给水质量对其影响

仪器信息网给水质量对其影响专题为您整合给水质量对其影响相关的最新文章,在给水质量对其影响专题,您不仅可以免费浏览给水质量对其影响的资讯, 同时您还可以浏览给水质量对其影响的相关资料、解决方案,参与社区给水质量对其影响话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

给水质量对其影响相关的耗材

  • 水质处理检测氨氮测试条0-100mg/l
    水质处理检测氨氮测试条0-100mg/l 水质处理检测氨氮测试条0-100mg/l广泛应用于生活用水中氨氮的测试,测试方法简单,携带方便、检测结果准确,是生活用水分析的理想产品。还有其他不同测试范围量程产品,欢迎来电咨询!(周) 氨氮废水主要来源于化肥、焦化、石化、制药、食品、垃圾填埋场等,大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,给水处理的难度和成本加大,甚至对人群及生物产生毒害作用,针对氨氮废水的处理工艺(2014年前)有生物法、物化法的各种处理工艺等。 测试范围:0-2-5-10-30-50-70-100mg/l规格:100次/盒 货号:80441供货时间:每天 水质快速检测特点:1、本产品操作简单,快速灵活,准确可靠;2、改变了实验操作的传统理念,把检测搬到了现场;3、操作人员不需要专业技术培训,看说明书就能完成测试工作;4、不需要特定的操作环境,也不需要特定的辅助工具,就能圆满完成测试工作;5、不需要任何电源,适应野外检测需要;6、本产品广泛用于农业、林业、养殖业、饮用水、食品饮料、乳制品、金属加工、皮革制品、市政工程污水处理等行业;7、本产品市场价格合理,为使用者节省开支;8、本产品性价比极高,相对于同类检测进口产品,价格更优惠,质量、精度好。保证原装方源仪器正品;9、可批发供应热销,买的越多越优惠。同时也可定制本产品。 中国代理商:深圳市方源仪器有限公司
  • SL-S水质采样器
    产品概述: 深水采样器适用于环保及其他相关部门进行水质或水中浮游生物等分析时采集水样之用。符合国家《水和废水监测分析方法》的技术规范。 一、仪器特点 1.有机玻璃组成,无色透明,仪器上下活动翻盖自动打开与封闭,实现对所需深处的水样进行采集,使用方便。 2. 各种野外取样专用、环保监测、水处理、液体取样,环境水体取样,可对液体进行不同深度分层取样. 便于携带、适用于无电源的地方。 二、主要技术指标 。采样容量:2.5L 。采样深度:根据需要任意设定 。测温范围:0℃&mdash 50℃ 。测温误差:± 1℃ 。取样深度:0-10m 。尺 寸:100mm(直径)*350mm(高) 。采样环境:无杂草或无其他较大颗粒固体杂质的水中 三、深水采样器使用方法: 1、使用前应将出水管的出水口用绳子系在提水环上,出水口要高于上盖 2、选一根长度标记的绳索(长度可根据采样的深度自定)系在提水环上。本公司配带10米绳索,如需加长,请自配或向我公司邮购 3、用手提住绳索,将该水质采样器深入需要采样的水中进行采样 四、注意事项: 该用具系有机玻璃材质,易碎、易熔;使用时应避免重压重摔,也不可在明火处烧烤。
  • Cleanert LDC 大体积水处理柱
    产品描述:博纳艾杰尔推出新型大体积水处理柱,是传统固相萃取盘的拓展,特殊的柱管形状设计,配合自动化仪器,可以实现高速有效的富集大体积水样品;C18 等材料在活化时过度抽干,会极大地影响目标物的回收率和稳定性;同时分析物极性过高时,也会出现目标物穿透的情况。针对这些缺点,新型的AQ C18 系列,在非极性的材料表面增加了一定比例的极性官能团,解决了传统C18 的问题。LDC 独特的设计,可以直接将样品瓶倒扣在柱子上端,采样便捷;样品采样速度快,不易堵塞,适用于环境大体积样品的采集处理;低本底,高灵敏度,通用性强,适于各类极性与非极性样品的富集分析;其中AQ C18 等材料,可以用于EPA method 525。ACA 材料可用于分析水中的甲胺磷等高极性化合物,这类化合物很难被反相材料吸附,大量上样时极易穿透,Cleanert® ACA 采用特殊处理的碳材料,对水体中痕量甲胺磷具有良好的吸附富集效果,用少量溶剂即可洗脱。SPE-D6 加配玻璃漏斗和PTFE 转接头即可适配普通SPE 柱,搭配Cleanert DEHP 可实现手动大体积上样,用于水中邻苯二甲酸酯的分析。

