热损伤

仪器信息网热损伤专题为您整合热损伤相关的最新文章,在热损伤专题,您不仅可以免费浏览热损伤的资讯, 同时您还可以浏览热损伤的相关资料、解决方案,参与社区热损伤话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

热损伤相关的耗材

  • 非损伤微测系统专用流速传感器
    一、产品介绍 1、非损伤微测系统专用流速传感器(组织样品专用传感器8-10um) 型号:XY-CGQ01 价格:68元/支,10支起订 本传感器适用于测定组织样品的所有离子传感器,特别针对Cl-、NO3-、NH4+测试时信号采集不稳定而开发出的新型传感器,使得测定上述三种离子时,信号的稳定性大大提高。 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:8-10微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米 响应时间:300毫秒 空间分辨率:5微米2、非损伤微测系统专用流速传感器(组织样品专用传感器4-5um) 型号:XY-CGQ-01 价格:68元/支,10支起订 用于非损伤测量组织样品专用的流速传感器 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:4-5微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米 响应时间:300毫秒 空间分辨率:5微米3、非损伤微测系统专用流速传感器(细胞样品专用传感器1-2um) 型号:XY-CGQ-02 价格:79元/支,10支起订 用于非损伤测量细胞样品专用的流速传感器 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:1-2微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米 响应时间:300毫秒 空间分辨率:5微米4、膜电位专用流速传感器 型号:XY-CGQ-03 价格: 51元/支,10支起订 专门用于测量膜电位的流速传感器 技术参数: 材料:硼硅酸盐玻璃微管 导液丝:有 长度:50毫米 尖端直径:1-2微米 末端直径:外径1.5毫米/内径0.84毫米 管壁厚度:0.33微米 响应时间:300毫秒 空间分辨率:5微米5、离子交换剂微容器(LIX Holder 载体) 型号:XY-LIX-01 价格: 34元/支,10支起订 装载离子交换剂的微量容器 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:35-45微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米 6、膜电位专用流速传感器 型号:XY-CGQ-04 价格: 34元/支,10支起订 用于传感器动态校正 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:10微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米
  • rea 清洗剂
    rea 系列自动清洗产品,可根据需要实现手洗,机洗,清洗和消毒等方面的应用,其具有极强的去污能力,对材料表面温和无损伤。同时可生物降解,更环保。广泛应用于医疗,科研和工业。同时使用的低浓度使成本消耗更低。详见www.hirschmannlab.com.cn
  • SaniSure stirbar无菌磁力搅拌子美国进口 曌鑫生物
    SaniSure无菌搅拌子是生物制药容器(玻璃瓶、培养基瓶、溶液瓶、锥形瓶等)的理想产品。产品特色■接触面由 PVDF 制成■具良好耐化性■无动物来源成分■表面光滑, 不损伤容器■低微粒产生■提供标准和定制尺寸■可提供非灭菌产品■可批次追溯■符合USP Class VI 生物相容需求

