复合材料桁架

仪器信息网复合材料桁架专题为您整合复合材料桁架相关的最新文章,在复合材料桁架专题,您不仅可以免费浏览复合材料桁架的资讯, 同时您还可以浏览复合材料桁架的相关资料、解决方案,参与社区复合材料桁架话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

复合材料桁架相关的耗材

  • Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料
    Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料?保证* 干燥器板不易打破,与瓷制品相比,具有更强的耐热冲击性。火抛光、耐腐蚀、惰性、不粘任何东西的玻璃表面与金属黏合。该板标有编号的象限,可以更容易的确定坩锅和其它容器的位置。每板有24 个孔,中心为7/8 in.,建议与5309-0250、5310-0250 和5311-0250 一起使用。可高温高压灭菌订货信息:Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料目录编号 5312-0230外径,mm230外径,in.9-1/16每盒数量1每箱数量6
  • 高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备
    高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备 碳纳米管是一维的纳米材料,在工程材料域,碳管以其优异的物理机械性能成为聚合材料理想的填料。具有优异的力学性能、导电、导热性能,因而被认为是聚合物基复合材料理想的力学强化和功能改性材料,采用碳纳米管制成的复合材料表现出良好强度、弹性和抗疲劳性,碳纳米管也逐渐用于橡胶制品、轮胎、塑料等工业中。 但是,碳纳米管的呈纳米纤维状,自身易团聚和缠结,且碳纳米管表面为规整的石墨晶片结构,表面惰性大,与聚合物基体亲和性差,导致碳纳米管在橡胶基质中的分散性差,而且成本也高,这些限制了碳纳米管在橡胶中的规模化应用。 在橡胶工业中,将碳纳米管填充到各种橡胶基体以提高橡胶基体的性能成为研究高端橡胶产品的理想共混复合材料之一,但碳纳米管自身有着很高的表面自由能,易发生团聚现象,碳纳米管与基体间的相互作用是另一个难题,碳管表面没有任何反应官能图,碳管的惰性使其与聚合物基体间化学界面作用弱,碳纳米管对聚合物基体的改善效果难达到预期,因此制备出尺寸均匀,分散好,性能稳定的碳纳米管及其复合材料是拓展其应用域的需要。 目,在碳管的分散性及其复合材料研究中已经取得许多进展。常用的方法中是将采用表面活性剂对碳管表面改性,将其悬浮液与胶乳复合制得复合母胶,该技术在一定程度解决了碳纳米管的分散,但由于表面活性剂中其它基团的加入会降低复合母胶的性能;因此需要提供一种避免活性剂的加入影响碳纳米管与聚合物间结合的技术方案。 针对现阶段技术中存在的问题,在碳纳米管分散均匀的基础上在其表面引入羧基、羟基等官能团,避免偶联剂的加入影响碳纳米管与胶乳之间的结合。一种高分散碳纳米复合母胶的制备方法,包括以下步骤:1、将碳纳米管在分散液中剪切,制得短切碳纳米管悬浮液;2、通入氧化气体对短切碳管悬浮液氧化,制得短切碳纳米管氧化液;3、将补强材料加入短切碳纳米管氧化液,制得碳纳米管浆液;4、在碳纳米管浆液中加入偶联剂,制得复合浆液;5、将天然橡胶胶乳分散于复合浆液中,制得碳纳米管-天然橡胶复合材料;6、将碳纳米管-天然橡胶复合材料凝固、干燥制得高分散碳纳米复合母胶。 上海依肯根据市场技术需求结合多年来积累的成功案例经验特别推出ERS2000系列高剪切乳化机(混合机),ERS2000在线式高速高剪切乳化机,主要用于微乳液及超细悬浮液的生产。由于工作腔体内三组乳化分散头(定子+转子)同时工作,乳液经过高剪切后,液滴更细腻,粒径分布更窄,因而生成的混合液稳定性更好。三组乳化分散头均易于更换,适合不同的工艺应用。该系列中不同型号的机器都有相同的线速度和剪切率,非常易于扩大规模化生产。 