给水质量对其影响相关的仪器

  • 全新的SL1000便携式多产品分析仪(PPA)采用ChemkeysTM专利技术,最多能同时测量六个参数且耗时仅为传统方式的1/4,让您在短时间内就能够得到高精确度的测量结果,并能有效地避免误差的产生。变革性的创新,领略非凡的测量体验● 高效:可实现最多6个参数的同时测量。● 环保:创新专利Chemkey测量卡,大大减少废液产生。● 便捷:集比色及电化学功能于一体,免去携带多台设备的困扰。SL1000便携式多产品分析仪-给您全新的测量体验测量参数Chemkey测量参数:总氯丨余氯丨游离氨丨一氯胺丨亚硝酸盐丨总氨丨铜电化学测量参数:pH丨电导丨溶解氧丨温度技术领先,优势毕现● 更快速:实现六个参数的同时测量,最快仅需8分钟。● 更精准:大大减少操作步骤及由此带来的测量误差,精准结果立等可得。● 更贴心:全中文菜单,符合中国用户使用习惯。Chemkeys TM专利技术Chemkey技术沿用现有的试剂及测量方法,但将其包含在一个小型封闭包装中。余氯和总氯的测量符合EPA方法。规格参数*电池 可充电式锂电池操作环境 5-50 ℃最高85%相对湿度电池寿命 电池充满后可进行不少于200次 Chemkey测量存储条件 -20-60 ℃最高85%相对湿度无冷凝认证CE 保护等级IP67检测器硅光电二极管主机重量1.2 kg尺寸(H × W × D)258.3 mm X130.8 mm X58.9 mm 测量模式 透光度(%),吸光度(abs) 浓度(Conc)接口Mini USB 保修期1年订货信息SL1000 便携式多产品分析仪9430000单机版。包含:SL1000仪表,便携箱,1个样品杯2个探头测试杯,可充电电池,充电器,固定手带,用户手册和USB线。8499000套装。套装在单机的配置基础上增加:1支pH电极和1支电导电极,余氯、总氯、一氯胺、硝酸盐、游离氨试剂各一盒。Chemkey 试剂9429000 余氯试剂卡(25只装)8499300 余氯试剂卡(300只装)9429100 总氯试剂卡(25只装)8499400 总氯试剂卡(300只装)9429400 一氯胺试剂卡(25只装)9429600游离氨试剂卡(25只装)和一氯胺试剂卡(25只装)9429300 亚硝酸盐试剂卡(25只装)9425200 总氨试剂卡(25只装)9429200 铜试剂卡(25只装)可选附件9427900 氯校验检测卡9436800 系统校验检测卡9374200SL1000便携式多参数分析仪车载充电器PHC20101IntelliCALTM PHC201标准凝胶填充pH电 极, 一米电缆CDC40101IntelliCALTM CDC401 标准电导电极,一米电缆LDO10101IntelliCALTM LDO101 标准荧光溶氧电极,一米电缆2522905 棉签
    留言咨询
  • 物联网大数据无线传输平台物联网水质物联网水污染物联网大气物联网网格化物联网在线仪表监控软件无线传输软件大数据平台GPRS无线传输LORA传输zigbee无线传输大数据云平台县级远程监控中心多功能环境监测主控箱智慧土壤智慧空气智慧水利水务河长制水质远程监测站水质监测水质监测指标水质监测常规五参数水质污染监测站污水远程监测地表水监测地下水监测水位监测自动雨量监测站水位自动监测站城市积水监测站水产养殖监测站土壤监测土壤监测指标土壤墒情监测站土壤墒情自动监测站盐碱地暗管排盐效果监测站农业灌溉用水效果监测站便携式水质检测套装温室大棚环境监测站空气质量监测指标网格化空气质量微型监测站标准四参数网格化大气质量微型监测站标准六参数网格化大气质量微型监测站标准八参数网格化大气质量微型监测站自动气象站网格化空气站大气微型站气象雨量自动监测站自动气象远程大数据监测系统多参数气象墒情自动监测站扬尘监测站VOCS/VOC排放远程大数据监测系统有毒有害气体监测站森林自动气象监测站森林火险预警监测站土壤墒情远程大数据监测系统盐碱地暗管排盐效果远程大数据监测系统温室大棚环境远程大数据监测系统农业灌溉用水效率远程大数据监测系统自动气象远程大数据监测系统森林火险预警系统扬尘远程大数据监测系统VOCS/VOC排放远程大数据监测系统有毒有害气体远程大数据监测系统水位远程大数据采集监测系统城市积水大数据采集监测系统水污染远程大数据采集监测系统水产养殖远程大数据监测系统数字式电导率传感器数字智能电导率传感器数字式远程电导率传感器电导率测定数字式PH/ORP传感器数字式远程PH/ORP传感器数字式溶氧传感器数字式远程溶氧传感器浊度传感器COD传感器氨氮水质传感器电阻率传感器总磷总氮水质传感器亚硝酸盐水质传感器硫化氢水质传感器双翻斗式雨量计0.2mm单翻斗式雨量计0.5mm土壤湿度传感器土壤温度传感器土壤EC传感器土壤PH值传感器大气温度传感器大气湿度传感器风向传感器风速传感器大气压力传感器光照度变送器PM2.5变送器PM10变送器蒸发传感器日照强度传感器露点温度参数光合有效辐射PAR空气质量CONO2SO2O3监测模块多参数一体化空气传感器四气两尘传感器空气气体颗粒物监测空气固体颗粒物监测
    留言咨询
  • 物联网大数据无线传输平台物联网水质物联网水污染物联网大气物联网网格化物联网在线仪表监控软件无线传输软件大数据平台GPRS无线传输LORA传输zigbee无线传输大数据云平台县级远程监控中心多功能环境监测主控箱智慧土壤智慧空气智慧水利水务河长制水质远程监测站水质监测水质监测指标水质监测常规五参数水质污染监测站污水远程监测地表水监测地下水监测水位监测自动雨量监测站水位自动监测站城市积水监测站水产养殖监测站土壤监测土壤监测指标土壤墒情监测站土壤墒情自动监测站盐碱地暗管排盐效果监测站农业灌溉用水效果监测站便携式水质检测套装温室大棚环境监测站空气质量监测指标网格化空气质量微型监测站标准四参数网格化大气质量微型监测站标准六参数网格化大气质量微型监测站标准八参数网格化大气质量微型监测站自动气象站网格化空气站大气微型站气象雨量自动监测站自动气象远程大数据监测系统多参数气象墒情自动监测站扬尘监测站VOCS/VOC排放远程大数据监测系统有毒有害气体监测站森林自动气象监测站森林火险预警监测站土壤墒情远程大数据监测系统盐碱地暗管排盐效果远程大数据监测系统温室大棚环境远程大数据监测系统农业灌溉用水效率远程大数据监测系统自动气象远程大数据监测系统森林火险预警系统扬尘远程大数据监测系统VOCS/VOC排放远程大数据监测系统有毒有害气体远程大数据监测系统水位远程大数据采集监测系统城市积水大数据采集监测系统水污染远程大数据采集监测系统水产养殖远程大数据监测系统数字式电导率传感器数字智能电导率传感器数字式远程电导率传感器电导率测定数字式PH/ORP传感器数字式远程PH/ORP传感器数字式溶氧传感器数字式远程溶氧传感器浊度传感器COD传感器氨氮水质传感器电阻率传感器总磷总氮水质传感器亚硝酸盐水质传感器硫化氢水质传感器双翻斗式雨量计0.2mm单翻斗式雨量计0.5mm土壤湿度传感器土壤温度传感器土壤EC传感器土壤PH值传感器大气温度传感器大气湿度传感器风向传感器风速传感器大气压力传感器光照度变送器PM2.5变送器PM10变送器蒸发传感器日照强度传感器露点温度参数光合有效辐射PAR空气质量CONO2SO2O3监测模块多参数一体化空气传感器四气两尘传感器空气气体颗粒物监测空气固体颗粒物监测
    留言咨询

