显微组织分析

仪器信息网显微组织分析专题为您整合显微组织分析相关的最新文章,在显微组织分析专题,您不仅可以免费浏览显微组织分析的资讯, 同时您还可以浏览显微组织分析的相关资料、解决方案,参与社区显微组织分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

显微组织分析相关的耗材

  • 显微岩相分析仪配件
    显微岩相分析仪配件特别为岩相学和地球化学分析而设计,非常适合岩相学分析检测,特别是煤炭质量分析检测,显微岩相分析仪配件在全球的石化,地球化学和岩相学实验室广泛使用。显微岩相分析仪配件应用煤续排列 - 使用反射光方法, 观察其镜质体和丝质体含沥青煤的特性 — 利用落射荧光技术进行分析油母岩的分析 — 以透射光和落射紫外荧光方法百分比含量测定 — 用显微图像设备对样品进行相成分,得知其成分比例无定形材料的评估 — 显微镜下观察其古生物样品,研究其藻类和其植物部分煤岩组份族组成的判断 — 分析含沥青的煤和无烟煤显微岩相分析仪配件介绍在研究和分析煤的起源,形成和使用领域过程中,岩相分析被公认为 是非常重要的。在分析和测试单一煤样品过程中, 我们很容易得知煤的等级,煤岩组分,微石类型组成和矿物分布的重要信息。但对于一个混合煤的样品进行分析和测试, 则离不开对样品进行反射率分析和测试此一有力的方法,此一分析方法不仅可以得到煤样的化学性质,还可以区分不同混合类型的壳质组,丝质组和微惰性煤各部分 所占的比例。国际煤岩相学委员会(ICCP)已制定了相关的命名法和分析方法。在ISO/DIN标准第7404项中,比较了显微分光光度计测试和分析后得到的数据和标准样品的数据, 确认此分析方法的准确性。另一方面, 可同时结合热变指数(TAI)或孢色值(SPI)的测试方法, 可补充其它方面的实验数据。依据DIN/ISO标准进行数据采集处理的分析模式, 使用直方图表达被测量组分的含量和其它组分的相对含量。显微岩相分析仪对煤炭质量分析图样
  • 显微毛发分析仪配件
    显微毛发分析仪配件能够快速获取毛发和纤维的光谱数据,为司法鉴定和物证分析以及纤维材料研发提供有力帮助。显微毛发分析仪配件特点能够测量到毛发和纤维丝的透射光谱和明场和暗场反射光谱,在250-980nm 范围给出任意毛发位置的光谱,可以有效区分毛发的光谱,从而快速有效进行物证分析。
  • 油品分析显微镜配件
    油品分析显微镜配件是专业润滑油颗粒分析而设计的润滑油质量检测分析系统,具有动态颗粒粒径和形状分析功能,颗粒计数和颗粒形态参数获取功能,可用于区分伪劣或混合润滑油。油品分析显微镜配件功能分析检测流通池内的润滑油,探测出颗粒杂质,有效检测控制润滑油等油品质量。润滑油中的主要污染物是沉淀或不洁物结晶产生的颗粒,能够有效探测到润滑油内颗粒,评估润滑油质量品质。油品分析显微镜配件优势鉴别伪劣或混合润滑油具有独特优势,具有设计巧妙的油料采样系统,具有高精度介电常数探针的量筒,质量天平,管道,喂料池,流通池,液泵,废料池,油料流流通池时被采样,获得润滑油内的颗粒参数。油品分析显微镜配件特点欧盟顶级光学设计系统LED照明技术专业为颗粒计数而设计不同照明对比技术高达200万像素的显微成像相机高精度介电常数探针自动控制光强采集不同分辨率的图像和视频动态颗粒粒径和形状分析功能,颗粒计数和颗粒形态参数获取2D和3D颗粒分析

