示踪粒子轨迹

仪器信息网示踪粒子轨迹专题为您整合示踪粒子轨迹相关的最新文章,在示踪粒子轨迹专题,您不仅可以免费浏览示踪粒子轨迹的资讯, 同时您还可以浏览示踪粒子轨迹的相关资料、解决方案,参与社区示踪粒子轨迹话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

示踪粒子轨迹相关的耗材

  • 粒子探测器配件
    粒子探测器配件是全球领先的粒子追踪探测器和粒子追迹探测器,它基于Medipix2/Timepix technology技术的像素探测器,它能够实现零背景噪音成像。 粒子探测器配件数字化单光子计数入射光子或粒子,直接转换成可探测的电信号被进一步处理,这种技术不仅实现零噪音成像,而且实现超高亮度和锐度的图像,非常适合粒子追踪和辐射监测,单光子计数等应用,能够识别3-5keV的辐射粒子或光子。不仅可以识别当个粒子,并且可以区分不同的粒子。 单光子计数模式:当个像素每秒记录高达100000光子数(100000cps).整个探测器的计数能力高达65亿cps,而且能量阈值可以设定。 能量模式(TOT):每个像素测量单个光子能量,非常适合全谱X射线成像和辐射监测,不仅可以对辐射粒子的轨迹成像,还可以测量粒子能量,非常适合辐射监测,因为粒子轨迹的形状对于不同辐射类型而言是独特的,这种技术也颠覆了现在辐射监测的方法。 到达时间模式(TOA)单个像素计算入射时间,非常适合辐射粒子追踪和时间飞行测量。 粒子探测器配件特点 高对比度 高动态范围 无噪音 实时监测 256x256像素单光子计数阵列 传感器面积14.1x14.1mm^2 单个像素55um超大面积 天文学,粒子物理,医学成像,光谱成像,粒子追踪,电子显微镜,无损检测,质谱学,X射线成像,X射线衍射,X射线荧光光谱。
  • 用于粒子成像测速(PIV)的荧光示踪粒子
    技术指标参数(PDF) 技术手册(PDF)FLUOSTAR荧光颗粒FLUOSTAR 一种封装若丹明B荧光染料微球, 专门优化用于粒子成像测速(PIV)的示踪颗粒 本公司的的FLUOSTAR高分子聚合物微球内部封装了若丹明B荧光染料,在绿色激光如(Nd:YAG,和Nd:YLF)照射下会发出橙色荧光.FLUOSTAR微球具有很高的荧光发射效率,特别适合粒子成像测速(PIV)应用.即使在功率仅有5毫瓦的激光指示笔的照射下,也可观察到微球发射的强烈橙色荧光!!! 最佳应用:单相液体流动多相流工业大尺度流动近壁面边界层流动微尺度流动立体PIV 应用备注:?? 硅树脂制成的脑血管模型内部近壁面流动采用FLUOSTAR荧光示踪粒子 采用普通示踪粒子ticles产品优势???超高荧光亮度适用于工业化大体积测试需求干粉颗粒良好的水溶液分散性良好的水溶液稳定性产品特色中等尺寸分散性均有球体形态光致漂白效应极低极少染料泄漏无膨胀收缩现象优良的机械稳定性指标参数基底材料羧基改性丙烯酸树脂折射率1.560(高分子)适用温度上限最高耐受100摄氏度(高分子 )荧光染料若丹明B(激发波长550nm/荧光发射波长580nm)密度1.1 g/cm3直径15微米(均匀分布球形)尺寸均匀性不超过20% C.V.有效期不短于24个月贮存干燥室温下密封贮存操作注意事项 推荐采用呼吸保护装置和手套?单瓶容量1, 5, 10, 50 g
  • 美国TSI 9306 AeroTrak 手持式粒子计数器