给水质量对其影响相关的试剂

给水质量对其影响相关的方案

  • 默克:给水质量对超纯水制备的影响(RD004)
    超纯水的制备通常只为电阻率来进行水质监控。这种制备方法需要若干步骤。以本地用水为纯化水源时,必须在最终精制之前对其进行预处理。纯化的初始步骤包括DI,RO/EDI连用。尽管通过这两种技术都能获得电阻率较高的超纯水,但是更精确地监控超纯水质量的TOC时,差异就很明显了
  • 全自动电位滴定仪在锅炉水质测定中的应用
    锅炉已广泛应用在工业生产和人们生活之中。锅炉通常分为电站锅炉、工业锅炉和生活锅炉三类。电站锅炉是火力发电厂中三大主机之一,它所产生的具有一定热能的蒸汽进入汽轮机,推动汽轮机转动,使热能转变为机械能。工业锅炉生产的蒸汽常常直接供给其他工业生产,例如化肥厂、造纸 厂、制药厂、印染厂、糖厂等,是各种业生产的动力设备。生活用锅炉所生产的蒸汽或热水也常常供生产和日常生活取暖之用。通常把取暖用的蒸汽锅炉归并在工业锅炉中,而只生产热水的取暖用锅炉常称为热水锅炉。 锅炉运行时是通过蒸汽将热能转化为机械能,因此锅炉用水的质量影响到锅炉运行的效率和安全。现在国家已出台GBl576—2001《工业锅炉水质》和GB12145-89《火力发电机组及蒸汽动力设备水汽质量标准》用于控制锅炉给水、炉水和补给用水的质量以及蒸汽质量。 本文介绍了全自动电位滴定仪在锅炉水质测定中的应用
  • 哈希解决方案 钢铁工业行业 有色金属冶炼给水系统
    哈希有色金属冶炼给水系统监测方案,特异性地根据不同的有色金属冶炼给水系统的类别如:脱盐水水处理系统、软水水处理系统、净循环水处理系统、浊循环水处理系统等给出了相对应的不同解决方案,并详细列举了浊度、pH、电导率等参数在不同系统中的数值要求,并根据不同要求给出不同解决方案,更好的助力您的水质分析测试。更多详细内容,请您下载后查看。

