改性剂

仪器信息网改性剂专题为您整合改性剂相关的最新文章,在改性剂专题,您不仅可以免费浏览改性剂的资讯, 同时您还可以浏览改性剂的相关资料、解决方案,参与社区改性剂话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

改性剂相关的耗材

  • 基质改性剂 | B0190634
    产品特点:用于石墨炉原子吸收光谱仪的基质改性剂珀金埃尔默的优质基质改性剂可为您提供最佳分析性能和尽可能最低的检出限。珀金埃尔默的基质改性剂可使分析物在受热时保持稳定,从而允许使用更高的热解温度并能减少背景吸收和消除潜在干扰。特点和优势:● 高纯度化合物可最大限度减小受污染的风险● 由于分析物的挥发度降低,因此可采用最佳的石墨炉程序订货信息:基质改性剂改性剂浓度体积部件编号Mg(NO3)21% Mg( 硝酸盐 )100 mLB0190634Pd1% Pd( 硝酸盐 )50 mLB0190635NH4H2pPO410% NH4H2PO4100 mLN9303445
  • 美国PerkinElmer 基质改性剂 | B0190635
    用于石墨炉原子吸收光谱仪的基质改性剂珀金埃尔默的优质基质改性剂可为您提供最佳分析性能和尽可能最低的检出限。珀金埃尔默的基质改性剂可使分析物在受热时保持稳定,从而允许使用更高的热解温度并能减少背景吸收和消除潜在干扰。我司是美国PerkinElmer授权代理商,所有产品都含有防伪标签,扫码可查询真伪.eatures and Benefits• High-purity compounds minimize the risk of contamination• Optimum graphite furnace program can be used due to reduced analyte volatilityMatrix Modifiers改进剂 浓度 体积 零件编号Mg(NO3)2 1% Mg(硝酸盐) 100ml B0190634Pd 1% Pd(硝酸盐) 50ml B0190635NH4H2PO4 10% NH4H2PO4 100ml N9303445
  • 美国PerkinElmer 基质改性剂 | B0190635
    用于石墨炉原子吸收光谱仪的基质改性剂珀金埃尔默的优质基质改性剂可为您提供最佳分析性能和尽可能最低的检出限。珀金埃尔默的基质改性剂可使分析物在受热时保持稳定,从而允许使用更高的热解温度并能减少背景吸收和消除潜在干扰。我司是美国PerkinElmer授权代理商,所有产品都含有防伪标签,扫码可查询真伪.eatures and Benefits• High-purity compounds minimize the risk of contamination• Optimum graphite furnace program can be used due to reduced analyte volatilityMatrix Modifiers改进剂 浓度 体积 零件编号Mg(NO3)2 1% Mg(硝酸盐) 100ml B0190634Pd 1% Pd(硝酸盐) 50ml B0190635NH4H2PO4 10% NH4H2PO4 100ml N9303445