    美国TSI 9306 AeroTrak 手持式粒子计数器,产品详情,办事处,代理TSI AeroTrak? 9306 型手持式粒子计数器向对多功能手持式粒子污染监测感兴趣的客户提供了最多的功能和最大的灵活性。9306 型的特点是采用配有拇指控制按钮的人体工程学手柄,便于单手操作。3.6 英寸(9.1 厘米)彩色触摸屏界面使之易于配置和操作。9306 型可生成 ISO 14644-1、欧盟 GMP 附录 1及 FS209E 符合性报告。内存可存储多达一万个粒子计数数据的样本报告,并且可方便地在屏幕上查看、使用 TrakPro? LITE 软件下载或直接使用可选外部打印机打印报告。美国TSI 9306 AeroTrak 手持式粒子计数器,特点和优势,操作规格符合 ISO 21501-4 标准中所有要求0.3 至 25 μm 粒径范围0.1 CFM (2.83 L/min) 流速可同时检测多达六个通道的粒子数据9306-V2 型提供独特的通道粒径可调功能综合手柄,适于单手操作可拆解、可充电锂离子电池长寿命激光二极管USB 和以太网输出一万个样本记录存储,250 个位置通过 Web 浏览器进行本地或远程配置可生成 ISO 14644-1、欧盟 GMP 和 FS209E 符合性报告兼容 TrakPro? Lite 和 FMS 5 软件包提供可选温度/相对湿度 (RH) 传感器美国TSI 9306 AeroTrak 手持式粒子计数器,特点和优势,应用范围向下追踪粒子污染源分类无尘区查找过滤器泄漏进行 IAQ 调研

示踪粒子轨迹相关的仪器

  • 基于网页的定量成像分析软件,可在相差显微镜中自动跟踪非标记细胞趋化性试验。您只需上传数据到图像分析平台,结果将通过电子邮件即时发送给您。 产品特点:1.全面解决细胞趋化性实验-从样品准备到成像分析仅需几步;2.客观性和可重复性实验分析;3.简单快速的数据处理-几分钟出结果;4.不需要额外的硬件和软件;5.两种模式可选:细胞追踪和细菌追踪。 应用:1.2D细胞趋化性实验定量分析;2.细菌趋化性实验定量分析;3.细胞趋化性和迁移实验成像分析和数据处理。 趋化性成像分析是肿瘤相关研究领域中的一个关键部分,手工采集和评估细胞迁移即耗时又缺乏客观性。Wimasis是ibidi公司的合作伙伴用于定量成像分析,开发出的趋化性和迁移分析软件不需额外的硬件和软件,即可快速获得结果。WimTaxis有两种模式可选:WimTaxis-细胞追踪 和 WimTaxis-细菌追踪,可以快速、精确地检测细胞或细菌的趋化性迁移,并提供它们的轨迹视频。 数据分析结果包括:1.细胞追踪定位动画显示;2.迁移效率(水平和垂直方向);3.细胞追踪轨迹视频;4.踪迹和质心统计 从样品准备到实验结果分析仅需4步:货号产品名称规格(个/盒)30003细胞趋化追踪轨迹分析单张,或1000张
    留言咨询
  • FlowMaster 4D-PTV / 抖盒子(Shake-the-Box)简称STB抖盒子(Shake-the-Box)是一种最为先进的3D拉格朗日粒子跟踪测速(PTV)方法,可对注入了高浓度示踪颗粒流体进行高空间分辨流场测量。和基于体像素的层析(Tomo)-PIV方法不同,抖盒子方法是一种纯粹针对个别粒子行为,采用粒子迭代重构(IPR)结合先进的4D-PTV算法,利用粒子位置随时间演化信息,重构粒子运行轨迹。和与其对应的时间分辨层析PIV方法相比,抖盒子(Shake-the-Box)方法能够以快的多的速度实现更高的重构精度。除了所用软件模块不同之外,Flowmaster产品序列中,时间分辨层析PIV和抖盒子(Shake-the-Box)系统,所用的硬件是相同的。
    留言咨询