显微组织分析相关的仪器

  • 1、背景介绍随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。产品结构已经完成了“普转特、特转优、优转精”的战略转型,提供优质的铁水、钢水是对于生产的保障,而合理的原料供应是得以保障持续发展的必要条件。选矿是整个生产过程中最重要的环节,选矿工艺的合理制定也直接决定了后续的产品质量。Fe在矿石中的主要存在形式有磁铁矿、赤铁矿、褐铁矿、菱铁矿,对不同种类矿石的区分以及硬度、密度、湿度、解离度等方面的评估是制定后续的选矿工艺的理论基础。所以更好、更深入地了解铁矿资源而不仅仅局限于铁含量的检测非常重要,其不仅能够准确地评估铁矿价值、推断铁矿品质对下游工艺的影响,还能够优化生产工艺以节约成本提高产能。2、工作原理3、产品功能(1)识别并定量分析铁矿石矿相,从而评估铁矿价值,优化矿石处理工艺流程及预测铁矿品质对下游工艺的影响;(2)识别并定量分析烧结和球团矿矿相,研究烧结球团矿微观结构与性能的关系,优化配矿和烧结焙烧工艺,从而改善烧结矿品质降低配矿成本;(3)分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响。4、产品优势(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。与人工计点法相比,其评价的面积更大,精度更高,速度会有几十倍的提升。同时该系统配备的完善的数据库以及极高的自动化程度降低了对操作人员技术水平的要求,能够节约一部分人工成本。对于整个钢铁行业而言能够快速的推动选矿、配矿等工艺的发展,提高整个行业的发展水平。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。下图为四种具有不同类型组织结构特征的赤铁矿颗粒(从致密到多孔不等)。这些不同的组织结构使得它们在硬度、耐磨性和吸湿性等方面表现出差异,同时在粉碎、选矿造粒和烧结过程中也表现出不同特点。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。(5)H = 赤铁矿(假象赤铁矿),HH = 水赤铁矿,vG = 玻璃针铁矿,oG = 赭色针铁矿,K = 高岭石,P = 孔隙,E = 环氧树脂
    留言咨询
  • BD-17AT倒置金相显微镜 高倍显微镜 金相图像组织分析
    留言咨询
  • 美国NeuroIndx品牌显微镜升级为单细胞分选捕获和显微切割系统美国NeuroIndx品牌显微镜升级为单细胞分选捕获和显微切割系统分为Kuiqpick和 Unipick两个系统:一、Kuiqpick显微镜升级为单细胞分选捕获和显微切割系统Kuiqpick是第一款运用真空负压和毛细玻璃管进行单细胞捕获和显微切割系统仪器系统.可应用在已有Olympus CKX31/41和 Labomed TCM400 倒置显微镜上.典型应用:在显微镜观察下,快速从贴壁,悬浮和3D细胞培养采集单细胞或细胞团,和从组织采集特定区域的组织和细胞样品.采集的 细胞和组织可用于再培养,和提取高质量的蛋白质,DNA,和RNA等生物大分子,用于定量RT-PCR,全基因表达,表观遗传 学和蛋白质组学,和单细胞测序等分子生物学研究。系统亮点:1.进行精准单细胞采集捕获可以从常规细胞培养皿中和3D细胞培养上,根据细胞形态或者荧光标记来采集或的单细胞。所采集过程中对细胞没有伤害,因此,所采集到的细胞可以克隆再培养2.进行组织切片显微切割可以成功切割厚度自5微米至300微米的切片2.1)对微切割的样品要求不需要固定,可切割:新鲜冷冻组织、蔗糖处理的组织、新鲜活组织。2.2)样品采集过程不涉及化学,热,激光和辐射处理:对细胞影响很小,保证细胞的活性和完整性,所分离的组织或细胞可以提取高 质量的DNA,RNA和蛋白质,供下游研究使用 3.相对于激光辅助系统(LCM)KuiqPick有以下几个优点1)需要最少的样品前处理,可用于未经处理的新鲜冷冻脑组织2)可直接从细胞培养皿中收集目的细胞,收集到的活细胞,可用于下游克隆检测和单细胞分析,对细胞活力的影响很小3)KuiqPick非常容易使用4)KuiqPick价格和维护成本相对于激光辅助系统要低得多。其低廉的成本和灵活多样的功能,已经对传统高成本的激光显微切割系统市场形成有效的替代或补充,目前,已广泛应用于神经生物学,干细胞,癌症细胞生物学及单细胞分析等生命科学研究领域中。4.经济实用:可在已有Olympus CKX41和Labomed TCM400倒置显微镜上升级改造,无需重复购置显微镜5.细胞组织损伤小,不影响再培养6.专业的KuiqpicK软件辅助自动捕获和切割主要技术参数:真空泵负压力范围:0-588.8 毫米***柱真空持续时间范围: 0-1秒线性马达每次移动距离: 0.0015毫米线性马达最大移动距离:8.9毫米线性马达最大移动速度:0.35毫米/秒照明光源: 144 LED环形灯光源寿命:10000小时适用组织样品类型: 新鲜冷冻组织,新鲜活组织,蔗糖处理组织适用组织切片厚度范围: 5-300um适用细胞培养类型: 悬浮细胞培养,贴壁细胞培养,3D细胞培养可供采集毛细管内径大小:15/20/30/40/50/60/80/100um采集毛细管总长度: 4.2±0.2 cm配备软件和计算机:否湿度:30-80% (31°C时)温度:5-40°C适合的倒置为显微镜:LABOMED TCM 400和Olympus CKX411倒置显微镜和二、Uniqpick显微镜升级为单细胞分选捕获和显微切割系统UnipicK系统原理和KuipqicK原理类似,多了一些功能,可以更方便调节毛细管,更方便采集细胞。对细胞 培养,任何类型都没问题,对贴壁太牢胞外基质较多的,可以先部分消化,松动细胞。但对组织,只能采集柔软组织, 比如脑组织,对硬的韧的组织,比如肌肉组织,皮肤组织等不能采集。有些难采集组织,在消化液处理后也可以采集特定细胞 类型或组织。UnipicK系统可以安装在Olympus CKX41上,也可以购买通用支架,这样可以用在大部分倒置显微镜上。与Kuiqpick相比Unipick系统亮点:1.适用的显微镜更加广泛:Kuiqpick只能只适用于Olympus CKX41和Labomed TCM400倒置显微镜上,Unipick配有通用显微镜适配支架,可以在几乎 所有的倒置显微镜上升级2.工作路径更长,工作面积更大,可以筛选的目标细胞数量更多与Kuiqpick相比 ,Unipick工作路径更长,工作面积更大,可以筛选的目标细胞数量更多.操作更为精巧,独特的针 头返回设计(Retract function)可以适合不同种类的多孔细胞培养板、细胞培养平皿、细胞培养瓶。3.Unipick适用的倒置为显微镜:通用支架可以使unipick适合几乎任何的倒置显微镜
    留言咨询