热损伤相关的仪器

  • 动物颅脑损伤仪 VCU 400-860-5168转1674
    创伤性脑损伤(Traumatic Brain Injury,TBI)是神经外科最常见的疾病,是导致创伤患者伤残及死亡的主要原因。研究脑损伤后的神经生化、神经病理生理等方面的变化,可为探索行之有效的脑保护治疗提供帮助,将有助于提高颅脑损伤患者的生存率及生存质量。 VCU动物颅脑损伤仪分为液压冲击损伤仪(FPI),细胞损伤控制仪(CIC)和电子脑皮质挫伤撞击仪(eCCI)。这三种产品已经广泛应用于世界范围内的颅脑创伤研究中心,是目前颅脑创伤模型制作的金标准。同时FPI损伤仪还可应用到眼科损伤模型,CIC细胞损伤仪可以应用到其它种类细胞损伤模型的制作。 液压颅脑损伤仪(FPI)液压冲击损伤仪(Fluid Percussion Injury)主要针对神经创伤机制研究。它成为全球研究神经创伤广泛使用的仪器,可以重复一致地产生液压冲击损伤(FPI)。 系统优点:可方便的排除气泡 角度刻度可方便观察撞击角度 集成压基准力输出,方便校准。精确输出冲击压力 配备高精度的压力传感器电子颅脑损伤仪(eCCI)电子大脑皮质挫伤撞击仪 (electric Cortical Contusion lmpactor),主要针对脑皮质挫伤模型,是神经损伤研究机构最受欢迎的损伤模型制作工具。动物平台可以和各种立体定位仪搭配使用。由VCU大学设计制作的电子大脑皮质挫伤撞击仪,主要针对脑皮质挫伤模型。其组件有:坚固的铝架、动物平台、撞击控制器和撞击头。动物平台可以和各种立体定位仪搭配使用。由高级线性马达驱动的撞击头,可以由控制器来控制撞击参数,实现不同程度的损伤。撞击头含有感应器,可以确定速率、撞击深度及撞击停留。 . 与传统Feeney' s自由落体硬膜外撞击方法相比有以下优点:可精确连续地控制撞击速度,并获得实际撞击深度和停留时间等参数,而非重量差异很大的撞击。可精确重复制作挫伤损伤模型,减少动物死亡,使实验过程更加直观,可控。The eCCI is constructed with a sturdy aluminum frame to maximize rigidity, thereby ensuring impact accuracy. The support base, animal platform and impactor head are anodized to prevent oxidation and assure equipment longevity. Product assembly includes the base and support frame, and adjustable animal positioner with an aluminum animal platform to be used in conjunction with a variety of stereotactic mounts. This model utilizes the enhanced linier motor driven impactor and controller. The enhanced impact head also houses a photo-optic sensor to determine velocity, impact depth and dwell, and is extremely reproducible.细胞颅脑损伤仪(CIC) 细胞损伤控制仪(CI採取电子式控制,適合morphologic、病理理及培养组织损伤后的机制、形态学、病理性。细胞损伤控制仪是针对Flexcell Int’l corp具有专利的tissue culture system。细胞损伤控制仪平均把压缩气体送到每个culture wells,以造成培养组织牵张性的损伤,损伤的严重程度是依据气体在密闭的culture well进出的量,细胞损伤控制仪(CIC)是可以搭配Flex ® 29.45cm2 culturing trays I (针对VCU早期的细胞损伤控制仪)和BioFlex® 57.75cm2 culturing trays。因为根据所採用的细胞种类、损伤的程度、培养的狀況,受损后的细胞或许会因为上述因素死掉或要修护,所以VCU的细胞损伤控制仪(CIC)很適合应用在下列领域:细胞受损、修护,死亡,药物介入的反应。 Depending on the cell type, the degree of injury and the culture conditions, the injured cells may die or repair. Therefore, the system can be employed to study the responses to trauma, including cell injury, repair, death or pharmacologic intervention.The CIC II has been designed for use with a patented, commercially available tissue culture system from Flexcell International Corp. in Hillsborough, N.C. Tissue cultures are grown in culturing wells with stretchable Silastic® membrane bottoms. The CIC II regulates the flow of compressed gas to rapidly pressurize individual culture wells, causing a radial stretch injury to the culture. Injury severity is determined by controlling the flow of gas in and out of the sealed culture well and the peak pressure is captured to provide an accurate indicator of radial stretch.The CIC II accepts both the Flex I® 29.45cm2 culturing trays, which were used with the earlier CIC Model 94A, and the BioFlex® 57.75cm2 culturing trays.
    留言咨询
  • 一.简介颅脑及脊髓损伤是神经外科最常见的疾病,在全身各部位创伤中,创伤性脑损伤死残率高居第一位。长期以来,创伤性脑损伤的研究收到学者们的广泛关注。XR1200型电动颅脑脊髓打击器利用动物建立相应的脑损伤模型和脊髓损伤一直是认识和研究创伤性颅脑损伤发病机制与临床救治的一个重要组成部分。颅脑脊髓打击器是上海欣软信息科技有限公司自主研发的用于对实验动物的颅脑施加精准定量打击的装置,可以重复实现不同程度的脑损伤和脊髓损伤,综合性能达到先进水平。该颅脑脊髓打击器通过尖端带有不锈钢的打击器快速打击暴露好的颅脑或脊髓,然后立即上抬撞头,不会造成二次撞击,重复性好。通过自动定位仪快速定位。脑损伤撞击仪能够精确控制皮层的的凹陷深度,可以自行选择撞击头的打击力度度和撞击头的停留时间。主要针对脑皮质挫伤模型。是神经损伤研究机构最受欢迎的损伤模型制作工具。电子大脑皮质挫伤撞击仪的组件有: 坚固的铝架,动物平台,撞击控制器和撞击头。创伤性颅脑损伤仪使用高级的线性马达驱动撞击头,并由控制器来控制撞击参数,实现不同程度的损伤。撞击头的组件部分有含感应器,可以确定速率、撞击深度及撞击停留。这些撞击参数完全可以重复实现。电动创伤性脑损伤撞击仪撞击头的直径有几种不同的规格,撞击力度可以选择控制,适用于小鼠、大鼠、兔、犬、猴等动物。 XR1200型电动颅脑脊髓打击器技术参数:1、电动定位仪行程:X轴300mm,Z轴:300mm,Y轴100mm(选配件)2、重复精度:0.02mm3、定位控制器:液晶显示4、撞击力度:50~800千达因可调5、撞击深度:0-10mm可调6、撞击压迫时间:0.1~300s7、撞击头尺寸:1.5、2.5、4mm8、工作环境:5-40度9、适用动物:小鼠、大鼠、兔、犬、猴等动物
    留言咨询
  • VCU创伤性颅脑损伤仪 400-860-5168转1886
    VCU创伤性颅脑损伤仪 创伤性脑损伤(traumatic brain injury,TBI)是神经外科最常见的疾病,是导致创伤患者伤残及死亡的主要原因。研究脑损伤后的神经生化、神经病理生理等方面的变化,可为探索行之有效的脑保护治疗提供帮助,将有助于提高颅脑损伤患者的生存率及生存质量。 VCU动物颅脑损伤仪分为细胞损伤控制仪(CIC),电子脑皮质挫伤撞击仪(eCCI)及液压冲击损伤仪(FPI)。这三种产品已经广泛应用于世界范围内的颅脑创伤研究中心,是目前唯 一的颅脑创伤模型制作的金标准。同时FPI损伤仪还可应用到眼科损伤模型,CIC细胞损伤仪可以应用到其它种类细胞损伤模型的制作。 液压冲击损伤仪(FPI)(进口产品) 液压冲击损伤仪(Fluid Percussion Injury)主要针对神经创伤机制研究。它成为全球研究神经创伤广泛使用的仪器,可以重复一致的产生液压冲击损伤(FPI)。 系统优点: 可方便的排除气泡 角度刻度可方便观察撞击角度 集成压基准力输出,方便校准。 精确输出冲击压力 配备高精度的压力传感器。 细胞损伤控制仪(CIC)(进口产品) 细胞损伤控制仪(Cell Injury Controller II)采取电子式控制,适合脑源性细胞培养样品,或其它离体培养细胞的牵张性(strain-induced trauma)伤模型制作。损伤后可进行神经生化、形态学 、生理学,药物干预等方面的研究。 可以搭配Flex I® 29.45cm2 culturing trays I (针对VCU早期的细胞损伤控制仪)或BioFlex® 57.75cm2 culturing trays,适合以下损伤反应研究:细胞受损、修复、死亡, 药物介入。 电子脑皮质挫伤撞击仪(eCCI)(进口产品) 电子大脑皮质挫伤撞击仪 (electric Cortical Contusion lmpactor),主要针对脑皮质挫伤模型,是神经损伤研究机构最受欢迎的损伤模型制作工具。动物平台可以和各种立体定位仪搭配使用。 . 与传统Feeney' s自由落体硬膜外撞击方法相比有以下优点:可精确连续地控制撞击速度,并获得实际撞击深度和停留时间等参数,而非重量差异很大的撞击。可精确重复制作挫伤损伤模型,减少动物死亡,使实验过程更加直观,可控。
    留言咨询