改性剂相关的仪器

  • 1260 Infinity 分析型超临界流体色谱(SFC)系统1260 Infinity 分析型 SFC 系统是简单易用的超临界流体色谱,适用于手性和 α-手性分离,具有类似液相色谱系统的灵敏度和 UHPLC 相似的能力范围。 SFC/UHPLC 混合型系统独 特的 SFC/UHPLC 转换能力可在同一系统中提供两种互补分离模式。这就能够智能化筛查最合适的方法,并为复杂的样品和杂质分析提供全面的信息。Agilent 1260 SFC 解决方案包括最广泛和最多样化的 SFC 性价比范围 — 从简单的已有 1100/1200/1260 液相色谱系统的 SFC 升级到完整的 SFC/UHPLC/MS 解决方案。您可以通过 Agilent 6100 (SQ)、6200 (TOF)、6400 (QTOF)、6500 (QQQ)系列、安捷伦蒸发光散射检测器 (ELSD) 或火焰离子化检测器 (FID) 提高检测能力。产品特点:● 可提供完整的系统或对现有的 Agilent 1100、1200 和 1260 液相色谱系统进行升级● 无需平衡,即可在同一系统的 UHPLC/SFC 中实现独特的切换功能● 唯一耐压 600 bar 的 SFC 系统● 为种类多样的有机改性剂提供不同的溶剂选择,发挥独特的选择性● 与 UHPLC 相似的灵敏度● 使用标准级气态 CO2,可将运行费用降低 10 至 15 倍● 可选的完整方法开发功能,适用于快速简单的色谱柱与改性剂选择● 与 6100 (SQ)、6200 (TOF)、6400 (QTOF)、6500 (QQQ) 系列液质联用系统的质谱兼容性● 溶剂消耗低,产生废液少,实现真正的绿色化学● 安捷伦的仪器和服务质量
    留言咨询
  • 绿色环保的高通量纯化方案 Prep SFC 150 Mgm系统设计专用于高通量的半制备到制备级纯化应用,适用于重复进样(大批量纯化)手性和非手性化合物。该系统的流速高于传统HPLC系统,但不会引起背压的大幅增加,可对化合物实现高速SFC纯化并获得更好的分离度,完成高纯度分离操作。因此,它非常适合正在寻找环保高通量纯化技术的实验室。 ?? 更加环保的高通量纯化方案 采用含助溶剂的CO2作为流动相时,SFC 150 Mgm系统的最大流速可达150 mL/min,因此可以使用19 mm和30 mm色谱柱。此系统还设计有六个馏分收集位置(各2L)。 SFC 150 Mgm系统由Waters Chromscope 2.0 SFC软件控制,运行环境是Windows 10,用户可通过全新的图形式直观界面对该系统进行控制。SFC 150 Mgm的流速高于传统HPLC系统,但不会引起背压的大幅增加,可对化合物实现高速SFC纯化并获得更好的分离度,完成高纯度分离操作。 因此,Waters Prep SFC 150 Mgm系统非常适合正在寻找环保高通量纯化技术的实验室。对于有更高环保需求的纯化实验室,减少正相溶剂的使用和处置至关重要,而Prep SFC 150 Mgm系统很好地解决了这一问题。 SFC系统以流体二氧化碳(CO2)作为主要流动相,搭配一种或多种有机溶剂使用,可在分析样品时更快地达到平衡、降低色谱柱内的压降、减少溶剂用量并降低成本。