显微组织分析相关的方案

显微组织分析相关的论坛

  • 【原创】金属材料组织分析方法-金相组织分析法-金相显微镜分析方法

    金属材料组织分析方法-金相组织分析法-金相显微镜分析方法金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。金相显微镜主要用于鉴定和分析金属内部结构组织,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,该仪器配用摄像装置,可摄取金相图谱,并对图谱进行测量分析,对图象进行编辑、输出、存储、管理等功能。 金相显微镜是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。 众所周知,合金的成分、热处理工艺、冷热加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。因此用金相显微镜来观察检验分析金属内部的组织结构是工业生产中的一种重要手段 。

  • 金相显微镜分析材料显微组织应注意的若干特性

    分析材料显微组织应注意的若干特性 金相显微镜光学金相组织呈板条状,为板条马氏组织,X-射线衍射物相分析及透射分析表明,淬火组织中还存在残余奥氏体,残余奥氏体主要存在于马氏体板条之间,用X射线法定量测试残余奥氏体含量为4.5%。淬火后低温回火处理可以提高马氏体板条间残余奥氏体的稳定性,改善材料的强韧性。另外,马氏体板条之间存在的奥氏体薄膜,是韧性相,金相显微镜在外力作用下会发生塑性变形和相变诱发塑性效应(TRIP效应,消耗能量,阻碍裂纹的扩展或使裂纹尖端钝化,获得较好强韧性配合。因此淬火回火后强度较高的同时,冲击韧度值也较高,这与淬火后形成的马氏体组织存在残余奥氏体有关。在实际金相分析研究中,适当注意材料显微组织的如下特点是很有好处的,尤其有助于实验方案设计的系统性和严谨性,以及减少对表观显微组织形态的误解和不合理分析的可能性。 1、材料显微组织结构的多尺度性:原子与分子层次,位错等晶体缺陷层次,晶粒显微组织层次,细观组织层次,宏观组织层次等; 2、材料显微镜组织结构的不均匀性:实际显微组织常常存在几何形态学上的不均匀性,化学成分的不均匀性,微观性能(如显微硬度、局部电化学位)的不均匀性等; 3、材料显微组织结构的方向性:包括晶粒形态各向异性,低倍组织的方向性,晶体学择尤取向,材料宏观性能的方向性等多种方向性,应予以分别分析和表征; 4、材料显微组织结构的多变性:化学组成改变,外界因素及时间变化引起相变和组织演变等均可能导致材料显微组织结构变化,从而,除需要对静态显微组织形态进行定性、定量分析外,应注意是否存在对固态相变过程、显微组织演变动力学和演变机理研究的必要; 5、材料显微组织结构可能具有的分形(fractal)特性和特定金相观测可能存在的分辨率依赖特性:可能导致其显微组织定量分析结果强烈依赖于图像分辨率,当进行材料断口表面组织形态进行定量分析以及对显微组织数字图像文件进行存储和处理时更应注意这一点; 6、材料显微组织结构非定量研究的局限性:虽然显微组织的定性研究有时尚可满足材料工程的需求,但材料科学分析研究总是还需要对显微组织几何形态的科学进行定量测定以及对所得定量分析结果的进行误差分析。