给水质量对其影响相关的论坛

  • 纯水质量对自动生化分析仪及检测结果的影响

    0.2MΩ·cm)的标准。三级纯水虽然已经去除了大部分杂质,但其中的离子等杂质浓度还较高,会影响生化分析仪的微量检测,因此必须将三级纯水进一步去离子以达到一级纯水(电阻率≥lOMΩ·cm)的标准才能用于生化检测。1.3.1方法:离子交换树脂法是纯水制备的常用方法,所用的部件就是离子交换纯化柱(罐),包括阴离子交换柱、阳离子交换柱和混合柱等,试剂为阴阳离子交换树脂。阴阳离子交换树脂一般是由苯乙烯聚合成后再通过二乙烯苯交联得到多孔网状骨架结构,然后在骨架上连接活性基团而形成的高分子聚合物。离子交换树脂所连接的活性基团可分为酸性基团和碱性基团两大类型。连接酸性基团的离子交换树脂称为阳离子交换树脂,连接碱性基团的树脂称为阴离子交换树脂。1.2.2原理:①阳离子交换柱原理即硬水软化原理:阳离子交换树脂中的酸性基团有磺酸基(-S03H)、羧基(一COOH)和苯酚基(-C6H40H)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。②阴离子交换柱的原理:阴离子交换树脂中的碱性基团有季氨基、氨基(-NH2)和亚氨基(=NH)等。它们在水中能生成OH-离子,可与各种阴离子起交换作用。③混合柱:当两者串联使用或混合使用时,产物就只有水。1.2.3影响因素:①离子交换树脂的质量:离子交换树脂是有使用寿命限制的,当离子交换达到一定量时就达到饱和,需要进行再生处理,因此质量越好总量越大其使用期限越长。②阴阳离子交换树脂的连接方式:复床式:若干个阳离子交换柱和若干个阴离子交换柱串联而成,阳在前阴在后,其优点是再生方便,缺点是出水质量不高(单级复床式出水电阻率只有0.5 MΩ·cm,双级复床式出水电阻率为2 MΩ·cm)。混床式:将阳离子树脂和阴离子树脂以1:2容积比均匀混合装入同一个交换柱内而成,优点是出水纯度高(电阻率≥1OMΩ.cm),缺点是再生困难。联合式:将复床式和混床式串联起来即成,出水质量高(电阻率最高可达18. 3MΩ.cm,即超纯水),使用寿命长。③三级纯水的纯度:当三级纯水质量不合格,其中一些非离子杂质通过离子交换柱时就会影响离子交换柱的使用寿命并造成出水水质的降低。有些开放性的纯水系统将生成的三级纯水储存于水箱中以备其它用途使用时储存时间过长或其它原因导致的二次污染也会使水纯度下降2.1 不合格纯水中的杂质成分 纯水质量不合格也就意味着纯水系统水纯化的失败,可能出现在原水预处理过程、反渗透过程、离子交换过程和纯水储存中的任何一步。无论哪一步失败,其杂质来源无外乎自来水和纯水机水通道的污染物,主要有:①离子,常见的有H+,Na+,K+,NH4+,Mg2+,Ca2+,Fe3+,Cu2+,Mn2+,Zn2+,Al3+等阳离子和F-,CI-,N03-,HC03-,S042-,P043-,H2P04-,HSi03-等阴离子;②有机物质,如农药、烃类、醇类和酯类等;③颗粒物,如自来水管道中的铁锈和泥沙等;④微生物;⑤溶解气体(Nz,02,C12,H2S,CO,CO2,CH4等)。2.2不同杂质成分对生化分析仪及检测结果的影响2.2.1 离子含量高的影响:①最直接的影响就是对血清(浆)中同种离子测定结果的升高,如对Mg2+,Ca2+,Fe3+,Cu2+,Zn2+等的测定,同时也对这些项目的标定产生影响;②由于很多金属离子都是酶的辅酶因子,因此当金属离子含量高时往往影响酶活性的检测(如Mg2+是多种磷酸化激酶的激活剂,水中含量超标时会导致这些酶活性测定值的升高;而许多重金属离子则对酶有抑制作用,导致酶活性下降);③很多阴离子也作为酶的辅因子存在,对酶活性测定产生影响(如CI-对α-淀粉酶就有激活作用);④离子含量高的水更容易形成结晶和导致蛋白等有机物变性附着于管道系统,从而使得生化分析仪管道系统更易堵塞,最终造成测定失真或失败;同时,在使用其对反应杯进行清洗时也很难清洗干净,会加速反应杯的老化和损坏,使杯空白升高。2.2.2有机物质的影响:有机物质的影响主要在于对类似物质测定时导致类似物质测定结果的升高。同时,有机物含量升高也会加速管道系统和反应杯的清洗困难及老化。2.2.3颗粒物的影响:颗粒物一般很难通过纯水系统进入生化分析仪管道和反应系统,其来源一般都是储水箱发生二次污染,但是一旦进入除了会导致吸光度升高外,还很容易堵塞管道和损坏反应杯。2.2.4微生物的影响:微生物的去除主要依赖原水的预处理,有些纯水系统还在超纯水处加装紫外杀菌或者微滤、超滤等装置,进一步除去水中残余的细菌、微粒、热源等。但一旦预处理失败或纯水储存箱被二次污染,微生物及其产物就能进入生化分析仪管道系统和反应系统,可能出现的情况有两种:①微生物在管道及反应系统孳生,导致管道堵塞,同时令吸光度和杯空白升高;②微生物产生特定的酶对生化分析仪酶测定产生影响,具体产生什么影响取决于污染菌的类型。 2.2.5溶解气体:溶解气体增多产生的影响有:①对同种气体的测定的影响;②对水的pH值也产生影响,如C02,Cl2,H2S等溶解增多导致水pH值的下降,也对pH值依赖性较强的生化项目测定产生影响;③某些气体如C12增多,因其自身氧化性较强,会对与氧化还原反应相关的生化测定项目产生影响,如对基于340 nm处NADH和NADPH有吸收峰而建立的ALT,AST,BUN等的测定方法,会导致测定值的升高。 2.2.6其它杂质的影响:有些纯水系统也将最终生成的超纯水或一级纯水储存于水箱中,当水箱有生锈情况时导致铁测定不正常,通常会出现在压力水箱中;还有当机械装置密封不严造成的漏油时导致TG测定结果升高。这些情况虽然少见,但也最容易被忽视。 3讨论3.1 实验室常用的自动化纯水系统有两种:①大型蒸馏器系统,日出水量在100 L左右,原水利用率10%—15%,能耗大,自动化程度低,制备的蒸馏水纯度一般较低,适用范围较窄,现在基本已经被淘汰。②反渗透的中央纯水系统,由机械过滤、活性炭吸附、反渗透膜和离子交换树脂等组成,日产水量500 L左右,原水利用率30%—40%,自动化程度高,能耗低,主部件可反复使用,出水纯度高,目前使用广泛。另外,有些实验室因条件所限,直接购买商品化纯净水使用,但商品化纯净水多为饮用水,其标准与实验室用水标准有所不同,很容易对检测造成影响。3.2评价水质的常用指标①电阻率,是衡量实验室用水导电性能的指标,其随着水内无机离子的减少而增大,但由于水自身的解离作用,电阻率最大只能达到18.2MΩ.cm左右,是检测水中离子浓度的主要指标;②总有机碳,是指水中碳的浓度,反映水中有机化合物的含量;③颗粒,反映水中颗粒物的浓度;④热原,通常为革兰氏阴性细菌的细胞壁代谢产物。3.3