  • 动物行为 动物行为分析系统体 动物运动轨迹跟踪系统产品介绍:运动轨迹跟踪系统是自动跟踪和分析动物运动、活动和行为的高级视频解决方案。但是,它远不只是跟踪软件,动物运动轨迹跟踪系统更是一个平台,在这个平台上,你可以全自动地进行研究,减少人为失误从而提高工作效率。产品优势: 中英文可选操作界面,全套中文操作手册及视频教程。 简易的工作流程,自动检测追踪动物。 完整可视化编程控制,自动批处理分析。 通过自动化您的实验可以节约时间并减少人为错误。 模块化系统,方法允许你建立符合需要的解决方案,为研究带来诸多好处。 在不同环境条件下都能够可靠地跟踪动物的运动轨迹,多种检测方法确保跟踪精度,例如更换实验场地,照明不均匀或跟踪多色动物都不影响跟踪结果。 能够在任何类型的观察区,围场或迷宫内跟踪动物。 同时跟踪多达100个观察区的多只动物,增加实验通量。 在1个观察区对两只或两只以上的动物进行社会行为实验。 简单的可视化分组筛选,组分析统计及图表,轨迹图及热区图,丰富您的报告。 控制跟踪动物的时间和地点,既可以实时跟踪也可以导入视频跟踪。模块化设计满足不同客户的需求:(1) 多观察区模块 (MAM)(2) 多体位点模块 (MBPM)(3) 行为自动识别模块(BRM)(4) 社会交互模块 (SIM)(5) 试验和硬件控制模块(THCM)(6) 外部数据模块 (EDM) (7) 质量保证模块 (QAM)(8) 3D模块(3DM)产品应用: 常规宫体试验如水迷宫试验、高架十字迷宫试验、旷场试验、放射迷宫试验、强迫游泳试验、悬尾试验、社会交互试验等。 斑马鱼幼鱼及成鱼相关行为轨迹试验。 鼠类家居行为活动观测箱,精细行为识别及生物节律研究。 鱼类及飞行昆虫空间行为轨迹试验。
    留言咨询

示踪粒子轨迹相关的试剂

示踪粒子轨迹相关的方案

示踪粒子轨迹相关的论坛

  • 带电粒子在四极杆内的运动轨迹

    正弦或余弦驱动四极杆滤质器的理论离子的运动方程按照理论计算可知,在数字化四极杆滤质器的各工作参数保持不变的情况下,质量数为1271和624的离子在x轴上轨迹稳定,在y轴上轨迹不稳定;质量数为578的离子在x轴和y轴上都有稳定的轨迹;质量数为565和529的离子则在轴上有稳定轨迹,在yx轴上轨迹不稳定。 离子的受力分析设相邻极杆间电势差为02φ,其中0cosUVtφω=u数字化四极杆滤质器的理论计算令(cosekUVr ωω=−,ux其中()(kTk ξξ+=ua,若为正值时,离子在kx方向上所受到的力就是回复力,即离子在x方向上的运动就可以看做是简谐振动,而在y方向上所受到的力却是随着位移的增加而增加,所以是振幅逐渐增加的振动。若这与之前的分析完全吻合。k为负值时,离子在x方向上的运动就是振幅逐渐增加的振动,而此时y方向上离子的运动则是简谐振动。由于0φ是交流电势,因此值交替正负,这样就将离子的轨迹束缚在“稳定”状态。通过不断的改变k值,而使得离子在x方向和y方向上不断的交替进行简谐振动,使得离子能够在xy平面内具有稳定的轨迹。在四极杆工作时在其电极上施加射频电压和直流电压以形成随时间变化的四极场。离子在该电场中的运动轨迹稳定性会因质量数的不同而不同,因此可根据轨迹稳定性的不同分离离子。然而迄今为止,质谱仪的电源驱动信号都是正弦或余弦波周期信号。这就使得通常各种四极质谱仪中都有一个高频振荡器,用于产生高频电压,由于电压幅值正比于被分析离子的质量数,因此在分析大质量数的离子时,常需要提供几千甚至上万伏的高频高压。这不仅增加了电路的复杂性(例如大电压下谐振点飘移问题),也可能导致器件内的放电问题,这样就对真空度提出了更高的要求以避免产生放电现象。分析四极场的特征可知利用电势变化频率实现质量分析可以降低高频电压的要求。