  • 金相显微镜分析材料显微组织应注意的若干特性

    金相显微镜分析材料显微组织应注意的若干特性: 金相显微镜光学金相组织呈板条状,为板条马氏组织,X-射线衍射物相分析及透射分析表明,淬火组织中还存在残余奥氏体,残余奥氏体主要存在于马氏体板条之间,用X射线法定量测试残余奥氏体含量为4.5%。淬火后低温回火处理可以提高马氏体板条间残余奥氏体的稳定性,改善材料的强韧性。另外,马氏体板条之间存在的奥氏体薄膜,是韧性相,金相显微镜在外力作用下会发生塑性变形和相变诱发塑性效应(TRIP效应,消耗能量,阻碍裂纹的扩展或使裂纹尖端钝化,获得较好强韧性配合。因此淬火回火后强度较高的同时,冲击韧度值也较高,这与淬火后形成的马氏体组织存在残余奥氏体有关。在实际金相分析研究中,适当注意材料显微组织的如下特点是很有好处的,尤其有助于实验方案设计的系统性和严谨性,以及减少对表观显微组织形态的误解和不合理分析的可能性。1、材料显微组织结构的多尺度性:原子与分子层次,位错等晶体缺陷层次,晶粒显微组织层次,细观组织层次,宏观组织层次等;2、材料显微镜组织结构的不均匀性:实际显微组织常常存在几何形态学上的不均匀性,化学成分的不均匀性,微观性能(如显微硬度、局部电化学位)的不均匀性等;3、材料显微组织结构的方向性:包括晶粒形态各向异性,低倍组织的方向性,晶体学择尤取向,材料宏观性能的方向性等多种方向性,应予以分别分析和表征;4、材料显微组织结构的多变性:化学组成改变,外界因素及时间变化引起相变和组织演变等均可能导致材料显微组织结构变化,从而,除需要对静态显微组织形态进行定性、定量分析外,应注意是否存在对固态相变过程、显微组织演变动力学和演变机理研究的必要;5、材料显微组织结构可能具有的分形(fractal)特性和特定金相观测可能存在的分辨率依赖特性:可能导致其显微组织定量分析结果强烈依赖于图像分辨率,当进行材料断口表面组织形态进行定量分析以及对显微组织数字图像文件进行存储和处理时更应注意这一点;6、材料显微组织结构非定量研究的局限性:虽然显微组织的定性研究有时尚可满足材料工程的需求,但材料科学分析研究总是还需要对显微组织几何形态的科学进行定量测定以及对所得定量分析结果的进行误差分析。