热损伤相关的试剂

热损伤相关的方案

  • 采用安捷伦新型手持式 4300 FTIR 对复合材料热损伤进行无损式评价
    在许多行业中,如航空、一般运输、高性能汽车以及体育用品行业,碳或者石墨纤维复合材料正逐渐取代金属结构和部件。与传统金属部件相比,这些材料因其重量轻且强度高而受到青睐。例如,空客 A350 和波音 787 中采用了大约 50% 的复合材料,其中包括机翼和机身部分。军用喷气式战斗机和舰艇也采用了这种材料来帮助提高性能。随着这些关键而复杂的复合材料应用的发展,人们需要一些新的精密分析工具来执行研发、维护及维修工作。本应用简报讨论了 4300 手持式 FTIR 在现场无损分析飞机复合材料热暴露及损伤方面的优势。与金属部件不同,复合材料能够被高热不可逆地降解。造成热损伤的原因有多种,如发动机或导弹的排气、电气火灾,或者甚至是雷击。对于严重热损伤,如出现起泡或分层,通常可以通过肉眼观察到。但从长远来看,中等强度的热暴露更为常见,并且可能也是灾难性的。由于部件还没有或只有很少的明显损伤,这种类型的热损伤被称为早期热损伤。在过去十年里,安捷伦科技公司一直致力于发展和应用傅里叶变换红外光谱 (FTIR),并将其作为一种先进技术应用于检测复合材料的分子组成,从而为制造和维护工作提供支持。例如,FTIR 光谱分析现已成为一项检测复合材料热损伤的成熟技术。检测结果可用于确定复合材料热过度暴露区域的宽带和深度,为维修工作提供帮助。现在,安捷伦的科学家和工程师已经研发出了新一代 FTIR 分析仪,可用于检测复合材料与聚合物。最近发布的 4300 手持式 FTIR 是多年来我们将中红外光谱用于复合材料无损检测分析经验的结晶。
  • 采用安捷伦新型手持式 4300 FTIR 对复合材料热损伤进行无损式评价
    在许多行业中,如航空、一般运输、高性能汽车以及体育用品行业,碳或者石墨纤维复合材料正逐渐取代金属结构和部件 。 与传统金属部件相比,这些材料因其重量轻且强度高而受到青睐 。 例如,空客 A350 和波音 787 中采用了大约 50%的复合材料,其中包括机翼和机身部分 。 军用喷气式战斗机和舰艇也采用了这种材料来帮助提高性能 。 随着这些关键而复杂的复合材料应用的发展,人们需要一些新的精密分析工具来执行研发、维护及维修工作。本应用简报讨论了 4300 手持式 FTIR 在现场无损分析飞机复合材料热暴露及损伤方面的优势。
  • 基于成像光谱技术对苹果斑点及损伤快速识别研究
    采用高光谱图像技术检测苹果的黑白斑区域及损伤区域,以实现苹果黑白斑、损伤区域快速识别的目的。运用高光谱成像技术,运用最小噪声分离、植被指数等方法等,均可有效地识别水果损伤与斑点区域,但最小噪声分离方法较为复杂,运算速度较慢,不适合在工业生产上进行应用,而植被指数算法简单,仅利用2个波段进行四则运算即可实现水果损伤和斑点的快速识别。

热损伤相关的论坛

  • hp5色谱柱热损伤判别

    色谱柱在210℃(常用检测温度)下基线一直不平,从一开始没有规律等我小峰到规律的出峰,查了一下说这种正弦峰是标准的热损伤,可我们之前的老化温度(250℃)远低于hp5柱耐受温度(325℃),升温速率也才10℃/min,不应该出现热损失啊[img]https://ng1.17img.cn/bbsfiles/images/2022/12/202212081516484411_1442_5375263_3.png[/img]