然而正如前面所提,传统四极质谱仪上的高频高压是通过谐振网络得到的,因此很难实现利用频率变化进行质量分析。其实,驱动四极质谱仪工作并不一定是正弦或余弦波周期。E.Sheretov很早就提出脉冲射频电压驱动双曲场质谱仪的理论。现今数字技术的发展推动了分析仪器的数字化。数字化电压简单地说即为矩形波电压来驱动四极杆滤质器。这样以来,在软件的控制下,频率和波形可独立调节,使得实现频率扫描,避免了电压过高带来的种种弊端。而且它能够允许波形延时或暂停,可灵活地对离子进行控制(如引入、引出离子),所以数字化四极杆滤质器具有传统正弦波驱动时无法实现地优越性。在此基础上介绍正弦或余弦波驱动四极杆滤质器的理论计算,包括离子运动轨迹、稳定曲线和稳定图以及质量扫描图。最后是本章将着重阐述矩形波驱动四极杆滤质器的理论计算,以证明矩形波不仅能够完全代替正弦或余弦波驱动四极杆实现滤质功能,而且还能够实现正弦或余弦波所不能实现的频率扫描。 四极场理论 离子的空间束缚场首先考虑怎样才能将一个带电离子动态束缚在一个有限的空间内。一个类似的物理原型给出了提示。这个物理原型就是简谐振动,最为简单的就是弹簧振子。小球所受到的回复力使得它在一维空间上的一段有限距离内往复做周期振动。其回复力的数学表达式如所示: K=KX从公式能定性的看出,小球所受到的回复力总是和它的位移方向相反。因此小球的运动始终被回复力提供的力场束缚在一个有限距离的空间内。这也就给出了一个方向寻找将电离子束缚在有限空间内的场。随时间变化的四极场实现了这一功能。理想的随时间变化的四极场能将带电离子束缚在一个有限的空间内[ 四极场的数学形式四极场可以表示成它在笛卡尔坐标系中位置的线性组合形式值得注意的是,该场在0Ex,y和三个方向上不相关。这使得离子运动分析变得简单,因此四极场还可以用公式表示根据xExφ∂=−∂、yEyφ∂=−∂和zEzφ∂=−∂

示踪粒子轨迹相关的资料

示踪粒子轨迹相关的资讯

  • 城市环境所在单细胞拉曼追踪细菌抗性进化轨迹研究中取得进展
    抗生素抗性的频繁出现对现代医学提出挑战。探讨抗性的进化过程对遏制其全球传播至关重要。抗性进化过程涉及高度复杂的表型异质性响应。在抗生素处理下,基因完全相同的微生物菌群中会出现小部分可耐受抗生素的细胞亚群。该存活的亚群在抗生素存在时不能生长,但在去除抗生素后可恢复生长,造成长期复发性感染,也是后续发生抗性基因突变的关键储库。然而,由于耐受亚群的复杂异质性响应且生长停滞,从大量细菌群体中识别耐受亚群并追踪其生理进化轨迹仍是挑战。 近日,中国科学院城市环境研究所朱永官院士团队与崔丽研究组在《德国应用化学》上,发表了题为An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance的研究论文。该研究通过发展单细胞拉曼-氘标同位素-多元统计分析等多种技术联用的方法,在单细胞的高精度水平原位解析了细菌响应的异质性,并从大量细菌群体中灵敏识别出表型亚群的分化及动态变化,实现了抗性突变前细菌表型生理轨迹的快速原位追踪,为遏制抗性进化提供重要指导。 该研究将细菌多次循环暴露于临床治疗剂量的抗生素,进化出抗生素抗性。研究利用重水标记的单细胞拉曼光谱以不依赖培养的方式,检测进化过程中细菌的原位活性。结果发现,在未发生抗性突变的情况下,细菌在抗生素压力下的活性随处理循环逐渐增加,说明其表型耐受性逐渐提高。进一步,研究利用UMAP多元统计算法对所有进化阶段的上千个细菌的单细胞拉曼指纹区间进行分析。根据拉曼指纹指示的细菌表型生理响应,从初始基因型完全相同的细菌群体中,研究识别出随抗性进化发生分化的四个表型亚群,即敏感菌群、原生耐受菌、进化耐受菌和进化抗性菌,并灵敏捕捉到四个亚群随进化过程的动态变化。