系统处理流程可重现,能够应对制药、生命科学、化学材料以及食品与环境领域的各种化合物纯化。 ? 系统特点 QGM低压四元梯度泵:此泵可用作SFC系统的助溶剂输送设备,泵送流速最高可达150 mL/min。 P200X CO2泵:此泵是一款高压输送泵,包含带凸轮驱动型蓝宝石活塞组件的不锈钢双泵头、自主灌注单向阀、压力传感器、压力计、无刷电机以及防爆片组件。根据泵的设计,它能够按照压力传感器和质量流量计的反馈自行进行控制。 改性剂液流注入器:此设计满足了客户希望“仅”注入改性剂液流的需求,其功能是使用标准2 mL定量环和5 mL注射器一次进样一个样品。这款设备使用户可以在样品的前后设置空气间隙,空气间隙可用作溶剂和样品之间的“缓冲剂”,从而降低稀释度。 制备馏分收集器:此收集器附带一个可伸缩前门,可轻松插入和取出2 L馏分收集瓶。收集器背侧的上部有一个排放口,其规格可与全球各类实验室的排放口相匹配。该收集器标配有一个可拆装的液体溢出盘。
    留言咨询
  • Prep SFC 150 AP系统专用于自动UV和/或MS引导的纯化操作Prep SFC 150 AP系统是市面上首款简便易用的制备型开床式系统,也是唯一一款集自动化样品处理、色谱柱切换、馏分收集以及馏分追踪于一体的SFC系统。药物研发实验室可将Prep SFC 150 AP系统与FractionLynx应用管理软件相结合,用于常规化合物的纯化。这套系统具有分离速度快、分离度高且通量高的特点。SFC的天然优势与沃特世享誉全球的专业服务和技术支持相结合,将为世界各地的纯化实验室带来稳定可靠且经济有效的解决方案。Prep SFC 150 AP系统用户使用Open Access设置即可将分析预筛选、纯化和馏分二次分析与AutoPurify相关联,从而实现 Prep SFC 150 AP纯化过程的自动化。该系统还提供适用于大批量纯化的重迭进样功能,可执行多次进样,并将多个峰的馏分收集到单独容器中。系统详情SFC系统以液态二氧化碳(CO2)作为主要流动相,搭配一种或多种有机溶剂使用,可在分析样品时更快地达到平衡、降低色谱柱内的压降、减少溶剂用量并降低成本。系统处理流程可重现,能够应对制药、生命科学、化学材料以及食品与环境领域的各种化合物纯化。主要特点QGM低压四元梯度泵:SFC系统的助溶剂输送泵,泵送流速最高可达150 mL/min。P200X CO2泵:这是一款高压输送泵,包含带凸轮驱动型蓝宝石活塞组件的不锈钢双泵头、自主灌注单向阀、压力传感器、压力计、无刷电机以及防爆片组件。这款泵设计独特,可根据压力传感器和质量流量计的反馈自动调控。改性剂液流注入器:此装置满足了客户希望“只”注入改性剂液流的需求。其功能是使用2 mL标准Loop环和5 mL注射器一次进样一个样品。使用该装置,用户可以在样品前后设置空气间隙,空气间隙可用作溶剂与样品之间的“缓冲剂”,从而减轻稀释程度。 2767样品管理器:开床式模块,用于进样和收集馏分。该系统为2767样品管理器配备了用于管理CO2的通风橱套件。用户需为该系统订购进样和收集管架,适用的管架根据用户的具体需求而定。
    留言咨询

