camenzind et al. Nat Commun 9, 3454 (2018)[9]https://www.unibas.ch/en/News-Events/News/Uni-Research/New-mechanism-of-electron-spin-relaxation-observed.html[10]Y. Pan et al., Sci. Rep. 6, 28632 (2016)[11]A.M. Nikitin et al., Phys. Rev. B 95, 115151 (2017)[12]P.J.W. Moll et al., Nature Mater. 12, 134 (2013)[13]L. A. Yeoh et al., Rev. Sci. Instrum. 81, 113905 (2010)[14]G. Chen et al., Nature 572, 215 (2019)[15]A.L. Sharpe et al., Nano Lett 2021, 21, 10, 4299 – 4304 (2021)
  • 武汉光电国家研究中心王健教授团队研发新型矢量多普勒测量仪
    2021年7月7日,《自然通讯》(Nature Communications)杂志在线发表了武汉光电国家研究中心王健教授团队题为“Vectorial Doppler metrology”的最新研究成果。此研究将具有空间变化偏振分布的矢量光场应用于光学测量,提出并实现了新型矢量多普勒测量仪,其对于复杂运动信息的全矢量测量具有重要意义。多普勒效应是一种经典的物理现象,属于波的基本特性之一。该效应来源于波源与观测者之间的相对运动,使得观测者接收到的波的频率相对于波源频率具有一定偏移量。无论是机械波,还是电磁波,通过测量其多普勒频移,可以推算出观测者相对于波源的运动速度。多普勒效应已广泛应用于医学诊断、交通测速、精密测量、激光制冷以及天文学与航空航天等领域。光波属于电磁波,相对于机械波,如声波、水波等,具有超高速、大带宽、方向性好且能在真空中传播等优点,因此开发光的多普勒效应具有独特的优势。对于传统的平面相位光束,不考虑相对论效应,只有当运动物体在光束传播方向上有相对运动才能产生多普勒频移,称之为线性(或纵向)多普勒效应。最近二三十年,随着科学家对光的基本属性的进一步认知,光学研究已由简单的平面光束向更复杂多样的结构光束展开。结构光束的旋转(或横向)多普勒效应也受到了越来越多的关注,这为光学多普勒测量提供了更多的可测量维度。纵观多普勒效应的发现及发展应用历程,该效应针对的只是波的标量属性,即由相位(或强度)的连续改变产生多普勒频移。对于本振频率比较低的机械波,通常可以直接提取其多普勒频移,从而测定目标物体的运动速度与方向信息。对于光波(电磁波),由于其超高的本振频率,提取多普勒频移必须采取与参考光进行干涉拍频。然而,干涉拍频虽然能提取多普勒频移量,但却丢失了符号信息,即无法区分多普勒蓝移与红移。因此,如果不采用额外的测量手段,如外差检测或双频检测,直接基于干涉测量提取多普勒频移无法推断出目标运动物体的方向信息,这无疑导致了光学多普勒测量的应用局限。光波是一种横波,除了振幅与相位自由度,还有偏振自由度。光的偏振描述的是电磁场在正交于传播方向的平面上的谐振情况。传统的平面相位光束,其偏振取向在光束横截面上是均匀分布的。对于一类特殊的结构光场,其偏振取向在横截面上呈空间周期性变化分布,称之为矢量光。针对这类矢量结构光场,近期,华中科技大学武汉光电国家研究中心多维光子学实验室(MDPL: Multi-Dimensional Photonics Laboratory)王健教授团队研究发现,粒子在这类光场中运动能产生新的多普勒效应,即矢量多普勒效应。区别于基于标量光场的传统多普勒效应(多普勒信号表现为随时间变化的一维强度信号),基于新的矢量结构光场的矢量多普勒效应,其多普勒信号表现为随时间变化的二维偏振信号。这类新的多普勒偏振信号,除了携带目标运动物体的速度大小信息外,还同时携带了速度方向信息。具体表现为,不同的运动方向导致多普勒偏振信号呈现出不同的旋转手性,如图1和图2所示。实验或实际应用中,利用两个检偏器分析两路信号光的相对相位差,就能轻松分辨出多普勒偏振信号的旋转手性,进而直接测定目标物体的运动速度大小与方向。研究还发现,基于矢量结构光的矢量多普勒效应,不仅能直接测定粒子的运动矢量信息(速度大小与方向),还能潜在地追踪粒子运动的瞬时相对位置与瞬时速度,并且测量无须参考光束干涉,有很强的抗环境干扰能力。进一步,针对各项异性的运动粒子,理论分析发现,即使粒子在旋转的同时还处于自旋状态,通过对多普勒偏振信号进行标准的斯托克斯参数分析,或简单地利用两个检偏器分析,能同时测定粒子的旋转速度矢量(大小与方向)和自旋速度矢量(大小与方向)。