  • 旭月非损伤微测系统助力中国康复科学所

    旭月非损伤微测系统助力中国康复科学所

    旭月[img=,599,390]http://ng1.17img.cn/bbsfiles/images/2018/06/201806081405394500_6400_3037344_3.png!w599x390.jpg[/img][align=center]NMT活体生理检测仪 NMT Physiolyzer[sup][/sup][/align][align=center][/align]在刚刚结束公示的采购项目中,美国扬格/旭月北京的非损伤微测系统成功中标[b]中国康复科学所[/b]。[b]除此之外,涉及医学、动物学、农业科学、环境科学等多个领域的多个单位也在进行紧锣密鼓的系统采购中。[color=#ffffff]研究案例[/color][/b]01[b][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651818392&idx=2&sn=92cc01f7066a96df1d92e6ea6d032207&chksm=844cd9c8b33b50dee3cac1bc108aee1270be3ce82795aee4758c4f9d4c4c33f1ab1e62bd9845&mpshare=1&scene=21&srcid=0606RC3nbWgn4hsLlsHCC7db#wechat_redirect]科海观潮—非损伤微测技术用于神经毒性机制的研究[/url][/b]02[b][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651818405&idx=2&sn=91d5ba4699a1c2d14b5e4351a30eafa4&chksm=844cd9f5b33b50e3fd5b1e04b6cb0907b19a4075902c588560c7f4158ea0ae6534d29866578e&mpshare=1&scene=21&srcid=0606N6onxcRW0oL8rG7onKBT#wechat_redirect]科海观潮—非损伤检测胎儿肺上皮细胞微环境中Cl-流的变化情况[/url][/b]03[b][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651818104&idx=2&sn=c5a5d92596e29435c02f5dd31a504bea&mpshare=1&scene=21&srcid=0606Os0Jfdo27Df9iwae2sM5#wechat_redirect]科海观潮--Ca2+外流促进骨骼损伤的修复[/url][b][color=#007aaa][b]NMT[color=#007aaa]的技术优势是什么?[/color][/b][/color][/b][/b][list][*][align=left]活体、原位、非损伤测量[/align][*][align=left]实时、动态测量[/align][*][align=left][color=#ff2941]两种[/color]离子和分子同时测量[/align][*][align=left]长时间持续测量[/align][*][align=left]无需标记[/align][*][align=left]多种测量方式[/align][*][align=left]高分辨率、测定范围广[/align][*][align=left]无需提取样品[/align][*][align=left]可测样品种类繁多[/align][*][align=left]立体[b][color=#ff2941]3D[/color][/b]流速测量[/align][/list][b]了解旭月旭月(北京)科技有限公司是目前世界上提供非损伤微测设备销售、非损伤微测技术(Non-invasive Micro-testTechnology, NMT)服务的主流商业机构。中国[b][color=#ff2941]97.6%[/color][/b]的NMT应用成果出自旭月非损伤设备已服务于国内[b][color=#ff2941]211[/color][/b]家科研单位,累计[b][color=#ff2941]339[/color][/b]个实验室协助国内学者发表SCI文章[b][color=#ff2941]216[/color][/b]篇,累计IF [b][color=#ff2941]846.033[/color][/b]可提供多达[b][color=#ff2941]12[/color][/b]种的商业化非损伤离子/分子流检测中国[b][color=#ff2941]唯一[/color][/b]的全要素非损伤微测技术设备支持团队取得基于非损伤微测技术的[b][color=#ff2941]3[/color][color=#ff2941]1[/color][/b]项设备专利全球[b][color=#ff2941]唯一[/color][/b]的非损伤商业测试中心最新的第[b][color=#ff2941]七[/color][/b]代非损伤微测系统[/b]