上海依肯ERS2000系列高剪切乳化机(混合机)设备参数选型表:型号 标准流量L/H输出转速rpm标准线速度m/s马达功率KW进口尺寸出口尺寸ERS 2000/4300-100014000442.2DN25DN15ERS 2000/5300010500447.5DN40DN32ERS 2000/10800073004415DN50DN50ERS 2000/202000049004437DN80DN65ERS 2000/304000028504455DN150DN125ERS 2000/407000020004490DN150DN125高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备。。。需要了解更多详情请致电上海依肯机械设备有限公司 销售工程师 徐蒙蒙 182-0189-1183,公司有样机可以免费为客户进行测试验证实验。
  • 超导体与金属复合材料Bi-2212高温超导体
    主要用途布鲁克EST产品的功率是同类铜线的100倍以上,专为电磁和电力应用而设计。为了向客户提供优化和量身定制的解决方案,我们正在与Bi-2212线材高温超导解决方案合作。高电流密度和优异的机械性能在4至77K温度范围内的所有磁场中提供超导性能。FeaturesWith more than 25 years of experience in the field of High Temperature Superconducting wires (HTS), our interdisciplinary teams are working on new high tech solutions for tomorrow’s challenges. Our focus is HTS wire solutions for ultra high field applications, enabling new insights in research as well as HTS solutions for new applications in electrical industry and healthcare.Benefits Bruker EST products are able to carry more than 100 times the power of comparable copper wire and are designed with magnet and electric power applications in mind. To provide our customers with optimized and tailored solutions, we are working with Bi-2212 wire HTS solutions. High current densities along with excellent mechanical properties deliver unmatched superconducting performance in all magnetic fields in the temperature range from 4 to 77 k.

复合材料桁架相关的仪器

  • 复合材料测厚仪 400-860-5168转3947
    复合材料测厚仪塑料、薄膜、复合材料、纺织物、无纺布和包装材料等材料的厚度测量对于工业生产来说至关重要。机械接触式厚度测量仪器作为一种常见的厚度测量仪器,因其高精度和高可靠性而被广泛应用。本文将介绍机械接触式厚度测量原理、仪器种类和在不同材料中的应用案例。 机械接触式厚度测量仪器主要通过测量被测材料表面和测量头之间的距离来计算材料的厚度。测量头受到被测材料的顶出力,该力会使测量头的位移发生变化。测量头位移的变化量与被测材料的厚度之间存在一定的关系,通过测量位移变化量就可以计算出被测材料的厚度。 为了提高测量精度,可以采用高精度的测量头和传感器,以增加测量系统的灵敏度和准确性。此外,数据采集系统和校准技术的应用也可以对测量数据进行实时处理和修正,从而减小误差。 塑料薄膜:在塑料薄膜制造业中,薄膜的厚度对产品的质量和稳定性至关重要。采用机械接触式厚度测量仪器可以准确地测量薄膜的厚度,从而控制产品质量。