该工作于2021年7月7日以Vectorial Doppler metrology为题发表在《自然通讯》(Nature Communications)上,华中科技大学武汉光电国家研究中心为论文第一单位,华中科技大学武汉光电国家研究中心博士后方良与硕士生万镇宇为共同第一作者,华中科技大学名誉教授、南非金山大学Andrew Forbes教授为论文合作者,华中科技大学武汉光电国家研究中心王健教授为论文唯一通讯作者。该项工作是对传统基于标量光场多普勒效应的一次突破,极大丰富了多普勒测量的内涵,同时对于矢量结构光场的基础研究及拓展应用研究具有重要科学意义。Liang Fang, Zhenyu Wan, Andrew Forbes, Jian Wang*, “Vectorial Doppler metrology,” Nature Communications, 12, 4186 (2021).https://www.nature.com/articles/s41467-021-24406-z图1矢量多普勒效应概念示意图图2基于矢量结构光场的矢量多普勒效应测量粒子的运动矢量(速度大小和方向)。(a)(c)相反运动的粒子在矢量结构光场(以HE31为代表)中与局部偏振光相互作用示意图。(b)(d)粒子采样反射或散射的二维多普勒偏振信号因粒子运动方向不同表现出不同的手性。二维多普勒偏振信号同时携带粒子运动的速度大小与方向信息。多维光子学实验室(MDPL)研究人员(从左至右):方良、王健、万镇宇
  • 聚焦新品,低温致胜!全新一代极低温强磁场拉曼显微镜cryoRaman正式亮相
    近期,国际知名低温显微镜领域制造商attocube systems AG公司与拉曼显微成像创新公司WITec GmbH联合推出低温拉曼显微镜cryoRaman。该低温拉曼成像系统集成了attocube公司的低温恒温器和纳米定位器技术,同时设备结合了具有高灵敏度、模块化特色的WITec公司的alpha300相关显微镜系列。自此,实现了低温拉曼成像在强磁场中的高效应用,并且拉曼成像具有无与伦比的空间分辨率。图1. 低温拉曼显微镜cryoRaman实物图。设备集成低温恒温器attoDRY2100与WITec拉曼显微镜。cryoRaman的推出旨在应对现有和新出现的挑战。设备包含可见光到近红外光波段激发波长优化的光谱仪、1.6K至300K的工作温度、高磁场和获得的低温拉曼专用物镜以及非常精密的压电扫描台。“我们已经看到,人们对低温拉曼光谱的兴趣迅速增长,并扩展到初的石墨烯和碳纳米管研究热点之外,” attocube公司低温部门的Florian Otto这样介绍cryoRaman。“我们决定与WITec一起解决用户日益多样化的实验要求。cryoRaman成功实现与满足了用户对低温化学特性表征使用界面友好性、灵活性方面的需求。”图2:低温拉曼显微镜cryoRaman光路部分。新型低维材料的相变和新特性的研究具有重要意义,这些研究使得cryoRaman的高磁场选项更具应用价值。单轴超导磁体(大可高达12T)或矢量磁体是研究过渡金属二卤化物(TMD)和范德瓦尔斯异质结的理想实验条件,也可以帮助确定不同温度和磁场下光致发光的特性。cryoRaman可选模块包括软件控制激光器功率调节,多波长激发能力,自动切换单点光谱测量与光谱成像、自动光谱仪校准光源和例行程序、以及时间相关单光子计数(TCSPC)模式。图3. 可切换单点光谱测量,拉曼或光致发光光谱成像。升功能包含低波数拉曼测量。 除此之外,attoucube和WITec公司在研发低温拉曼显微镜时还引入了一对特的功能:能够检测低波数拉曼峰,并在激发探测过程中实现全偏振控制。“研究人员在低温环境中观察材料时,希望尽可能接近激发波长,同时他们对偏振测量非常感兴趣,” WITec公司联合创始人兼总经理Olaf Hollricher这样评价。“为了满足这些要求,我们开发的功能是目前市场所不具有的。事实上,它的成像能力、低温、集成度、性能以及对新来者或专家们,cryoRaman都是树一帜的。”图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。 cryoRAMAN主要技术特点:+ 应用范围广泛: 量子光学,PL/EL/ Raman等光谱测量+ 以前所未有的分辨率和速度进行光谱成像+ 每个像素点自动获取拉曼光谱,低波数与偏振测量+ 空间分辨率:500 nm+ 无液氦闭环恒温器,变温范围:1.8K - 300K+ 工作磁场范围:0...9T (12T, 9T-3T,9T-1T-1T矢量磁体可选)+ 低温消色差物镜NA=0.82+ 精细定位范围: 5mm X 5mm X 5mm @ 4K+ 精细扫描范围:30 mm X 30 mm@4K+ 可进行电学测量,配备标准chip carrier+ 可升到AFM/MFM、PFM、ct-AFM、KPFM、close loop scanning等功能
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制