至此,基于单细胞拉曼所揭示的细菌原位表型异质性响应,科研人员绘制出抗性进化的生理轨迹图。细菌全基因组测序对所揭示的表型进行交互验证,并解析了表型产生的遗传基础。表型分化对维持整个菌群的生存和进化至关重要。由于表型分化远早于抗性突变,识别表型分化对指导临床用药以及减少抗生素耐受性和抗性突变的发生具有重要意义。研究利用明显区分的四个亚群的拉曼图谱,挖掘出耐受性和抗性突变的拉曼标记峰,促进了抗性进化不同阶段尤其是表型耐受性的快速精准识别。 该单细胞分析平台可以拓展到更广泛的抗生素或非抗生素化学品诱导的抗性进化研究。未来可以将该单细胞拉曼与靶向单细胞分选和多组学技术联用,实现耐受性和抗性表型与基因型的精确关联,促进进一步阐释进化机制。研究工作得到中科院“从0到1”原始创新项目、国家自然科学基金创新研究群体项目、福建省自然科学基金等的支持。 单细胞拉曼-同位素标记-多元统计分析追踪细菌抗生素抗性进化的轨迹
  • 《自然》杂志分析中国科研轨迹 近三年中国论文发表数全球第二
    英国《自然》杂志23日推出中国特辑,用大量的数字、图表、评论和分析文章为读者描绘了中国科研的现状和近年来迅速发展的轨迹。  中国国家自然科学基金委员会主任杨卫在该特辑题为《加强中国基础研究》的评论中表示,中国必须提高基础研究质量,正确看待科研诚信问题。  杨卫称,中国科学进步巨大,但是影响力依然不高。相比法国24%,美国18%,日本12%的在基础研究上的投入,中国的投入仅占研发总预算的5%。他表示,除加大投入外,还需提升基础研究的质量标准,采用更适当的指标追踪进度,评估成果。除论文发表数量外,还要注重引用量,推动重大科学问题上的突破。  杨卫坦言,中国依然存在不少科研不端行为。对此,必须在态度上做出改变,要从掩盖转变为揭露。同时,还要推动科研机构改革,将行政权力和学术权力分离开来,避免产生腐败。  在另一篇评论文章中,日本理化研究所发育生物学研究中心干细胞政策研究员道格拉斯赛普和中国科学院广州生物医药与健康研究院院长裴端卿表示,与普遍的看法不同,中国在伦理敏感的生命科学领域的管理经验值得世界借鉴。  随着中国逐渐在全球创新中获得领先地位,许多国家开始看重中国的科研力量。《自然》杂志数据显示,2012年至2015年间,中国的科研论文发表数量增加了一倍,排名世界第二,仅次于美国。中国科学院在世界优秀科研机构排行榜中排名第一,超过了哈佛大学和法国国家科研中心。上月英国广播公司在进入多个中国顶尖实验室和科研场所,采访大批一线科研人员后,推出了一篇名为《中国的科学革命》的文章,详细介绍了中国在天文观测、生命科学、中微子探测、深海科考和航天五大领域的最新进展。文章末尾写道:“世界拭目以待,中国的科学革命下一步将走向何方 中国是否能够完成向世界科学强国的转型。”
  • 从仪器研制与改造看生命科学行进轨迹
    阅读生命:从单项尖端技术走向系统集成 科学时报:从仪器研制与改造看生命科学行进轨迹   基因技术的突破使生命科学发展进入了知识爆炸时代,许多新概念和新技术让人眼花缭乱。几年前人们听到的是“基因组”、“蛋白质组”、“生物工程”等名词,现在科学家在谈论“生命模块”、“人工电路基因”、“纳米粒子智能导弹”……生命科学究竟沿着怎样的路线在前进?带着这个问题,记者最近走进了中科院生物物理所几个实验室。   “联通”产效率   2009年最后一个月的最后几天里,一个类似齿轮的灰色金属圆形物,摆放在中科院生物物理所研究员杨福全办公室的茶几上。