热损伤相关的资料

热损伤相关的资讯

  • 电子束对样品的热损伤及应对方式——安徽大学林中清33载经验谈(16)
    【作者按】在进行扫描电镜测试时,最让测试者感到头痛的往往是电子束对样品的热损伤。因为一旦产生热损伤,那么样品的表面形貌信息将彻底的消失。热损伤和荷电现象都会带来形貌像的形变,因此很多人(包括不少专业人士)都将样品的荷电做为形成样品热损伤的原因之一。其实这是个误解,样品荷电现象虽然对形貌像有改变,但是它不会对样品形成破坏,在改变测试条件克服荷电影响后,还是可以得到完整形貌像。但是热损伤就不是这样了,一旦发生热损伤,则该样品细节将不复存在,此后无论采取何种方式都无法获取这些信息。热损伤是如何形成的?那些样品容易形成热损伤?又有哪些因素是造成样品热损伤的关键因素?该采取何种方法来减轻或消除电子束对样品热损伤,获得相对完整的样品信息?一、电子束对样品热损伤的形成当高能电子束轰击样品时,高能电子束会与样品原子之间形成能量交换,形成所谓的“非弹性散射”。交换的能量中只有很少的一部分用于激发样品的特种信息,二次电子、光电子等,大部分能量都将转换成热能而驻留在样品中,使得样品局部温度上升,达到一定程度,就会对该处细节形成破坏,也就是热损伤。高能电子束轰击样品形成局部温度上升,该处升温究竟能达到多少呢?关于这一点目前都是以Castang升温公式为参考。依据Castang升温公式:V0(kV) 加速电压,i(μA) 探针电流,d(μm) 电子束直径,K 材料热导(Wcm-1k-1)其中加速电压、束流及束斑大小是造成样品升温的主要外部因素。而样品本身的热导率是形成温度上升的主要内部因素。一般观点都认为,容易形成荷电的样品,其漏电性(普遍被称为是导电性,但个人认为这个定义不准确)都较差。漏电性较差的部位,其导热性也较差,因此该部位更容易形成高温造成的热损伤。但是温度的升高与形成热损伤并不形成完整的一一对应关系,还与该处的耐热性有关。如果该处的导热性差,但其耐热性好,也一样很难形成热损伤,所以容易形成荷电的样品,即便其导热性较差,也不一定会比不易荷电的样品形成热损伤的概率要大。形成样品局部升温的外部因素,如加速电压、束流以及束斑直径,往往被认为是测试时调整样品热损伤影响的主要着力点。依据以上升温公式可知加速电压及束流越大,则同等条件下某区域的升温也就越高,对样品的热损伤也就越严重,但会受到束斑面积增大等因素的制约,最终结果取决正、负因素竞争后引起质变的主导者。这是对测试条件进行改变的依据所在,将在下一节再详细探讨。不同类型的电子枪,由于结构设计的差异,会使得同样加速电压下对电子束加速的最终电场偏压出现一定的差异,造成电子束的电子能量出现些微不同,而使得其在同等条件下对样品的热损伤也会出现差别。一般来说,冷场电子枪最终形成电子束的电子能量会略低一些,所以其对样品的热损伤在同等条件下也会略好一些。由于热发射电子枪慢慢的被淘汰,而且其常规测试条件和目前占据主流地位的场发射电子枪不在一个水平线上,所以不具备对比的意义。下面将只对热场电子枪和冷场电子枪结构进行探讨。从以上热场和冷场电子枪的结构简图可见,加速电压都做为基准的负偏压以开路的形态加载在阴极(灯丝)上,以保证阳极为零电位。这一点热场和冷场都是一致的。但是热场电子枪在第一阳极和阴极之间加了一个栅极保护极,屏蔽热电子,该电极上加载的负偏压是叠加在阴极之上,故栅偏压比阴极偏压更低。因此在第一阳极拔出电子时给电子的加速就应该以一个更负的偏压基础来计算,也就是整个电场的偏压值会有所增加,从而使电子束中电子的能量会略大一些。由于电场的叠加作用并不是简单的一加一,所以电子束中电子能量的差别也不能采用简单的加减法来进行计算。该差异在高加速电压时,相对较小,据次要地位。但随加速电压值的降低,其在电子整体能量中的占比就会增加。加速电压达到100V后,该差异的影响就不得不考虑。冷、热场也会呈现出信息深度上的差异。低于100V,加速电压值基本无法代表电子的实际能量值。电子能量真低于100eV,能充分激发最高能量为50eV的二次电子?从以上两张原子力显微镜的图片可见,湿法膜结构为骨节状骨架表面有一薄膜层。膜层应该是非常的薄,估计只有几个纳米。扫描电镜采用极低的加速电压100V来观察可见如下结果:左图某冷场发射扫描电镜图,图像骨节状信息不清晰,明显感觉有膜状物裹挟。右图某热场发射扫描电镜图,骨节状的结构清晰可见,表层薄膜信息却较为的淡薄。加速电压相同,热场观察到的信息更深一些,这说明在同样加速电压下,热场电子束的能量是要大于冷场扫描电镜。但是这个能量差在加速电压较高时,相对较小,图像差异也就不明显了。当加速电压到500V的时候,电子束中电子能量的相对差距相比100V来说要低很多,图像呈现的信息几乎一致。正是电子束的能量存在些微差距,这就会使得冷场扫描电镜在相同条件下对样品的热损伤会相对轻微一些。枝晶MOF,容易被电子束热损伤左图 热场只能观察不易受热损伤的粗枝晶而无法观察到如右图的细枝晶右图 冷场即便观察更容易被热损伤的细枝晶也不存在问题电子束在样品上扫描区域的面积越小,电子束能量转换也就越集中,形成的热量密度也越大,相对来说对样品热损伤也会增强。这就是倍率越高,样品越容易受电子束热损伤的主要原因。增大束流,对样品的热损伤会加大,但是受到束斑尺寸的制约。