复合材料:复合材料由多种材料组成,其厚度对材料的性能影响较大。采用机械接触式厚度测量仪器可以准确地测量复合材料的厚度,从而控制材料质量。纺织物:纺织物的厚度对布料的品质影响较大。采用机械接触式厚度测量仪器可以准确地测量纺织物的厚度,从而控制产品质量。 无纺布:无纺布是一种非织造布料,其厚度对产品的性能影响较大。采用机械接触式厚度测量仪器可以准确地测量无纺布的厚度,从而控制产品质量。包装材料:包装材料的厚度对产品的保护效果影响较大。采用机械接触式厚度测量仪器可以准确地测量包装材料的厚度,从而控制产品质量。 技术参数 测量范围 0-2mm (其他量程可定制) 分辨率 0.1um 测量速度 10次/min(可调) 测量压力 17.5±1kPa(薄膜);100±1kPa(纸张) 接触面积 50mm² (薄膜),200mm² (纸张) 注:薄膜、纸张任选一种 进样步矩 0 ~ 1300 mm(可调) 进样速度 0 ~ 120 mm/s(可调) 机器尺寸 450mm×340mm×390mm (长宽高) 重 量 23Kg 工作温度 15℃-50℃ 相对湿度 80%,无凝露 试验环境 无震动,无电磁干扰 工作电源 220V 50Hz 复合材料测厚仪此为广告
    留言咨询
  • 产品特点:●便捷的软硬件操作,快速熟练掌握 ●高速高分辨工业相机●手动或软件控制精密电动注射单元 ●多种计算拟合方法,自动基线识别功能●智能图像识别,抗干扰 ●自动录像回放功能,准确选取数据采集点●多种格式数据导出功能,一键导出实验报告 ●多种测量功能及模块可选●产线质控、实验室研发完美匹配复合材料接触角测试仪产品参数l 样品台尺寸:100mm*120mml 接触角测量范围:0-180°l 接触角显示精度:±0.01°l 接触角测量精度:±0.1°l 表面/界面张力测量范围:0-1000mN/ml 光学系统:0.7X-5X高清晰卡位变倍镜头l 视频系统:USB3.0摄像机+PC软控40帧/秒(可选100帧/秒、300帧/秒、1000帧/秒或更高)l 仪器外形尺寸:300mm*760mml 镜头移动行程:30mml 仪器重量:30Kgl 测量软件:SPCA1.0l 电源:220V3A50Hzl 测量温度:室温l 测量方法:圆环法、椭圆法、高宽法等8种方法提供l 电运定位精度:±0.1mml 注射系统器移动行程:30mm 复合材料接触角测试仪基本功能l 自动液滴识别+延时l 自动液滴形成l 曲线生成l 自动着滴控制l 自动XY轴移动双列测量 复合材料接触角测试仪选附加项:l 表/界面张力(悬滴法)l 动态接触角(扩张收缩法)前进角、后退角l 动态接触角(转落法)前进角、后退角、滑动角l 固体表面自由能
    留言咨询
  • 力试复合材料拉力试验机(落地台式机)规格:30 kN型号:LD25.204、LD25.304、LD25.504用途:主要适合碳纤维的拉伸、压缩、弯曲、 剪切、剥离、撕裂等试验。简介:采用高精度、预加载的滚珠丝杠,提高了传动效率和位移精度。采用高强度光杠固定上横梁及工作台面,构成高刚性的框架结构。力试复合材料拉力试验机(落地台式机)主机机架 采用高精度、预加载的滚珠丝杠,提高了传动效率和位移精度。采用高强度光杠固定上横梁及工作台面,构成高刚性的框架结构。夹具操作方便,夹持可靠的各种材料的专用夹具。力试复合材料拉力试验机变形测量系统配合应变式电子引伸计、精度高、响应快的测量系统,实现金属材料小变形的高精度测量。电子引伸计按标距和变形量备有多种规格,可满足不同类型、不同形状的材料测量使用。试验力测量装置采用高稳定性、高精度应变式力传感器,配以高稳定测量系统保证全程分辨力不变,确保试验力示值相对误差极限在 ±0.50% 以内。可使用多个力传感器,实现宽范围的试验力测量。急停机控制开关在遇到意外情况下,能够可靠的锁定设备。控制传动系统采用进口全数字式交流伺服器,控制高精度、高响应频率的交流伺服电机,保证传动系统 效率高、噪音低、传动平稳,并保证速度示值相对误差极限在±0.20% 以内。变形测量系统夹持式自动跟踪大变形测量系统,采用高精度进口传感器实现对塑料橡胶等非金属材料较大变形量的测量。试验控制盒具有横梁移动速度慢上/慢下、快上/快下、试样保护及运行功能。电气测控系统LAB-350 全数字闭环测控系统。位移测量装置采用伺服电机所配光电编码器进行传移测量,位移分辨力最小可达0.015μm。(不同机型略有区别)微机系统采用品牌计算机作为主控制机,完成整机试验参数的设定、工作状态控制、数据采集、处理分析、显示打印试验结果等功能。配有试验机专用 Windows 系统 LAB Test 中英文版智能化软件包,可根据国家标准、国际标准或用户提供的标准测量各种材料的物理性能,并对试验数据进行统计处理和判断,然后输出各种要求格式的试验报告和特性曲线图样。