显微组织分析相关的资料

显微组织分析相关的资讯

  • 岛津成像质谱显微镜应用专题---酶组织化学分析
    镜质合璧 还原真实质谱成像应用于酶组织化学分析 摘要检测酶促反应通常通过底物和酶反应后的产物继续反应显色并测量吸光度来实现。现有的酶促反应检测方法既要求底物和酶之间的初级反应,又要求随后产生颜色的二级反应。一种新的酶促反应检测方法利用质谱技术无需进行二级反应即可直接检测初级反应产物。将这种方法用于组织表面分析,还可以对酶活性进行可视化分析。本文描述了使用高空间分辨率质谱成像系统iMScope进行酶组织化学分析的新应用。 引言酶在组织中的分布通常用免疫组织化学(IHC)方法来测定。虽然IHC能够可视化表征酶蛋白的位置,但无法区分活性酶和非活性酶。酶组织化学作为一种成熟的方法,能够可视化分析酶活性,这是无法通过IHC分析实现的1),2) 。酶组织化学依赖组织切片表面上发生的酶活性化学反应,以此识别酶活性及其强度。可视化分析通常将反应底物涂敷到组织切片,组织切片与内源酶发生反应,产物继续通过另一种反应显色。采用这种方法,每种显色反应对应一种化合物,因此,多化合物可视化分析需要进行多种显色反应。使用这种方法来可视化分析酶活性的分布通常并非是一种简单的将底物添加到组织切片的过程。作为替代常规酶组织化学显色反应步骤的一种方法,本研究考察了利用成像质谱(MSI)直接检测小鼠脑切片和整个果蝇切片中酶促反应产物的方法3) 。 实验本研究试图对野生型小鼠脑切片和整个野生型果蝇切片中乙酰胆碱酯酶(AChE)活性的分布进行可视化分析。AChE能够催化底物乙酰胆碱分解为胆碱和乙酸。因此,本研究将乙酰胆碱涂敷到组织样本的表面,并检测其降解产物胆碱并评价酶活性。为与内源性胆碱进行区分,将氘标记的乙酰胆碱-d9(ACh-d9)作为底物,并检测胆碱-d9(Choline-d9)(图1)。利用喷枪将底物手动涂敷至组织切片表面。图1 MSI法酶组织化学原理将标记后的底物涂敷于样本表面,利用质谱检测酶促反应产物,并进行可视化分析。 本研究同时考察了进行半定量分析的反应时间和方法。 将α-氰基-4-羟基肉桂酸(α-CHCA,Sigma-Aldrich)作为基质,通过两步法4) 进行基质涂敷,该方法结合了基于iMLayer基质升华仪(图2)的升华法和手动涂敷α-CHCA溶液的喷雾法。 使用iMScope成像质谱显微镜(图3)进行MSI检测,并使用IMAGEREVEA MS质谱成像分析软件进行数据分析(图4)。iMScope实验参数如表1所示。 图4 IMAGEREVEA MS质谱成像数据分析软件 表1 MSI分析参数结果与讨论图 5:转化率公式和酶活性公式 图6(A) 样本组织表面底物转化比例与酶反应时间关系以底物涂敷时间为0分钟,结果显示所有乙酰胆碱-d9(底物)在5分钟内转化为胆碱-d9。(B) 乙酰胆碱酯酶活性在小鼠脑组织中比较MSI结合HE染色分析结果显示,酶活性在纹状体(CPu)、海马体(HP)和下丘脑(TH)中较高,而在胼胝体(CC)和小脑皮质(CBX)中较低。(C, D) HE染色和高空间分辨率成像分析小鼠海马体酶活性显示CA3区中酶活性较高。标尺:1mm 根据图5(1)中的公式计算底物转化率并绘制转化率与反应时间的关系图表明,乙酰胆碱-d9在涂敷于样品表面后迅速开始分解为胆碱-d9,并且在5分钟内转化停止并耗尽乙酰胆碱-d9(图6A)。因此,5分钟是用以测量酶活性的足够的反应时间。由于组织定位相关的生物基质效应会给半定量分析带来影响,图5(2)中的公式被认为是一种标准化方法用以校正乙酰胆碱-d9和胆碱-d9的离子化效率。 使用IMAGEREVEAL MS质谱成像数据分析软件提取m/z 155.17乙酰胆碱-d9和m/z 113.16胆碱-d9的质谱图像。利用IMAGEREVEAL MS中提供的四则运算方法,根据公式(2)计算胆碱酯酶活性分布的图像(图6B和图6D)。这些图像显示纹状体(CPu)、海马(HP)和下丘脑(TH)的AChE活性较高,而胼胝体(CC)和小脑皮质(CBX)的AChE活性较低(图6B)。 这些结果与传统酶组织化学方法高度匹配,证明该技术的可靠性。iMScope的高空间分辨率质谱成像还用于可视化分析大脑海马区的酶活性(图6C、6D)。 由于哺乳动物除AChE外还产生丁酰胆碱酯酶(BuChE),因此尝试对不同胆碱酯酶的活性分布进行可视化研究。