这是他自己设计、委托企业加工完成的一件最新“作品”,工厂送来刚拆封,等着他验收。   “这是我新研制的逆流色谱仪的核心部分—— 一种新型逆流色谱柱。我准备把它用于膜蛋白质的富集和亚细胞器的分离,进而用于膜蛋白质组学研究。”巧遇《科学时报》请他谈生物技术目前的发展态势,他顺便告诉记者。   “国际上目前有这样的仪器吗?”记者问。   “还没有,不过这个现在还需要保密。我还是给你看看另外一样东西。”   说话间,杨福全从柜子里拿出一个已经组装好的“作品”。“这是毛细管液相色谱—电喷雾质谱接口平台,是我们在中科院仪器研制和改造项目支持下,通过学习、消化和吸收,在国内设计加工的,使仪器能够适合于各种复杂程度的蛋白质样品分析。这个准备安装在新进的一套二维液相色谱—高分辨质谱系统上。”   据杨福全介绍,蛋白质组学是目前生命科学研究的热点之一。蛋白质组学技术发展很快,蛋白质组学研究竞争也异常激烈。有了基本硬件设备而又能让设备高效地工作,才能做出高水平工作。其中,现代色谱分离技术和生物质谱技术构成了蛋白质组学技术的主体。色谱—质谱系统连接的好坏直接影响整个系统的灵敏度和效率。这个接口平台就是针对商用仪器的不足而设计加工的,它与自制的毛细管液相色谱柱联合使用,不仅降低了整体设备的运行成本,更重要的是大大提高仪器系统的通量、灵敏度和效率。   2004年从美国国家卫生研究院(NIH)国立心、肺和血液研究所回国的杨福全博士,目前担任中科院生物物理研究所质谱首席技术专家,主要从事蛋白质组学新技术新方法的研究与应用。对现有仪器进行改造、研制生命科学研究领域中的新仪器设备是他目前重要的任务之一。   杨福全介绍,生物质谱技术和双向电泳、高效液相色谱(HPLC)、毛细管电泳等现代分离技术的结合,实现了多肽、蛋白质和核酸等生物大分子的高通量分析和鉴定 这些技术通过与荧光标记技术、稳定同位素标记等技术的结合,又实现了生物大分子高通量的定量分析,从而推动了蛋白质组学技术的发展,促进蛋白质组学技术在生命科学中的应用。   “实验室的仪器装备改造后,技术水平是否取得较大的提高?”记者追问。   杨福全并未直接回答记者的问题,而是打开不久前新当选的中科院院士、北京大学教授尚永丰给他写的一封电子邮件,上面写道:“过去两年我实验室的学生和工作人员在你实验室做了很多的质谱分析。这些分析对我们的研究起到了很大的作用,2009年我们发表的文章,包括在Cell、PNAS和The Embo Journal杂志上的文章,都用了你实验室的质谱分析结果。所以,在此我想向你和你实验室的相关人员表示真挚的感谢。我几次在不同的场合说过:国内好多单位都有质谱仪,但真正能用到科研上的不多。很高兴北京有你这一家,为我和其他实验室的研究工作提供了很好的技术支持。我们实验室主要从事基因表达调控的表观遗传机制研究,今后肯定还需要你的支持和帮助。希望我们找个时间聊聊,探讨一下合作研究的可能性。”   杨福全介绍,蛋白质组学技术目前的发展趋势主要包括3个方面:高分辨、高质量精度和快速的质谱仪器的开发 高效、高选择性的样品富集技术的开发 由生物质谱技术、现代分离技术和稳定同位素标记技术等技术集成的高通量的定量蛋白质组学技术开发。因为随着蛋白质组学技术在生命科学和蛋白质科学研究中的不断深入应用,全面系统分析细胞、组织或生物体中蛋白质量的动态变化规律或绝对量的分析,已成为蛋白质组学研究的必然趋势。   “衔接”出速度   中科院生物物理所研究员刘志杰从另一个角度解说了生命科学发展对新设备的需求。这位曾参与美国东南结构基因组研究中心工作的研究员2006年回国,一直致力于改进中国生命科学的研究设备。   