    留言咨询

复合材料桁架相关的方案

复合材料桁架相关的论坛

  • 航天器尺寸高稳定性复合材料桁架结构——第1部分:热变形测试技术国内现状分析

    航天器尺寸高稳定性复合材料桁架结构——第1部分:热变形测试技术国内现状分析

    [color=#990000]摘要:本文根据公开文献报道,介绍国内在航天器尺寸高稳定性复合材料桁架结构热变形测试技术方面的研究进展,分析国内现有技术手段存在的不足和问题,并明确了尺寸高稳定性复合材料桁架的技术要求,为下一步热变形测试技术明确发展目标。[/color][color=#990000]关键词:尺寸稳定性,桁架,热变形,热膨胀系数,航天器[/color][align=center][img=,690,390]https://ng1.17img.cn/bbsfiles/images/2019/01/201901221809393985_5910_3384_3.jpg!w690x390.jpg[/img][/align][hr/][color=#990000][b]1. 引言[/b][/color]  尺寸高稳定性复合材料结构是轻质、高精度航天器结构的重要发展方向,欧美国家自上世纪90年代就开始研究零膨胀、高/超高稳定性的航天器复合材料结构,并用于太空望远镜及其他光学仪器的支撑结构、天线反射面和重力梯度仪基座等。  传统航天器结构一般只要求高刚度、高强度、轻质量,对于尺寸稳定性的要求不是很高。但近些年来,随着遥感卫星、空间探测器、太空望远镜等高精度航天器对超稳平台的需求,尺寸高稳定性复合材料结构方面的研究也逐渐得到重视。  2010年以来,我国航天领域也开展了尺寸高稳定性复合材料结构的工程应用研究,主要用于卫星相机和其他精密仪器设备的支撑。为了满足这些仪器高分辨率有效载荷设计及安装要求,各种仪器必须具备高稳定的结构安装平台,安装平台既起支撑连接作用,又要具备耐受真空、温度影响的高的尺寸稳定性。高稳定结构在满足刚度、强度要求的基础上,应进一步满足地面温湿度环境和空间交变温度环境下的结构微变形要求。因此,高稳定结构研制须解决结构热稳定性的测试问题,以验证高稳定结构的热稳定性设计,为仿真模型修正提供依据,并对最终航天器高稳定结构进行考核和评价。  本文将根据公开文献报道,介绍国内在航天器尺寸高稳定性复合材料桁架结构热变形测试技术领域内的研究进展,分析国内现有技术手段存在的不足和问题,并明确了尺寸高稳定性复合材料桁架的技术要求,为下一步热变形测试技术明确发展目标。[color=#990000][b]2. 国内测试技术现状[/b][/color]  根据文献报道,2013年中国空间技术研究院研制的某卫星高稳定、高精度复合材料桁架结构,如图2-1所示,承载着敏感器、天线等精密设备。[align=center][color=#990000][img=,690,213]https://ng1.17img.cn/bbsfiles/images/2019/01/201901221812085502_1103_3384_3.png!w690x213.jpg[/img][/color][/align][align=center][color=#990000]图2-1 尺寸高稳定性桁架结构示意图和坐标系[/color][/align]  根据卫星的任务要求,该桁架结构不仅需要满足承载强度要求,而且还要保证其上设备与基准的相对位置或指向关系稳定不变,即在外部环境条件变化时,其结构几何尺寸变化很小或趋于零。为了满足设备的高精度安装及在轨高稳定性的要求,必须首先保证该桁架结构的制造精度及在轨的热稳定性。  针对热稳定性的考核测试,文献从桁架材料样品的热膨胀系数测试和整体桁架热变形测试两个不同尺度上进行了研究。