改性剂相关的方案

改性剂相关的论坛

  • 【求助】手性物质分离改性剂

    大家好,我现在有一个碱性的手性产品,在用液相分析的时候,我发现样品的峰较拖尾,我用了三乙胺作为改性剂但是效果不好,是不是要用二乙胺呀?

  • 如何表征沥青中的改性剂?

    尊敬的各位,本人最近想使用SEM等设备表征沥青中的改性剂(SBS和PE),该如何做呢?问了仪器管理的老师,他们也不是很清楚。感谢高手回复!

改性剂相关的资料

改性剂相关的资讯

  • 傅立叶变换红外光谱法测定改性沥青中SBS改性剂含量解决方案
    傅立叶变换红外光谱法测定改性沥青中SBS改性剂含量解决方案 公路建设和养护对改性沥青的需求量上升,沥青改性技术也得到了日新月异的发展 ////////////SBS改性沥青是目前公路工程中用量最大的改性沥青品种,SBS的掺入,提高了沥青的高低温性能和弹性恢复性能。然而只有当基质沥青中SBS的掺入量达到合适的比例时,才能形成弹性稳定体系,发挥最好的路用性能,SBS的含量对SBS改性沥青的路用性能起着决定性影响。2019年交通运输部发布的最新一版《公路工程沥青及沥青混合料试验规程》中,改性沥青中SBS含量检测成为强检项目,傅立叶变换红外光谱法是唯一检测方法。北分瑞利行业解决方案目前傅立叶变换红外光谱法用于改性沥青中SBS含量检测时常用的测样方法如ATR法和窗片法,看似简单,实际上由于光程不固定等因素导致测试的重复性较差,对一线操作人员要求极高。而各个标准中都规定了多次测量的相对误差要控制在5%,这就使得一线操作人员在实际运用傅立叶变换红外光谱法进行改性沥青中SBS含量分析时经常需要反复重复测试,耗时耗力。本方案使用光程固定的液体池进行测样,方法重复性好、误差小,配合专用的沥青分析软件,能够实现改性沥青中SBS含量的快速、准确测量。标准依据及测试原理标准依据DB36/T 1131-2019 改性沥青中SBS、SBR类改性剂含量测定 红外光谱法DB33/T 989-2015 改性沥青中SBS含量的测定 红外光谱法JT/T 1177-2017 改性沥青SBS含量测定仪JTG E20-2019 公路工程沥青及沥青混合料试验规程 测试原理根据Lambert-Beer定律,利用待测物质特征官能团在特定波长(波数)处的红外吸收强度与物质浓度的正比关系,进行改性沥青中SBS含量测定。选取改性沥青红外光谱图中966cm-1处的C=C基团上碳氢键弯曲振动特征吸收峰(来源于SBS),和1377cm-1处的CH3基团上碳氢键弯曲振动特征吸收峰(来源于基质沥青),作为SBS含量测定的特征吸收峰。分别测量特征吸收峰面积(S966和S1377),计算两峰面积的比值(A),以比值(A)与SBS含量建立线性标准曲线。通过对待测改性沥青试样进行红外光谱检测、两特征峰面积测量以及比值(A)的计算,对照标准曲线,确定试样中SBS的含量。仪器设备与测试条件仪器设备_名称规格型号No.1主机WQF-530傅立叶变换红外光谱仪No.2主机WQF-1910便携式傅立叶变换红外光谱仪No.3软件MainFTOS Suite采集软件+傅立叶变换红外沥青测量系统No.4附件KBr液体池耗材试剂分析纯四氯化碳、不同SBS含量改性沥青标样。 测试条件波长范围4000~400cm-1;分辨率4cm-1;扫描次数16次。测试结果A值计算图 1 沥青专用软件计算A值示例图测试光谱数据直接导入傅立叶变换红外沥青测量系统专用软件自动计算A值,避免了繁琐的手工计算。标曲建立图 2 沥青专用软件建立标曲示例图傅立叶变换红外沥青测量系统专用软件具有自建标曲、未知样检测、报告输出和打印等功能,极大的提升了用户的工作效率。实验结论本方案使用固定光程液体池配合实验室/便携式傅立叶变换红外光谱仪进行改性沥青中SBS含量测定,方法重复性好,大大降低了一线操作人员的实操难度,节省了客户的人力成本;傅立叶变换红外沥青测量系统专用软件将A值计算、标曲建立和未知样检测等需要大量手工计算的工作全部自动化,避免了繁琐地手动计算过程,提高了客户的效率;所建标曲拟合度达到0.99以上,满足相关标准要求。
  • 表面改性纳升电喷雾针提高质谱灵敏度
    大家好,本周为大家分享一篇发表在J. Am. Soc. Mass Spectrom上的文章,Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry [1] 。该文章的通讯作者是来自美国亚利桑那大学的Michael T. Marty教授。非变性质谱(NMS)和电荷检测质谱(CD-MS)已成为表征各种蛋白质和高分子复合物的多功能工具。两者通常使用硼硅酸盐针进行纳米电喷雾电离(nESI)。但由于蛋白质在中性pH值下通常带正电荷,可能会吸附在带负电荷的玻璃nESI针表面,从而降低灵敏度,影响数据分析。为了提高NMS和CD-MS的灵敏度,作者用惰性表面改性剂修饰了nsEI针的表面。通过将聚乙二醇(PEG)共价连接到硅烷醇表面,钝化了玻璃表面,以减少非特异性吸附。