  • 纯水质量对全自动生化分析仪及检测结果的影响

    0. 2MΩ·cm)的标准。三级纯水虽然已经去除了大部分杂质,但其中的离子等杂质浓度还较高,会影响生化分析仪的微量检测,因此必须将三级纯水进一步去离子以达到一级纯水(电阻率≥lOMΩ·cm)的标准才能用于生化检测。1.3.1方法:离子交换树脂法是纯水制备的常用方法,所用的部件就是离子交换纯化柱(罐),包括阴离子交换柱、阳离子交换柱和混合柱等,试剂为阴阳离子交换树脂。阴阳离子交换树脂一般是由苯乙烯聚合成后再通过二乙烯苯交联得到多孔网状骨架结构,然后在骨架上连接活性基团而形成的高分子聚合物。离子交换树脂所连接的活性基团可分为酸性基团和碱性基团两大类型。连接酸性基团的离子交换树脂称为阳离子交换树脂,连接碱性基团的树脂称为阴离子交换树脂。1.2.2原理:①阳离子交换柱原理即硬水软化原理:阳离子交换树脂中的酸性基团有磺酸基(-S03H)、羧基(一COOH)和苯酚基(-C6H40H)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。②阴离子交换柱的原理:阴离子交换树脂中的碱性基团有季氨基、氨基(-NH2)和亚氨基(=NH)等。它们在水中能生成OH-离子,可与各种阴离子起交换作用。③混合柱:当两者串联使用或混合使用时,产物就只有水。1.2.3影响因素:①离子交换树脂的质量:离子交换树脂是有使用寿命限制的,当离子交换达到一定量时就达到饱和,需要进行再生处理,因此质量越好总量越大其使用期限越长。②阴阳离子交换树脂的连接方式:复床式:若干个阳离子交换柱和若干个阴离子交换柱串联而成,阳在前阴在后,其优点是再生方便,缺点是出水质量不高(单级复床式出水电阻率只有0.5 MΩ·cm,双级复床式出水电阻率为2 MΩ·cm)。混床式:将阳离子树脂和阴离子树脂以1:2容积比均匀混合装入同一个交换柱内而成,优点是出水纯度高(电阻率≥1OMΩ.cm),缺点是再生困难。联合式:将复床式和混床式串联起来即成,出水质量高(电阻率最高可达18. 3MΩ.cm,即超纯水),使用寿命长。 ③三级纯水的纯度:当三级纯水质量不合格,其中一些非离子杂质通过离子交换柱时就会影响离子交换柱的使用寿命并造成出水水质的降低。有些开放性的纯水系统将生成的三级纯水储存于水箱中以备其它用途使用时储存时间过长或其它原因导致的二次污染也会使水纯度下降 2.不合格纯水中的杂质成分2.1 不合格纯水中的杂质成分 纯水质量不合格也就意味着纯水系统水纯化的失败,可能出现在原水预处理过程、反渗透过程、离子交换过程和纯水储存中的任何一步。无论哪一步失败,其杂质来源无外乎自来水和纯水机水通道的污染物,主要有:①离子,常见的有H+,Na+,K+,NH4+,Mg2+,Ca2+,Fe3+,Cu2+,Mn2+,Zn2+,Al3+等阳离子和F-,CI-,N03-,HC03-,S042-,P043-,H2P04-,HSi03-等阴离子;②有机物质,如农药、烃类、醇类和酯类等;③颗粒物,如自来水管道中的铁锈和泥沙等;④微生物;⑤溶解气体(Nz,02,C12,H2S,CO,CO2,CH4等)。2.2不同杂质成分对生化分析仪及检测结果的影响2.2.1 离子含量高的影响:①最直接的影响就是对血清(浆)中同种离子测定结果的升高,如对Mg2+,Ca2+,Fe3+,Cu2+,Zn2+等的测定,同时也对这些项目的标定产生影响;②由于很多金属离子都是酶的辅酶因子,因此当金属离子含量高时往往影响酶活性的检测(如Mg2+是多种磷酸化激酶的激活剂,水中含量超标时会导致这些酶活性测定值的升高;而许多重金属离子则对酶有抑制作用,导致酶活性下降);③很多阴离子也作为酶的辅因子存在,对酶活性测定产生影响(如CI-对α-淀粉酶就有激活作用);④离子含量高的水更容易形成结晶和导致蛋白等有机物变性附着于管道系统,从而使得生化分析仪管道系统更易堵塞,最终造成测定失真或失败;同时,在使用其对反应杯进行清洗时也很难清洗干净,会加速反应杯的老化和损坏,使杯空白升高。2.2.2有机物质的影响:有机物质的影响主要在于对类似物质测定时导致类似物质测定结果的升高。同时,有机物含量升高也会加速管道系统和反应杯的清洗困难及老化。2.2.3颗粒物的影响:颗粒物一般很难通过纯水系统进入生化分析仪管道和反应系统,其来源一般都是储水箱发生二次污染,但是一旦进入除了会导致吸光度升高外,还很容易堵塞管道和损坏反应杯。2.2.4微生物的影响:微生物的去除主要依赖原水的预