他说,10年前,研究人员解析一个蛋白质三维结构大约需要1~2年时间,随着新技术、新方法的发展,截至2009年12月底,全世界已解析了7万多个蛋白质分子的三维结构。这些高效率的自动化方法,主要包括高通量克隆、高速度表达纯化、蛋白质自动化结晶、自动化衍射数据收集和结构解析等。如果研究人员继续采用原有的老方式,美国于2000年启动的“结构基因组计划”根本不可能按时完成,甚至做不出其中的1/10。   目前,刘志杰在中科院生物物理研究所的蛋白质科学研究平台构建了一套高通量的从基因克隆到蛋白质结构解析的流水线。这一流水线由几个模块组成,每个模块都力争实现自动化。如第一个模块即是自动化克隆和小规模可溶性表达筛选,使用该模块可自动筛选出可溶性表达的蛋白质。   “如果使用传统方法,只能一个个地进行手工试验,不但费时费力还容易出错。现在可以一次筛选96个目标基因,很快了解哪些蛋白质在哪种条件下是可溶的。也就是说,过去需要几个月或几年完成的工作,如今一个人几天就能完成。”他说。   他介绍,现代分子生物学等相关学科的发展为蛋白质晶体学提供了许多先进的技术和方法,极大地提高了蛋白质晶体学的研究效率。由于蛋白质晶体学的研究对象在很大程度上是一个自然的选择过程,构象稳定和容易结晶的蛋白质成为研究人员进行结构分析的首选目标。这就意味着遗留下的蛋白质分子的结构解析难度将越来越大。同时,随着人类对生命现象认识的深入,对健康、环境和能源方面的关注,蛋白质晶体学的研究对象越来越多地定位于与人类疾病以及工农业密切相关的重要目标蛋白上。其中,很多目标蛋白来自真核生物的蛋白质复合体和膜蛋白,而真核生物的可溶蛋白质和膜蛋白的获得,是目前各国晶体学家面临的共同难题。   此外,生物大分子的结晶也是晶体学家们亟待解决的问题。虽然人们投入了大量精力研究蛋白质结晶的理论和实验方法,但由于蛋白质结晶过程的多参数、随机性过大,未知因素过多,目前蛋白质结晶在理论上没有取得任何突破性进展。人们所期待的根据蛋白质一级序列预测其结晶条件的情景还只是梦想。研究人员不得不继续采取“盲人摸象”的大规模筛选方法寻找蛋白质分子的结晶条件。因此,高纯度、高均一性和高稳定性的蛋白质样品的获得,以及蛋白质分子的结晶,成为目前限制蛋白质晶体学发展的主要瓶颈。   为筛选最佳的结晶条件,研制出自动化、高速度、高精确度制备出纳米级蛋白质和结晶溶液混合液滴的机器人,成为迫切需要解决的技术问题。因为结晶机器人用很少量的蛋白质样品就能筛选大量的结晶条件。目前,发达国家已开发出多款结晶机器人,能够一次筛选几百到上千个蛋白质的结晶条件 另一种结晶观测机器人甚至能根据时间拍摄结晶过程的照片,并自动放在网上,研究人员不论在家还是在其他地方都可以了解到实验的情况。如果没有这样的自动化设备,学生们就不得不呆在冷室里一个一个地观测了。   刘志杰告诉记者,他新构建的从基因到结构的流水线,各种零件都是现有的,但如何将它们整合在一起工作,大部分是他按照实验的需求自己设计而成的,其中一部分是他与美国的合作者共同探讨研究而成的。如果与美国同行的设备比,生物物理所这套设备的自动化程度更高。如,小规模细胞培养,美国合作者依然使用手工,而他的这套设备已实现了自动化。   全新的自动化装备给刘志杰研究小组带来了预期的喜悦。他的课题组使用这条流水线所开展的癌症研究取得突破性进展。其论文《通过N10取代的叶酸类似物抑制人源5,10-次甲基四氢叶酸合成酶的结构基础》于2009年9月被《癌症研究》以封面文章的形式给予报道,受到同行高度关注。   在此流水线基础上,刘志杰打算在2010年实施新的改进,对膜蛋白处理进行自动化改造。即在保持设备原有功能基础上,找出使膜蛋白可溶的条件。