[color=#990000]2.1. 样品热膨胀系数测试[/color]  样品级的热膨胀系数测试分别采用了德国耐驰公司的DIL 402C 热膨胀仪和国产热膨胀仪,并进行了测试结果对比,这两种仪器都是顶杆法热膨胀仪。因为受各种因素的限制,顶杆法热膨胀仪的测量精度最多能达到-7量级的水平,在没有采用低膨胀系数标准材料进行考核和校准的前提下,所以文献得到的桁架材料热膨胀系数测量结果只能确定在-7量级,无任何测量不确定度范围。  造成普通顶杆法热膨胀仪测量准确性无法满足低膨胀/超低膨胀材料需求的主要原因如下:  (1)热膨胀仪中的顶杆材料一般选用的是热膨胀系数为5.3×10-7/K的熔融石英,这就限制了顶杆法热膨胀仪的测试能力。  (2)在-5~+50℃范围内,样品温度的热电偶测温传感器和电加热控制方式很容易造成将近1℃的测量不确定度,室温附近热物理性能测试的最大误差源往往都是温度项。  (3)在普通顶杆法热膨胀仪中,测量样品变形的位移传感器测量不确定度往往在0.5~3微米范围内,并需定期进行计量校准。有些热膨胀仪只给出测量分辨率而不给出测量不确定度(或精度和误差等)和温度漂移指标,往往很容易夸大测试能力,需谨慎对待,需采用不同热膨胀系数范围的相应标准材料进行考核和校准。[color=#990000]2.2. 桁架全场热变形测试[/color]  针对高稳定性桁架,文献认为其整体桁架结构最小热变形仅为2微米左右,在对桁架结构进行热稳定测试时设计了以下要求:  (1)热稳定试验测试系统理论精度至少达到微米级;  (2)测试系统须耐受一定环境噪声、设备噪声及温度波动;  (3)整体桁架全场测量,尽可能减少测试仪器对结构热变形的影响,理想测试方法为非接触测量。  针对上述要求,文献提出了基于数字图像的散斑测试技术,并进行了热稳定测试研究。散斑测量装置为定制丹麦Dantec Dynamics公司的Q-400测试系统,可非接触测量全场变形,如图2-2所示。在测试开始时,被测物体表面涂有随机散斑,通过2台专用高精度CCD相机追踪温度加载前后的散斑变化;采用相关算法计算出物体表面因变形引起的变化,获得每个点的三维位移矢量,进行计算出全场每点的变形值和应变值,变形测量精度达到微米级。[align=center][color=#990000][img=,690,351]https://ng1.17img.cn/bbsfiles/images/2019/01/201901221812272113_6108_3384_3.jpg!w690x351.jpg[/img][/color][/align][align=center][color=#990000]图2-2 Q-400测试系统[/color][/align]  据文献报道,被测桁架结构由杆件和接头组成,最大外包络尺寸(未安装设备)为 1532 mm×837 mm×392 mm,温度范围为20~45℃,每间隔5℃测量一次变形,测试现场照片如图2-3所示。[align=center][color=#990000][img=,690,382]https://ng1.17img.cn/bbsfiles/images/2019/01/201901221813028822_5623_3384_3.png!w690x382.jpg[/img][/color][/align][align=center][color=#990000]图2-3 热变形测试[/color][/align]  整个测试过程中使桁架结构件经历7次热循环,随着循环次数增加,桁架结构变形量(天线a安装点相对敏感器c安装点的距离变化)减小,且逐渐趋于稳定,最初的变形量为3um/K,最终变形量为0.7um/K。相对于20~45℃的温度变化范围,近25℃的热循环温度变化使得桁架结构的总变形量范围应该为17.5~75um。如果天线a安装点与敏感器c安装点的间距按照1.5 m进行计算,那么相应的热膨胀系数变化范围为(0.7~3)×10-6/1.5=0.47~2×10-6/K,这与样品的热膨胀系数测试结果基本相吻合,多次热循环后的最终热膨胀系数处于一个量级。