BuChE将乙酰胆碱和各种其他胆碱酯转化为胆碱。将底物乙酰胆碱与四异丙基焦磷酸酰胺(iso-OMPA,一种BuChE抑制剂)一起涂敷于样品表面,利用MSI观察AChE活性的特异性分布。针对BuChE活性的特异性分布,也通过在一系列组织切片涂敷底物乙酰胆碱和AChE活性抑制剂加兰他敏(galantamine)进行研究。这些实验表明,在不含任何抑制剂样本的胼胝体(CC)中酶活性,在很大程度上被iso-OMPA抑制,这表明胼胝体中的大部分胆碱酯酶活性是由BuChE引起的(图7A)。图7使用抑制剂后在小鼠脑切片中可视化观察酶活性,以及整个果蝇切片中胆碱酯酶活性分布的MSI(A) 使用抑制剂后可视化观察酶活性Iso-OMPA抑制丁酰胆碱酯酶活性实现特异性检测乙酰胆碱酯酶活性加兰他敏抑制乙酰胆碱酯酶活性实现特异性检测丁酰胆碱酯酶活性(B) 果蝇中胆碱酯酶活性的分布尽管果蝇属于不同的门类,但该方法同样适用,并揭示了大脑和胸腹区的酶活性。尤其是在胸腹区,检测到了可溶性酶活性,表明该方法可提供常规酶组织化学难以获得的结果。 因此,将标记稳定同位素的底物与抑制剂一同涂敷于组织样本表面是一种更精确的酶组织化学研究方法。 本方法甚至可以用于果蝇(一种不同门的动物)的研究。如图7B所示,ChE活性在整个果蝇中分布不均匀,在大脑中ChE活性极高,在胸腹区ChE活性也较高。果蝇头部具有极高酶活性的结果与先前报告一致5),表明活性来自中枢神经系统中头神经节的胆碱能神经中的AChE。相比之下,胸腹区的ChE活性很可能不是由中枢神经系统中的AChE引起的。报告显示除中枢神经系统外,血液淋巴中也存在AChE6),并且Zador等人观察到可溶性AchE的存在,其结构与神经系统中的膜结合AChE不同7)。胸腹区的AChE活性与以往报告一致,证明本方法可有效进行ChE活性定位的研究。 结论本文描述了一种基于MSI进行酶组织化学的新方法,结果显示MSI无需显色反应即可获得酶活性的半定量分布结果。该方法同时还被用于果蝇切片分析,可有效可视化分析膜结合AChE和可溶性AChE的活性。尤其是可溶性酶活性的分布难以通过传统方法获得,这显示了本方法的优越性。对于其他酶(不仅包括水解酶,还包括转移酶),我们还将开发更多的可视化分析方法。 致谢诚挚感谢京都工业大学应用生物科学系染色体工程实验室的Masamitsu Yamaguchi教授提供果蝇样本。 参考文献1.Takamatsu, H. Histochemische Untersuchungen der Phosphatase und deren Verteilung in verschiedenen Organen und Geweben. Trans. Soc. Path. Japan 29, 429 (1939)2.Gomori, G. Microtechnical demonstration of phosphatase in tissue sections. Proceedings of the Society for Experimental Biology and Medicine 42, 23 (1939)3.Takeo E, Fukusaki E, Shimma S. A mass spectrometric enzyme histochemistry method developed for visualizing in situ cholinesterase activity in Mus musculus and Drosophila melanogaster. Anal. Chem. 92, 12379 (2020)4.Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization efficiency. J Mass Spectrom. 48, 1285 (2013)5.Toutant, J. P., Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol. 32, 423 (1989)6.Chadwick, L. E., Actions on Insects and Other Invertebrates. In Cholinesterases and Anticholinesterase Agents, Koelle, G. B., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 1963 pp 741-798.7.Zador, E., Tissue specific expression of the acetylcholinesterase gene in Drosophila melanogaster. Mol Gen Genet. 