依据Castang公式束流的影响综合表现为束流密度对升温的影响,束流密度冷场要高于热场,但是以上的事例呈现的结果却于此相反。因此个人认为:电子能量的大小对热损伤的影响似乎更为关键。二、如何应对电子束对样品的热损伤Castang的升温公式告诉我们,引起样品表面升温的因素来自两个方面:样品自身的导热性这是内因,而外因在于加速电压、束流和束斑尺寸的大小。这些因素也是我们改善电子束对样品热损伤的切入点。增加样品热导率,降低加速电压和束流,增加束斑尺寸及束斑离散度,都会减轻电子束对样品热损伤的程度。但这些改变都会对扫描电镜的测试结果带来负面影响,因此对“度”的掌控,找寻最合理的测试条件的综合解决方案,是应对电子束对样品热损伤的最佳选择。电子显微镜冷冻操作技术的发展,为应对样品的热损伤开拓了更大的空间。显而易见,降低样品温度会减少电子束对样品的热损伤,特别在液氮降温技术被成熟运用之后,效果极为明显。但冷冻技术的操作较复杂、成本较高且会带来样品仓室污染,影响仪器的分辨能力,目前运用的并不广泛。下面仅探讨常温下的热损伤解决方案。在探讨这一综合解决方案之前,将首先对以上单一解决方案的具体操作方式给予一一的描述。2.1 应对样品热损伤的内部因素调控改善样品性能应对电子束的热损伤,必须以尽量减少对表面形貌的破坏为先决条件。对于该项工作的实际操作方式,依据个人的实践经验可总结为:合理的样品老化,以便增加样品对热损伤的耐受力;适度的蒸金以提升样品表面的导热性。采用导电胶对样品的充分固定是进行以上操作的先期必要步骤,导电胶要涂至样品表面。在样品可耐受的温度范围内,对样品整体进行烘烤老化,一般需几个小时或过夜甚至更长时间,尽可能去除样品表面附着的挥发物。需要的话,可将样品在电镜中采用低剂量的电子束(较低的加速电压和束流)在低倍率下轰击直至稳定,这期间要监控样品在电子束的轰击下是否会出现形貌的变化,如果出现形貌的改变则必须将电子源能量进一步降低。如果样品老化效果不佳,则可以采用蒸金的方式以改善样品表面的导热能力,减少电子束对样品的破坏。样品表面蒸金须考虑以下几个影响样品形貌信息的事宜:①蒸金时对样品的热损伤。②蒸金量对样品形貌信息的覆盖。③镀层的均匀性,保证在较少蒸金量的情况下有更好的导热性。要满足以上三点,控制好电流和单次蒸金时间极为关键,个人认为单次蒸金时间最好不要超过20秒。低剂量的多次、短时间蒸镀是解决问题的最佳方案。具体蒸金量可通过实际观察效果予以调整。2.2 应对样品热损伤的外部因素调控依据Castang升温公式,较低的加速电压和束流强度,较大的束斑尺寸都会使得同等条件下样品观察区域的温度上升较小,对样品细节的热损伤也会较轻或基本不会形成热损伤。但过低的加速电压和束流,以及较大的束斑尺寸会影响图像质量并限缩样品形貌信息的获取,具体探讨可参见经验谈8《加速电压和束流选择》。要获取更充分的样品形貌信息必须扩大这些测试条件的选择范围。工作距离、图像倍率以及电子束扫描速度的选择都会对样品的热损伤产生较大的影响。而在对它们做出合理的选配之后将会极大的扩大加速电压、束流以及束斑尺寸的选择余地。工作距离越小,电子束的会聚角就会增大,电子束的束流密度将会增加,从而在同等条件下对样品的热损伤也会加大。样品的热损伤常常会出现在高倍率的调整过程中(如上图红框部)。表现为高倍率调整部位的细节与周边细节极度的脱节,被热损伤的部位细节明显的收缩并加粗,这些都显现在了左图采用1.7mm工作距离所获取的形貌像中。右图采用8.7mm工作距离所获取的形貌像在相同部位则与周边细节的变化完全的匹配,未受到电子束的热损伤。但是工作距离的过度拉大,会使得电子束斑的弥散加大,不利于获取高质量的高倍率形貌像。故测试时要取、舍得当,没有舍哪来取。依据个人经验,当工作距离达到15mm以后,由于电子束弥散较大,电子束对样品的热损伤会降低的极为明显。因此,对加速电压和束流的限制会下降很多,对它们的选择空间将明显加大。扫描电镜的放大倍率越低,电子束在样品上的扫描密度就越稀松。使得电子束在样品上产生的热量较为分散,局部温度降低的较为明显,对样品的热损伤也会减弱。在常规测试时,往往会发现电子束对样品的热损伤都是出现在高倍率的仪器调整(调焦及消像散)时。当电子束在样品上快速移动时,电子束在某点停留时间的减少,也会将单次能量的转换量降下来,同样也会减缓温度的提升并随电子束的快速移动而发散开来。大量的实践经验告诉我们,对样品某点的热损伤除了升温的高低之外,关键还在于驻留时间的长短。同等条件,驻留时间越短电子束对样品的热损伤越小。因此采用快速扫描获取样品的形貌像也是克服样品热损伤的有效方法。依据本人长期测试经验,应对样品热损伤,在外部因素的调控方面,选用较大的工作距离以及快速的扫描方式获取图像,对减缓热损伤的效果要远高于在加速电压、束流及束斑尺寸方面的选择。2.3 如何应对样品的热损伤以下内容为本人数十年,特别是近十年的经验总结,仅作参考。要充分应对样品的热损伤,样品的处理极为关键。而样品处理在2.1节已有较为详细地描述,这里要强调的是,固定是最先要做的基本工作,因为样品的整体固定不但是解决图像漂移的基础(容易热损伤的样品本身就不稳定)同时也为后期的导热提供通路。