首先,为确定表面改性是否能提高质谱灵敏度,作者团队采用PEG涂层的玻璃nESI针检测了两种非特异性吸附玻璃的蛋白:牛血清白蛋白(BSA)和溶菌酶。结果发现,相比于对照组,BSA和溶菌酶的信号强度均提高了2倍左右(图1)。PEG 涂层显着提高了nESI针头对标准蛋白质的MS灵敏度。图1.(A) 未涂层对照针和 (B) PEG 涂层针的 BSA 原始质谱显示信号强度。(C) 溶菌酶和 (D) BSA的PEG涂层(浅蓝色)和对照(灰色)nESI针的信号强度。接下来,作者利用搭载PEG表面涂层nESI针的CD-MS检测完整腺病毒 (AAV) 衣壳。结果发现,与采用未改良针的对照组相比,在较低浓度下,PEG改良针所收集的离子总数高出8倍以上(图2)。相比于一般的CD-MS检测,采用改良针的CD-MS检测的样品浓度更低,采集时间缩短。图2. AAV2 衣壳的 CD-MS 分析。(A) 对照组; (B) PEG 涂层针。 (C) 从空AAV2衣壳的5分钟 CD-MS 采集中收集的单个离子总数。接下来,作者研究了nESI针尖端尺寸和几何形状变化对实验结果的影响。实验发现,虽然改良针在较低浓度下显著提高了信号强度,但其针间差异很大。作者团队假设信号强度的偏差是由人工修剪nESI针的尖端直径差异引起的。为了最大限度地减少nESI针尖端尺寸和几何形状的变化,作者开发了一个针头拉拔器程序,以重复生产具有2 μm吸头直径的nESI针头。结果发现,PEG修饰的2 μm针的可明显提高检测信号强度,并且每次运行差异较小。相比于人工修剪的针头,2 μm针信号提升幅度更大。0.1 μm nESI针与2μm针两者检测到的蛋白的信号强度相似(图3)。基于以上结果,作者推测2 μm针检测到的信号值更高的原因可能是2 μm针的锥度更短。较短的锥度可能会在针尖附近产生更高的涂层密度。而手动剪断的针头具有较长的锥度,在拉拔过程中在尖端附近损坏PEG涂层,因此检测到的信号值偏低。而0. 1μm和2μm针尖上的锥度都比较短,涂层在接近针尖表面时可能完好无损,因此两者检测到的信号强度相似。图3. 具有 2 μm(左)和 0.1 μm(右)尖端直径的PEG涂层(浅蓝色)和未涂层对照(灰色)nESI 针的 BSA 最丰富电荷状态的信号强度。通过以上实验,作者已证实了PEG 修饰nESI可提高NMS与CD-MS的灵敏度。接下来,作者对其作用机制进行深入研究。首先,作者测试了灵敏度的提高是否是由于减少了对玻璃的非特异性吸附引起的。作者采用两种化学性质不同的涂层:PEG与多氟分子PFDCS修饰针头,两者均可减少蛋白的非特异性吸附,理论上均可改善质谱灵敏度。但结果发现,仅有PEG涂层针头可改善信号强度。之后,作者采用两种针头检测了泛素信号值。泛素在中性条件下不与玻璃发生吸附作用,理论上两者信号值无统计学差异,但结果发现,相比于PFDCS 修饰针头,PEG修饰针头组检测到的信号值提高了3倍。由此得出结论,PEG涂层针头不是通过减少蛋白与玻璃之间的非特异性吸附来提高质谱信号值的机制。最后,作者研究了表面改性针的毛细管作用,发现无修饰的硼硅酸盐毛细管毛细管作用最强,PEG毛细管具有中等强度的毛细管作用,而PFDCS毛细管几乎没有毛细管作用(图4A)。然后,在没有流体泵送或施加压力的静态条件下研究了不同nESI针的流速(图4B)。结果发现,PEG修饰的nESI针流速最高,而PFDCS修饰和对照nESI针的流速没有统计学差异。作者假设灵敏度的提高可能是由nESI针的流速增加导致的。由于传统针头中较高的毛细力,液体会紧紧地附着在玻璃上,降低给定ESI电压下的液体流量。而PEG修饰降低了毛细阻力,可能会增加流向尖端的液体,从而增加信号。而PFDCS修饰针头虽然具有较低毛细作用,但其流速较小,原因可能是需要一定强度的毛细作用才能获得最佳的流动速度。作者未来的实验将进行深入探索这一假设。ESI针的毛细作用照片。 (B) PFDCS修饰 (深蓝色)、PEG修饰 (浅蓝色)和未修饰 (灰色) 针的流速。总而言之,作者证明了PEG修饰的nESI针增加了多种分析物的质谱信号强度和灵敏度,展示了一种可以在较低浓度下提高难分析物的灵敏度、相对快速且成本低廉的方法。作者推测表面改性通过提高nESI针尖端流速以发挥提高质谱检测灵敏度的作用,但该推测仍需进一步证明。[1]Kostelic MM, Hsieh CC, Sanders HM, Zak CK, Ryan JP, Baker ES, Aspinwall CA, Marty MT. Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry. J Am Soc Mass Spectrom. 2022 Jun 1 33(6):1031-1037. doi: 10.1021/jasms.2c00087. Epub 2022 May 19. PMID: 35588532.
  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制