对于桁架结构上述变形量,采用数字散斑法还算能勉强进行测试,但如果桁架复合材料的热膨胀系数降低到5×10-8/K,那么桁架结构最终最小总变形量为25×1.5×5×10-8=1.9um,或0.075um/K;如果热膨胀系数再降低到1×10-8/K,桁架结构最终最小总变形量将为25×1.5×1×10-8=0.375um,或0.015um/K。对于这种微变形,再采用同量级精度的散斑法就无法进行测量,桁架结构的热变形规律基本淹没在散斑法的系统测量误差之内,而这种-8量级的超低热膨胀系数复合材料早在上世纪七八十年代NASA就应用在桁架结构中,这也是我国航天器复合材料桁架结构的必然趋势。  综上所述,桁架结构数字散斑法热变形测试中存在以下几方面的问题:  (1)测试前需要在桁架上涂覆散斑涂料,可能会给桁架带来影响。  (2)在文献中,标称激光散斑测量变形的精度为1微米,这已经达到了激光散斑法的测量极限,无法满足今后低变形桁架的测试需要。  (3)激光散斑法无法进行真空环境下的原位全场测量。  (4)国外研究和应用桁架技术已有四十年以上的经历,对桁架及其复合材料的热膨胀系数和热变形进行过大量测试方法研究,但从未在相关报道中看到过采用散斑法测量桁架结构的热变形,绝大多数采用的都是准确性更高的激光干涉法。[b][color=#990000]3. 尺寸高稳定性复合材料桁架热变形测试要求[/color][/b]  根据文献和国外的发展历程,对于尺寸高稳定性复合材料桁架热变形测试需要满足以下几方面的要求:  (1)为长期控制结构在轨期间的变形,除需测量材料的热膨胀系数之外,还需测量材料的湿热膨胀系数。  (2)为进一步降低复合材料的热膨胀系数,并获得超稳定的结构,还需深入研究复合材料的铺层设计、热膨胀系数的预测方法,同时提高样品级别的热膨胀系数测量准确性,要具备测量热膨胀系数1~5×10-8/K范围的能力。  (3)为进一步提高复合材料桁架结构整体变形测量的准确性、减小测量不确定度,需具备模拟空间环境的真空(低气压)条件下的原位测量能力,利用真空环境消除或减弱热对流所带来的不确定度。更准确的说,要对大尺寸桁架结构0.1um的总变形量要有准确的测试能力。[color=#990000][b]4. 参考文献[/b][/color]  (1)刘国青, 阮剑华, 罗文波, 白刚. 航天器高稳定结构热变形分析与试验验证方法研究. 航天器工程, 2014, 23(2):64-70.  (2)马立, 杨凤龙, 陈维强, 齐卫红,李艳辉. 尺寸高稳定性复合材料桁架结构的研制. 航天器环境工程, 2016, 33(3).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 航天器尺寸高稳定性复合材料桁架结构——第2部分 热变形测试方案和可行性试验研究

    航天器尺寸高稳定性复合材料桁架结构——第2部分 热变形测试方案和可行性试验研究

    [color=#990000]摘要:本文针对航天器尺寸高稳定性复合材料桁架结构的热变形测试,从样品的热膨胀系数测试到桁架全场大尺寸热变形测试,全方位提出了相应的解决方案。特别针对激光干涉法在大气环境下的高精度热变形测量,介绍了上海依阳公司开展的方案性试验结果,证明了激光干涉法完全可以用于大气环境下的位移测量,尽管测量精度有所降低,但完全可以满足百纳米量级的全场热变形测量,同时也证明了此方案的可行性,为打通整个技术路线奠定了基础。  [/color][color=#990000]关键词:尺寸稳定性,桁架,激光干涉法,热变形,热膨胀系数,航天器[/color][align=center][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232018598367_8587_3384_3.jpg!w690x387.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#990000][b]1. 引言[/b][/color]  从目前公开报道的相关文献来看,国内在航天器尺寸高稳定性复合材料桁架结构热变形测量方面还刚刚起步,还没找到有效可行的测试技术方向和手段,而对于尺寸高稳定性复合材料桁架的热变形测试,需要满足以下几方面的要求:  (1)为长期控制结构在轨期间的变形,除需测量材料的热膨胀系数之外,还需测量材料的湿热膨胀系数。  (2)为进一步降低复合材料的热膨胀系数,并获得超稳定的结构,还需深入研究复合材料的铺层设计、热膨胀系数的预测方法,同时提高样品级别的热膨胀系数测量准确性,要具备测量热膨胀系数1~5×10-8/K范围的能力。  (3)为进一步提高复合材料桁架结构整体变形测量的准确性、减小测量不确定度,需具备模拟空间环境的真空(低气压)条件下的原位测量能力,利用真空环境消除或减弱热对流所带来的不确定度。更准确的说,要对大尺寸桁架结构0.1 um的总变形量要有准确的测试能力。  本文针对上述要求,从样品的热膨胀系数测试到桁架全场大尺寸热变形测试,全方位提出了相应的解决方案。特别针对激光干涉法在大气环境下的高精度热变形测量,介绍了上海依阳公司开展的方案性试验结果,证明了激光干涉法完全可以用于大气环境下的位移测量,尽管测量精度有所降低,但完全可以满足百纳米量级的全场热变形测量。同时也证明了此方案的可行性,为打通整个技术路线奠定了基础。[b][color=#990000]2. 技术方案[/color][/b]  技术方案主要针对材料样品和整体桁架两个尺度级别的测试进行设计。样品级别的热膨胀和湿膨胀系数测试还采用顶杆法,整体桁架的热变形和热膨胀系数采用目前位移测量精度最高的激光干涉法,并实现激光干涉法既可以在大气环境下又可以在真空环境下进行测量。整体技术方案如图2-1所示。[align=center][img=,500,354]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232024059437_8538_3384_3.png!w690x489.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图2-1 热变形测试技术方案框图[/color][/align][color=#990000]2.1. 顶杆法高精度热膨胀系数测试方案[/color]  为了实现样品级别的高精度-8量级热膨胀系数测量,测试方案包括以下几方面的内容:  (1)采用传统顶杆法进行样品级别的热膨胀系数测量,顶杆的作用是将样品的尺寸变化传递出来,而不是非接触式激光干涉法直接对镜面样品表面进行测量。选择顶杆法的目的是降低样品制作难度和测量光路的调整难度。  (2)顶杆法超低热膨胀系数测量装置放置在放置在大气环境中,由此在实现变温测量的同时,还可以进行变湿测量。另外,在大气环境下样品的辐射加热速度要比真空条件下快很多,这使得大气环境下的测试效率远高于真空条件下的测试。  (3)普通热膨胀仪中的顶杆材料一般选用的是热膨胀系数为5.3×10-7/K的熔融石英,这限制了顶杆法热膨胀仪的测试能力。在±50℃范围内,可选用热膨胀系数小于1×10-8/K零膨胀材料,并结合基线修正,可使顶杆法具有非常高的测量精度。  (4)在±50℃范围内,样品温度的热电偶测温传感器和电加热控制方式很容易造成将近1℃的测量不确定度,室温附近热物理性能测试的最大误差源往往都是温度项。为此选用高精度的液体循环浴加热方式和热敏电阻温度传感器,可大幅度降低温度项误差。  (5)热膨胀测试中的位移传感器直接选用绝对测量的激光干涉仪,这样可以保证几个纳米的测量精度(不是分辨率)。  (6)在超低热膨胀系数测试中,位移传感器随环境温度变化所带来的影响非常明显,所有高精度的位移传感器都有温漂指标。为此,要对位移传感器采取恒温措施,根据不同位移传感器的温漂指标确定传感器环境温度的稳定性和恒温手段。[color=#990000]2.2. 激光干涉法全场测试方案[/color]  为了实现尺寸高稳定性复合材料桁架结构的全场热变形测量,如图2-1所示,测试方案选择采用激光干涉测试技术,这主要是基于以下几方面原因:  (1)激光干涉测试技术是目前工程应用中测量精度最高的成熟技术,由于是基于波长长度的测量,所以激光干涉法是一种绝对测试方法,比较容易实现几个纳米的位移测量精度。  (2)目前成熟的激光干涉测试技术,既可以测量热变形位移,又同时可以测量角度变化,非常适合桁架结构的全场热变形测量。  (3)目前成熟的激光干涉测试技术已经解决了以往激光干涉法测量对环境振动的苛刻要求问题,不再需要特殊和昂贵的抗震减震措施,在普通实验室的一般隔振台上就可以进行高精度测量。  