样品的老化和金属化(蒸镀金属材料)要采用低剂量的叠加方式尝试着来,随时观察判断并调整极为关键,否则很容易破坏样品的细节。对测试条件的选择,加速电压和束流的选择要以获取样品信息为准,兼顾其对样品热损伤的影响。对热损伤的处理主要交给工作距离和获取形貌像时的扫描速度来解决,这样效果反而更好。大工作距离有利于获取样品的大部分表面形貌信息,同时也有利于减弱电子束对样品的热损伤。快速的扫描模式虽然会影响形貌像的图像质量,但是并不会对形貌信息产生太大的影响,而加速电压和束流选择的不同对获取样品的细节信息,影响就要大很多。电子束对样品的热损伤最容易出现在高倍率情况下的像散和焦点调整,因为此时电子束会长时间的汇聚在某一区域。电子束的长时间驻留对样品热损伤要大于温度的影响,当然这都是在一定“度”的范围内。在进行调整操作时会形成样品热损伤,不一定在拍摄形貌像时也存在热损伤,关键是你要调整好拍摄形貌像时的电子束扫描速度。所以调焦和消像散应当采取“临近点调焦”的原则,利用多个临近点的对中、调焦和消像散来减轻拍摄点的热损伤现象。三、结束语扫描电镜测试时电子束对样品的热损伤是最让测试者头痛的问题。形成样品热损伤的因素有很多,依据Castang升温公式,加速电压、束流、束斑尺寸以及样品的热导率是导致样品温度上升的主要因素,也是形成样品热损伤的主要因素。对于样品来说,热导率是内因,其他都是外部因素。而要解决样品热损伤问题,着眼点就是对这几个因素进行调整。对内因的解决方案主要是样品的固定、老化以及金属化(蒸镀金属)。而对外因的解决方案就是降低加速电压和束流,增加电子束束斑尺寸。在实际测试过程中往往发现对上所述的外部因素进行大范围调整会带来样品信息的缺损。而借助于工作距离和拍摄图像时对电子束扫描速度的选择,将有助于扩大加速电压、束流的调整范围。大工作距离测试不仅能带来样品热损伤的减轻,还能获得许多小工作距离无法获取的样品信息,这在过去的经验谈中有充分的探讨。自然辩证法的三大规律告诉我们,任何条件的改变都会带来一定程度的负面因素。要避免负面因素成为主导,任何因素的改变都不能走向极端。多种因素配合使用,互相弥补各自所存在的缺陷,才能获得较为完美的结果。对样品热损伤的处理也是一样,要把以上对减轻样品热损伤的所有方法结合起来使用,才会获得最佳的效果。 参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社
  • Nature Materials | 付恩刚和吕昭平团队合作,在材料抗辐照损伤机制研究方面取得进展
    北京大学付恩刚团队和北京科技大学吕昭平团队合作,在材料抗辐照损伤机制研究方面取得进展,发现共格纳米粒子湮灭缺陷行为,揭示了其循环溶解再析出的缺陷湮灭机制,提出了通过超晶格纳米粒子动态无序-有序转变提高抗辐照损伤性能的全新材料设计策略。研究成果以“共格超晶格纳米粒子可逆无序-有序转变实现超高抗辐照性能(Superior Radiation Tolerance via Reversible Disordering-Ordering Transition of Coherent Superlattice)”为题,于2022年5月30日发表在《自然• 材料》(Nature Materials)上。论文链接:https://www.nature.com/articles/s41563-022-01260-y。发展先进核能系统是我国实现碳达峰、碳中和目标和解决能源危机的重大需求和重要战略,其中重要的一环是研发高性能结构材料,特别是抗高温辐照的金属材料。核反应堆的结构材料在高温高剂量辐照等极端环境中长期服役且不可替换,其性能退化甚至失效与辐照空洞等典型缺陷的形成演变密切相关。长期以来,增强材料抗辐照能力的策略是通过引入界面来湮灭辐照缺陷,但在高温高剂量辐照下,界面不稳定性诱导缺陷累积与材料失效的这一瓶颈仍亟需解决。针对这一科学问题,研究团队突破传统机制,通过在马氏体钢中引入完全共格结构的化学有序Ni(Al,Fe)金属间纳米析出相,在高温(400~600℃)辐照下,因其极低的形核势垒和极易发生的短程溶质重排主导的动力学行为,可快速进行有序-无序-有序循环动态转变;这种局域相变在限制溶质和点缺陷长程扩散的同时,通过增强溶质和缺陷的重组进而消除缺陷,并保持高密度析出相的动态稳定;最终在超高剂量离子辐照后仍无空洞,展现出超高抗辐照肿胀能力(图)。图:在高温离子辐照环境下,含高密度Ni(Al,Fe)纳米粒子的超晶格钢展现出超高抗辐照肿胀性能该研究成果对开发工程应用新型抗辐照材料以及深入理解辐照机制都具重要意义。
  • 硫化物的分解代谢可改善缺氧性脑损伤