这种设备的改进,只要进入研究阶段,成果在国际上必定领先。因为,目前世界上尚未有这类设备。   据悉,中科院将建基于同步辐射线站的高通量衍射数据收集和解析模块。中科院生物物理所引进的“千人计划”研究员张荣光,将在上海光源上建造新设施。刘志杰说:“我们将是他最大的用户。”   各领域不期而遇   中科院生物物理所杨福全和刘志杰课题组开展的设备研制,使人们不难看出,生命科学研究技术目前正从发展单项尖端技术转向系统集成研究,而且这种趋势不仅体现在结构生物学领域,在脑认知研究中也有相似表现。   在生物物理所脑认知国家重点实验室,薛蓉研究员先让记者参观了实验室最新制造的“头盔”。这个特殊的“头盔”内插满了线路,接受实验的人戴在头上,推进脑成像装置便可给大脑拍照,并探测到脑部神经系统的一些活动情况。   薛蓉曾在美国纽约大学医学院放射系生物医学成像中心任工程师职位。她介绍,这个“头盔”是她正在研制的一种新的并行成像设备与技术,以改进人体超高场磁共振成像系统的性能,提高成像速度和质量。   薛蓉解释说:“核磁共振中,质子共振频率接近300MHz,在人体内其波长仅约11厘米,RF射频场将与人体产生‘介电共振效应’,导致净磁化矢量在发射和接收上产生严重的不均匀性。除此之外,共振频率的提高还会引起人体组织对电磁能量的吸收率(SAR)的增加,带来类似微波炉加热式的安全隐患。解决这些高频信号问题的最有效方法,就是研制多通道的发射/接收射频线圈,结合并行成像技术,以期获得超高场成像系统中高分辨率的灰度均匀的人脑结构和功能图像。”   薛蓉介绍,随着交叉学科的不断发展,磁共振技术在诸多领域中都得到了重要应用,无论是生物学、临床医学、分子影像学,还是脑与认知科学等国家重要学科领域的研究,对磁共振技术的发展都有着越来越高的要求。国际上在这方面的投入相当可观,目前,国际上7特拉斯(T)人体磁共振成像系统已装机30余台。国外磁共振领域著名的生产厂家Siemens、GE和Philips等公司,以及美国哈佛医学院、纽约大学医学院,德国Freiburg大学等已装备了7T磁共振超高场成像系统。在亚洲区域,韩国也早于我国购买了相关设备。为了不滞后于国际前沿的科学研究,生物物理所脑成像中心2009年底引进了国内第一台7T超高场磁共振系统。这是基于这一团队已具备了自主开展磁共振成像系统软硬件研发能力而着手的工作。该系统目前正在紧张装机。   国际上的主要研究机构正积极在7T及以上超高场系统上研制与此项目类似的高场发射与接收系统及相关线圈。由于研发进度以及技术保密等原因,各家都不披露完整的技术资料。竞争点大多在于这个“头盔”上。同时,这个“头盔”如何与脑成像进行连接,也是核心技术之一。   薛蓉说:“实验室脑成像中心2010年的一个重点研究目标,即是在西门子7T超高场全身磁共振扫描仪上研制多通道发射与接收头线圈,及其与7T成像系统的射频接口,实现多通道的并行发射与数据的并行采集,克服超高场成像系统中射频场发射的不均匀性,有效提高功能磁共振成像的速度和质量,特别是大脑特定区域,如前颞叶和海马区磁共振图像的信噪比和对比度,减小磁敏感性伪影,帮助检测认知科学实验中功能磁共振信号的变化。”   对新进口的设备进行创造性“联通”、“衔接”和“整合”,是生物物理所几个实验室都在进行的工作,一旦成功便能获得很好的研究结果。特别值得注意的是,这类工作也是国际上许多实验室都在进行的研究。虽然中国生命科学曾一度落后于发达国家,但在这里,人们可看到中国有可能迎头赶上甚至超越的希望。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制