218, 487 (1989) 文献题目《质谱成像应用于酶组织化学分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma1,2,3;Emi Takeo1;Kaoru Nakagawa;Takushi Yamamoto;Eiichiro Fukusaki1,2,31 大阪大学工学研究生院生物技术系2 大阪大学Shimadzu Omics 创新研究实验室3 大阪大学开放与跨学科研究倡议研究所
  • 生物组织红外成像的全新手段——荧光引导光学光热红外显微光谱
    红外显微光谱法是非破坏性、结构敏感的检测方法,目前已在基于分子结构的单细胞领域的研究中发挥重大作用,诸如蛋白构象改变、氧化还原、脂质体的产生与降解等。但是受制于红外光谱仪本身的限制,对于生物组织样品来说制样非常困难,因此极大的限制了红外光谱在生物医学方面的应用。O-PTIR (Optical Photothermal Infrared) 光学光热红外光谱是一种快速简单的非接触式光学技术,通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,克服了传统IR衍射的极限,空间分辨率可达500 nm。近期,美国PSC公司又推出了非接触亚微米分辨荧光红外拉曼同步测量系统mIRage-LS,将O-PTIR技术与荧光(FL)进一步有机结合,利用落射荧光快速定位 O-PTIR 测量的区域,提供了对样品荧光标记区域以及邻近未标记组织的化学结构的快速光谱分析。图 1. FL-OPTIR 显微镜基本原理和观测方法这项全新的技术对样品要求非常低,而红外光谱的空间分辨率可达亚微米级别,为红外光谱在生物医学方面的应用提供了全新的视角。比如在阿尔茨海默病 (AD) 研究方面,AD的关键病理特征是淀粉样蛋白折叠,这些 β-折叠结构具有特定的振动特征,对于红外光谱来说十分敏感,但是受制于传统红外光谱仪本身的限制,在生物组织样品上直接测量非常困难。而非接触式的FL-PTIR技术却能够很好适用于这些样品,并且已经有多个小组通过实验证明了FL-PTIR能够应用于具有特殊化学敏感性的活细胞成像研究。Craig Prater等人通过这项技术成功实现了荧光定位下的OPTIR红外观测,并且完成了对组织中单个病理结构内的 β-折叠结构进行结构分析、在脑组织的特定细胞和培养的原代神经元分析。首先,作者使用了12个月周龄的 APP/PS1 转基因小鼠的大脑切片,用淀粉样蛋白特异性发光共轭聚电解质探针mytracker R(Ebba Biotech,Solna,Sweden)进行标记,并用OPTIR进行观测β 折叠结构的分布。相比于传统红外很难定位的问题,FL-OPTIR通过宽场荧光能够快速定位淀粉样蛋白斑块。并直接在脑组织中评估其在单个斑块中的结构。通过 k 均值聚类方法对其进行分析,清楚地显示了在 1630 cm–1处具有高振幅和低振幅的两组光谱的存在,并且具有 1630 cm–1高振幅的光谱清楚地与荧光信号共定位。光谱分析表明 Amytracker 没有对酰胺 I 和 II 区域有明显的吸收,因此表明 Amytracker 可用于 OPTIR 测量的荧光引导。图 2. FL-OPTIR 对脑组织中的淀粉样斑块进行成像荧光和红外图谱和热图的展示。 在第二个实验中,作者提供了一个概念性方法验证实验,证明 FL-OPTIR 可用于研究组织中的特定细胞类型,而这对传统红外显微光谱法来说十分具有挑战性。为此作者对脑组织中与淀粉样斑块相关的小胶质细胞进行成像,以评估它们的光谱特征,从而了解小胶质细胞是否可以将 Aβ 原纤维转化为单体的问题。这个实验使用 Aβ 特异性抗体 82E1 标记的 16 μm 组织切片,并用抗体 Iba1 对小胶质细胞进行了免疫标记。通过FL-OPTIR可以定位淀粉样斑块附近的小神经胶质细胞并测量 OPTIR 光谱。