给水质量对其影响相关的资料

给水质量对其影响相关的资讯

  • 炼油厂水质监测:实时数据如何影响水质、合规性和水的重复利用
    介绍炼油厂必须密切控制其用水并监测水质,确保平稳高效运行。炼油厂平均消耗大约1.5桶水来对1桶原油进行冲洗(1)。因此,从进水到排水对水进行数量和质量管理对于工艺控制、效率和合规性至关重要。装置需要实时数据来做出快速决策,以保护设备,优化工艺并满足法规要求。这些决策和工艺改进可以节省大量成本和时间,并推动水重复利用和循环策略。炼油厂用水在炼油厂或石化联合企业中,用水类型多种多样,从高盐水到污水再到纯蒸汽冷凝液。对于这些不同类型的水,可靠监测和跟踪水质有不同的要求并面临着不同的挑战。例如,现场的许多工艺都需要冷却或加热用水。这包括冷却塔用水、密闭式循环冷却水、一次性冷却水以及用于发生蒸汽的锅炉给水(1)。蒸汽系统需要非常洁净的锅炉给水,以最大程度地减少污垢和结垢。如果装置能够快速确定水的纯度是否会受到影响,则可以避免设备损坏和计划外停车。需要设置在这些应用中能够可靠地监测水质并提供响应数据的分析仪器,以支持快速决策。以下是炼油厂用水的常见示例以及监测主要目标和要求:源水通常来自地表水或地下水。这些水进行处理后可用于不同工艺目的,例如冷却和加热。通常采用化学混凝和过滤或有时采用活性炭或离子交换对源水进行精处理。在这些系统中,跟踪有机物脱除率对于管理处理工艺以及进行适当调整(如当监控数据要求时进行反冲洗或再生)非常重要。对于锅炉给水,必须采用超纯水,以避免任何设备损坏或计划外停车。反渗透是锅炉给水常见的最终处理工艺,因为它可以将污染物脱除到低含量水平。因此,分析仪器出色的响应和灵敏度成为有助于控制成本的关键。炼油厂工艺水可能非常具有挑战性,如脱盐水或酸性水。处理这些基质涉及盐、固体和其它无机污染物,以对处理和分离工艺进行优化并确保产品质量。分离工艺可包括溶气气浮、蒸馏、化学处理和物理过滤。炼油厂的废水需要复杂的处理才能满足严格的排放标准。跟踪废水进水变化并对挑战性基质进行处理是对处理进行优化的关键。对生物处理进行监测是实现污染物脱除和维持处理系统健康的重要步骤。膜生物反应器能够尽量地减少占地面积并最大程度地提高处理效率。在这里,养分和负荷平衡是保证质量的关键。通过TOC对水进行监测通过监测总有机碳(TOC),可以对整个炼油厂用水中有机物进行跟踪。可以在实验室检测在整个设施的不同取样点所获得样品中的TOC,也可以实施TOC在线监测。所有TOC分析仪将有机化合物氧化成CO2,然后检测产生的CO2的量。基于最终用途,有多种类型的氧化和检测方法可以采用。监控TOC的一个主要优势在于能够通过连续监测做出实时决策。与需要数小时乃至数日才能获得结果的化学需氧量(COD)或生化需氧量(BOD)等需氧量法相反,TOC分析仪可在数分钟内提供所需的信息。TOC直接检测有机污染物负荷量、变化和脱除率,这是故障排除的关键,并有助于做出可行的决策。通过TOC,炼油厂能够:与其它方法相比,更快地捕获所有关键污染物数据;直接监测有机化合物的负荷量和脱除率;跟踪由于泄漏或其它工艺紊乱而导致的变化;确保对整个装置实施质量控制,提供准确结果。图1:石油炼化工艺中的有机物监测原水水质从一开始,原水水质就在处理或使用原水的每一下游工艺中起着重要作用。通过监测有机物来跟踪质量变化,可以提供有关如何对水进行处理的关键信息。原水可来自海洋、河流或湖泊、地下水含水层,或与冷凝水回水合并。回水质量可能会因生产而发生变化,自然水源也可能会随着季节和暴风雨的变化而变化。锅炉给水和设备保护有时将原水与冷凝水回水合并用作锅炉补给水。锅炉补给水必须非常纯净,以保护锅炉和汽轮机等设备,同时还可以高效地提供蒸汽。为避免在锅炉高温和高压条件下有机物降解为酸或其它离子,高度灵敏的检测至关重要。许多炼油厂将TOC维持在1 ppm以下,甚至低于100 ppb,以保护设备。需要进行监测的关键特性包括在极低检测限值时的稳定性、确定真实污染事件的响应性和准确性以及即使在pH值或样品电导率发生变化的情况下也能捕获所有有机物信息的优异技术。在这类情况下,将有机物因素与离子因素分开是准确检测的关键,也是避免因样品中其它离子或通过氧化产生的离子引起的假阳性或阴性的关键。有机物采用膜电导率检测侧重于监测真实TOC,而不会存在任何干扰。即使在很短的时间内,低下的热性能也可能致使装置花费数百万美元。在德克萨斯州,一家炼油厂因蒸汽冷凝液被污染,从而导致设备结垢和计划外停车。最初采用的监控技术是将热的冷凝水从现场带到实验室进行评估,但这既不能捕获到污染事件,也无法通知操作人员进行调整。