    硫化物的分解代谢可改善缺氧性脑损伤个硫化物的分解代谢可改善缺氧性脑损伤 -哺乳动物的大脑极易遭受缺氧影响- 大脑对缺氧敏感的机制尚不完全清楚。H2S是一种抑制线粒体呼吸的气体,缺氧可以诱导H2S的积累。Eizo Marutani等人研究发现,在小鼠、大鼠和自然耐缺氧的地松鼠中,大脑对缺氧的的敏感性与SQOR的水平及分解硫化物的能力成反比。硫醌氧化还原酶(sulfide: quinone oxidoreductase , SQOR)是一种谷胱甘肽还原酶家族的膜结合黄素蛋白,为硫化物氧化解毒的一种关键酶。沉默的SQOR增加了大脑对缺氧的敏感性,而神经元特异性的SQOR表达则阻止了缺氧诱导的硫化物积累、生物能量衰竭和缺血性脑损伤。降低线粒体中SQOR的表达,不仅增加了大脑对缺氧的敏感性,也增加了心脏和肝脏对缺氧的敏感性。硫化物的药理清除维持了缺氧神经元的线粒体呼吸,并使小鼠能够抵抗缺氧。相关研究于2021年5月发表在Nature子刊Nature communications上,题为《Sulfide catabolism ameliorates hypoxic brain injury》,该研究由美国马萨诸塞州总医院以及哈佛医学院共同完成。该研究团队一开始的研究方向并不是寻找可以治疗脑卒中的靶点,他们的研究方向是「人体冬眠」,就像以往科幻电影里的那种,得了某种不治之症,然后进行冷冻或者其他技术的冬眠,等待科技进步以后,再次复苏。一开始,他们是要寻找可以对小鼠进行催眠的物质,锁定在了H2S。期初,吸入H2S的小鼠进入了一种「冬眠」状态,体温下降,无法动弹。但是,令人惊讶的是,小鼠很快就对吸入H2S的影响产生了耐受性。到了第五天,他们行动正常,不再受到H2S的影响。更有趣的现象是,研究团队发现,对H2S耐受的小鼠,对缺氧也能非常好的耐受。因而研究团队提出了SQOR基因在耐缺氧中起发挥重要作用的假设。实验方法描述所有小鼠都被饲养在12小时的昼/夜循环中,温度在20-25°C之间,湿度在40%-60%之间。 -间歇性H2S吸入- 小鼠暴露于80 ppmH2S的空气中连续5天,每天4小时。实验过程中实时监测H2S浓度和FiO2。每天在H2S吸入前后测量直肠温度,以检查H2S对体温的影响。 -CO2产生量的测量- 最后一次的吸入空气或H2S24小时后,在对照组或硫化物预处理小鼠中测量二氧化碳的产生。将小鼠放置在全身体积描记系统内,并测量二氧化碳的产量。 -小鼠的缺氧和缺氧耐受性- 为了测量缺氧耐受性,在最后一次空气或H2S吸入24小时后,将小鼠放入透明的塑料室中。然后,用低氧气体混合物以1 L/min连续冲洗腔室,以达到所需的FiO2。在缺氧暴露期间连续观察小鼠最多60 min,当小鼠出现严重痛苦迹象(扭动或发作、呼吸频率低于6/分钟和尿失禁)时,将其取出,用5%异氟烷安乐死并视为死亡。 -组织采集- 将小鼠采用异氟醚麻醉,呼吸机机械通气。用空气或缺氧气体混合物通气3 min后,将小鼠进行安乐死,开始取材。实验数据a:对照组和硫化物预处理组(SPC)小鼠的体温b:二氧化碳产生率(VCO2) c:血浆中硫化物的浓度d:血浆中的硫代硫酸盐、脑组织中的硫化物浓度f:脑组织中的硫代硫酸盐、 g:存活率h:小鼠在5% O2低氧下的VCO2i:常氧和5%低氧下,脑组织中的硫化物j:per sulfide,k NADH/NAD+比l:乳酸水平。m脑组织中的SQOR相对表达量,n、o:脑组织和心脏组织中 SQOR蛋白水平p、q:离体脑线粒体的氧气消耗速率 (OCR)r:计算得到的 ATP转换率。地松鼠的缺氧耐受性和硫胺分解代谢增强研究团队用RNA沉默SQOR,发现可增加大脑对缺氧的敏感性,而神经元特异性SQOR的表达可阻止缺氧诱导的硫化物积聚、生物能衰竭和缺血性脑损伤。SQOR可改善神经元细胞的线粒体功能降低线粒体的SQOR基因的表达,不只是大脑,而且心脏、肝脏对缺氧的敏感性都增加了。硫化物清除剂的作用通过药物清除硫化物,可维持缺氧神经元的线粒体呼吸过程,使小鼠耐受缺氧。该研究阐明了硫化物分解代谢在缺氧时能量平衡中的关键作用,并确定了缺血性脑损伤的治疗靶点。 在自然界中很多强有力的证据可以证明该研究的结论。例如,已知雌性哺乳动物比雄性哺乳动物更能抵抗缺氧,而前者的SQOR水平更高。当女性的SQOR水平被人为降低时,她们就更容易缺氧(雌激素可能是观察到的SQOR增加的原因),例如更年期。此外,一些冬眠动物,如地松鼠,对缺氧有很强的耐受性,这使得它们能够在冬季身体新陈代谢减缓的情况下生存下来。一只地松鼠的大脑比同样大小的老鼠的SQOR高出100倍。该研究的主要研究者说:“人脑的SQOR水平非常低,这意味着即使是少量的H2S积累,就可以影响神经元的健康。我们希望有一天我们研发出像SQOR一样有效的药物,这些药物可以用来治疗缺血性中风,以及心脏骤停引起的缺氧。 -塔望科技-解决方案- 全身体积描记系统小鼠放置于体积描记器内,可以实时监测呼吸,也可进行低氧干预、H2S暴露。可进行低氧耐受实验,也可监测动物的 耗氧量、CO2产生量、呼吸代谢率等。全身暴露染毒系统可以进行长期H2S暴露染毒、低氧实验等。动物能量代谢系统可以综合评估动物不同处理后的各种表型变化:进食量、进水量、进食进水模式、活动量、耗氧量、CO2产生量、呼吸代谢率等。动物低氧高氧实验系统各种常压/低压/高压下的缺氧/高氧实验。可进行恒定低氧,也可进行间歇低氧。 -相关文献- Marutani E, Morita M, Hirai S et al. "Sulfide catabolism ameliorates hypoxic brain injury".[J]. Nat Commun 12, 3108 (2021). &bull end &bull
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制