通过测量,发现 82E1 阳性小胶质细胞表现出β-折叠含量升高,表明小胶质细胞与 Aβ 原纤维相关。图 3. 脑组织中淀粉样斑块周围小胶质细胞的成像。 在第三个实验中,作者研究了 FL-OPTIR 在培养的原代神经元中 Aβ结构成像的适用性。与组织研究类似,淀粉样蛋白的结构异质性使得研究神经毒性与 Aβ 结构之间的关系仍具有挑战性。因此,为了直接评估神经元中的淀粉样蛋白结构,作者使用FL-OPTIR技术基于荧光信号引导的光谱测量,发现远端比近端神经突部分(分支后)相关的 Aβ 包含更多的 Aβ-聚集体, 作者认为这些神经元隔室可能本质上更容易结合 Aβ或者能够主动运输到远端。图 4. 初级神经元中 Aβ (1–42) 的结构成像。 总结:新型成像方法FL-OPTIR 结合了荧光成像和红外光谱来描述生物组织内的结构变化。能够针对复杂系统中的特定细胞、细胞器和分子进行分析和检测,解决了生物标本中红外光谱定位困难的问题。能够直接在组织中定位和分析淀粉样蛋白和相关的小胶质细胞,这可以解决局部环境在 AD 进展中的作用,帮助识别与淀粉样斑块相关的小胶质细胞,并在亚细胞水平上直接研究小胶质细胞中的纤维结构。为复杂样品中的蛋白质和细胞进行红外光谱分析提供了新的测量方法,为红外在生物领域的应用提供更加便捷实验途径。 作为美国PSC公司在中国的独家代理,Quantum Design中国于2020年将非接触亚微米分辨红外拉曼同步测量系统—mIRage系统引入国内,助力中国科研工作者取得一个又一个重大突破: 国内经典案例分享:南京大学环境学院借助mIRage建立了一种新型的塑料表面亚微米尺度化学变化表征方法。该工作发表在知名期刊Nature Nanotechnology上。 中国农业大学借助mIRage成功实现对玉米粉中痕量微塑料的原位可视化表征。该工作发表在Science of the Total Environment上。为满足国内日益增长的生物红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了荧光引导光学光热红外显微光谱,为您提供样品测试、样机体验等机会,期待与您的合作!
  • 让诊断不再需要活检 —高速3D显微镜可实时观察活组织细胞
    美国哥伦比亚大学工程团队开发了一种技术,可实现活体内的实时成像并取代传统的活检。在28日的《自然生物医学工程》上发表的一篇论文中,研究人员描述了一种高速3D显微镜MediSCAPE,其能捕获组织结构的图像,以指导外科医生定位肿瘤及其边界,而无需活体取样分析病理结果。哥伦比亚大学生物医学工程和放射学教授、该研究的资深作者伊丽莎白希尔曼称,活检需要从体内切取小块组织,然后用简单的显微镜观察,因此可能需要几天时间才能得到诊断结果。希尔曼团队希望能直接捕获组织图像而不用切出样本。“这种技术可以让医生实时反馈他们正在查看的组织类型,无需长时间等待。”她解释道,这将让医生就如何最好地切除肿瘤并确保没有留下任何东西做出明智的决定。此外,对于珍贵的组织,如大脑、脊髓、神经、眼睛和面部等,切取组织还可能错过重要的疾病区域。希尔曼一直在开发用于神经科学研究的新型显微镜,这些显微镜可非常快速地捕捉活体样本的3D图像。此次,该团队通过观察小鼠肾脏对他们的显微镜进行了测试。他们观察到的结构很像标准组织学所得到的结构。最重要的是,过程中并没有添加任何染料。研究人员看到的一切都是组织中的自然荧光,而这些荧光通常太弱而无法看到。即使研究人员以足够快的速度进行整体3D成像,实时漫游,扫描组织的不同区域,MediSCAPE也能非常高效地显示出这些微弱的信号。研究人员甚至可将获得的体积拼接在一起,并将数据转化为组织的大型3D展示,这样病理学家就可像一整盒组织学幻灯片一样使用它。该团队展示了MediSCAPE在广泛应用中的强大功能,从分析小鼠胰腺癌到对人体移植器官(如肾脏)的非破坏性快速评估。研究人员认为,通过对体内的活组织进行成像,可获得比无生命的活检样本更多的信息。他们发现,实际上可看到通过组织的血流,并看到缺血和再灌注的细胞水平效应(切断肾脏的血液供应,然后让它回流)。该团队的最后一个关键步骤是将希尔曼实验室中标准SCAPE显微镜的大尺寸缩小为适合手术室并可供外科医生在人体中使用的系统。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制