通过实施实时热冷凝水监测,炼油厂就能够对直接取样进行评估并更好地保护资本设备。这还会延长装置的生产运行时间。使用在线TOC监测热的冷凝液,可以准确、可靠地捕获碳氢化合物的泄漏事件。数据显示正常浓度约为2 mg/L。如果发生小污染事件,浓度约为20-40 mg/L,对于大污染事件,将使浓度升至400 mg/L。工艺水在炼油厂,同样使用水并从许多加工步骤中将水分离出来。必须对原油冲洗脱盐装置用水进行有效管理,以免损坏下游设备。必须脱除固体和盐分,油水分离对于优化生产至关重要。蒸汽汽提和分馏的酸性水是现场另一种具有挑战性的水。通常,汽提水及酸性水通常含有大量H2S和NH3,但其它污染物会导致结垢、腐蚀或起泡。现场使用的其它工艺用水包括脱氢、洗涤和催化再生应用(2)。为了避免设备损坏或装置停车,必须首先跟踪、分离和脱除污染物。TOC快速简单,用于检测工艺水中的碳氢化合物及其分解产物。对这种具有挑战性的工艺水进行监测需要采用具有优异技术的手段,从而应对各种有机物、高盐、样品不断变化的pH值和电导率,同时能够进行冲洗或稀释,以延长维护周期。能够适合于高盐应用而又无需频繁更换硬件部件并不以其它方式来牺牲性能(准确性和精确性)的有机物监测技术很少见。不过,超临界水氧化等方法是专为高盐应用而设计的。通过采用该技术,盐不会干扰或影响氧化。当用于工艺监测时,TOC有助于建立基线,及时发现泄漏,从而操作人员可立即采取纠正措施。废水 — 进水、工艺控制和排放当从设施各工艺将水收集后,必须在排放前对其进行处理。典型的处理包括一级沉降、活性污泥和二级生物处理。对废水进水特性进行监测有助于控制工艺,以确保生物处理部分充分分解污染物,然后再进行进一步处理。不断发展的趋势是采用效率更高的处理技术,如膜生物反应器结合了物理和生物处理。此外,厌氧生物处理需要稳定的水质,以最大程度地提高性能并优化热量产生以满足设施其它加热需求。下游处理还可能涉及反渗透和结晶,以便处理过量的盐分。越来越多的污水处理设施不再仅仅监测排放水质,还开始监测污水处理过程的上游,以检查整个污水处理厂进水发生了什么变化,峰值或高负荷量来自何处以及这些可能对下游处理造成何种影响。如果负荷量增大,在水污染物浓度较低的时段,通常可利用缓冲池或均衡池通过计量将水缓慢回流到工艺流程中。尽管许多工业排放许可证都是基于COD作为污染的衡量标准而编写,但COD很难用于工艺决策,同时很难对工艺废水变化做出快速响应。COD通常需要2-3个小时才能获得结果,并使用危险化学品。由于COD检测的是样品对氧气的化学吸收,因此许多不同的物种都会对COD产生影响,包括有机和无机化合物,并且其中几种会造成干扰,如亚硝酸盐、亚铁和氯化物。有机物对COD的影响不均等,有些耐化学氧化,如苯。相反,TOC能够在数分钟内获得结果,从而做出实时决策,同时能够直接检测废水处理设施中的有机物负荷量、分离效果和脱除率。炼油厂废水普遍含有大量悬浮固体,含盐,pH值不断发生变化并存在各种有机污染物,因此需要一种强大的氧化技术来捕获污染物的负荷量和变化,但同时还能够应对样品的复杂性。这种高效捕获所有有机物的技术就是高温、非催化燃烧,其能够实现完全氧化,而不用担心催化剂降解或效率会随着时间推移而降低。通过提供总氮(TN)或挥发性有机碳(VOC)检测器(对于某些废水而言,TN和VOC是两个重要的监测参数),可以进一步增强废水的处理效果。在这些情况下,不仅需要找到合适的分析工具,而且还要找到合适的支持合作伙伴,从而使设施专注于其运行,而设备制造商可以提供充分的分析支持。水重复利用和水循环通过在现场对水进行循环利用,炼油厂可以大大减少总水足迹,并实现更具可持续性的水平衡。其它优势包括节省能源处理成本,减少需要处理的废水量以及遵守相关法规或准则。水质是现场水循环利用或将废水排放到污水处理设置的决定性因素,因此炼油厂需要快速获得这些信息。以往,由于监测技术不够快和/或无法提供可信赖的数据,污染事件难以实时监测。现在,TOC分析能够提供快速、定量数据来检测可能影响设备、工艺和/或产品的有机物负荷量偏差。结论炼油厂水足迹很大,主要用于冷却和加热。其它主要工艺步骤也会加大用水量。水质监测有助于推动水循环利用、废水处理和工艺决策,以管理和最大程度地减少水足迹,同时还符合法规要求。大多数进入水系统的污染物来自天然有机物,主要产品为有机物,主要排放许可证所关注的也是有机物含量,TOC检测为实时决策和改进工艺控制提供了一种有效的方法。很显然,从河流取水到向河流排水,在整个炼油厂对有机物进行直接监测对于运营效率、成本管理和工厂可持续性发展至关重要。参考文献Blieszner, John Henderson, Rob Weaver, Laura E. “Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability, Executive Summary of Final Report.” January 2016. Jacobs Consultancy Inc. for the US Department of Energy. https://www.energy.gov/sites/prod/files/2016/03/f30/US%20DOE%20Refinery%20Water%20Study.pdf“Managing Water Usage in Petroleum Refineries.” 25 July 2022. Sensorex. https://sensorex.com/managing-water-usage-petroleum-refineries/#:~:text=These%20processes%20are%20known%20to,for%20every%20 gallon%20of%20 gasoline◆ ◆ ◆联系我们,了解更多!
  • 千人齐聚深圳,2020给水大会盛大开幕!
    10月12-14日,“2020 给水大会”在深圳市龙岗区隆重举行。来自全国各地自来水司、水务企业、水行业研究院所、水质检测企业等超过1200名代表参加了大会,会议现场人声鼎沸,交流气氛热烈!开幕式现场图01技术报告会上,作为主办方,清时捷董事长黄晓平先生受邀进行了开幕式致词。并以《工艺服务型检测体系建设对提升化验中心水质监管水平的意义》为题,发表了主旨演讲,探讨水质检测新思路。清时捷董事长黄晓平先生作开幕式致词清时捷董事长黄晓平先生作技术报告02展位聚焦大会首日,清时捷展位上参会嘉宾络绎不绝。携带的厂级微量自动化安全实验室、水质在线分析系统以及次氯酸钠消毒检测仪等产品亮相吸引了大批现场专业人员的眼球,清时捷洽谈室内更是贵宾云集。清时捷展位及洽谈室现场图在场的清时捷工作人员与来访的客户在产品的功能特性介绍、解决方案、合作意向等诸多方面一一进行了深入的沟通和交流。展位现场图精选清时捷工作人员与参观客户讲解非常感谢莅所有临清时捷展位参观与指导的新老客户。在此,清时捷也预祝此次给水大会能够圆满落幕!让检验蕴含思想,为客户创造价值。清时捷将继续秉承这一理念,不断推陈出新,用于创新,与您共创辉煌!大会还在继续,清时捷诚邀请您莅临会场参观与指导!- END -●往期推荐 ●● 清时捷联合主办2020年给水大会诚邀您参加● 清时捷|厂级和班组检验解决方案● 清时捷/城镇供水过程控制与水质工艺管理信息化方案● 清时捷|次氯酸钠消毒工艺全过程监控解决方案长按关注清时捷公众号微信号 : sinsche-com联系热线:400-660-7869
  • ATP 测定在石油给水输送系统中的应用
    ATP 测定在石油给水输送系统中的应用哈希公司加拿大西部一家石油生产商利用第二代ATP检测技术,其给水输送系统进行评估。石油开采企业用水来自地下苦咸水井,井水通过 5 公里长水管输送至工厂,并在存放于大储水罐中,用于工艺控制。现场审计旨在评估整个输水系统的微生物污染情况。ATP检测 与传统的异养菌平板计数(HPC)测定法不同,通过检测所有生物体(包括不能培养的活体微生物浓度)测定真实的微生物总浓度。最初三天内分别在水源水取样点、储水罐进水口和储水罐出水口进行三组测量。报告的结果单位为 pg ATP/mL,对于未经处理的工艺用水,通常认为结果 尽管苦咸水源水中微生物总浓度相对较低且稳定,但水管和储水罐中微生物总浓度显著增大,导致输送到工艺过程中的微生物浓度更高(图 1)。图1:储水罐 755T - 系统评估微生物浓度升高存在两个风险:输送系统微生物腐蚀、水处理和蒸汽形成所用工艺负荷增大。随后,运营商决定进行为期三天的系统消毒,清洗给水输送管道和储水罐。ATP 浓度显著降低,因此认为清洗有效,审计期间编制的ATP测定结果为水质管理计划中防止给水系统微生物积累提供起始点。清洗之后,输送到工厂或储水罐流出的水中微生物污染不再增加(图 2)。 图2:储水罐出水口(pg ATP/mL)第二代ATP 测定法直接评估系统微生物污染,可快速验证清洗措施的有效性。该方法检测范围更宽、灵敏度更高,为防止管道或储水罐微生物腐蚀或生物膜形成提供第一道防线。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制