激光干涉法全场测试方案是基于真空条件下的全场热变形测试,整个测试系统主要由真空系统、试验系统和测量系统三部分组成,整个测试系统放置在气浮隔振台上,如图2-2所示。[align=center][img=,690,274]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232024226897_8935_3384_3.png!w690x274.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图2-2 真空型激光干涉法桁架全场热变形测试系统结构示意图[/color][/align]  在实际测试过程中,根据被测对象情况,将激光干涉仪的分布位置设计为双端和单端测量布局两种形式。  双端测量布局形式如图2-3所示。[align=center][color=#990000][img=,690,246]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232137181177_6207_3384_3.png!w690x246.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-3 双端测量结构示意图[/color][/align]  双端测量布局具有以下特点:  (1)光程差小,两端反射镜平行度要求不高,有利于保证测量精度。  (2)多通道测量和扩展成本高,两台干涉仪只能测量一个试样。  单端测量布局形式如图2-4所示。[align=center][color=#990000][img=,690,439]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232137381187_8450_3384_3.png!w690x439.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-4 单端测量结构示意图[/color][/align]  单端测量布局具有以下特点:  (1)光程差大(试件长度),两反射镜平行度要求高,可能会带来一定误差。  (2)优点是便于今后多通道测量和扩展,一台激光器可带三台干涉仪进行三个试件测量。  (3)关键是可以进行空载测量,确定系统误差。  总之,对于尺寸高稳定性复合材料桁架结构的热变形高精度测量,采用真空型激光干涉法基本是国际上的主流测试方法,而且基本都是采用上述单端测量结构形式,由此可实现模拟空间真空环境的航天器桁架的原位热变形准确测量。  尽管真空型激光干涉法可以实现很高精度的热变形原位测量,且非常适合航天器桁架结构的整体性能评价和考核,但在实际应用中还存在以下几方面的不足:  (1)为满足庞大尺寸的航天飞行器桁架结构热变形测试,需要将整个桁架结构件完整放置在相应庞大的真空腔体内,并需要对真空腔体的光学窗口和真空度进行长时间的精确控制,以消除真空度变化带来的一系列影响,这使得整个测试系统非常复杂和造价昂贵。  (2)在真空环境下热传递速度很慢,桁架的整体加热和控温方式很容易造成温度不均匀,而且桁架温度达到稳定需要漫长的恒温时间。因此对于大尺寸桁架的热变形测试需要采用分区加热方式,这造成加热系统也非常复杂,且恒温时间同样的漫长。  (3)真空型激光干涉法测试系统的兼容性和灵活性较弱,需要采用巨大的真空腔体才能满足各种尺寸规格桁架的热变形测试,相应的调试工作量巨大。  综上所述,对于航天器尺寸高稳定性复合材料桁架的热变形测量,特别是对于桁架管材和整体结构的研制和考核,更大的需求是测试简便快速、覆盖广和造价低的大气环境下的激光干涉法测试系统,在测量精度上至少要比国内目前采用的数字散斑法提高1~2个数量级。[b][color=#990000]3. 大气环境下激光干涉法位移测量试验考核[/color][/b]  在大气环境下,大气中气体的波动会造成激光波长的改变,从而影响激光干涉法测量的准确性和稳定性,且非常容易造成试验过程中断,因此绝大多数激光干涉法测量基本都是在精确真空度控制条件下进行。  为了考核大气环境下激光干涉法测量的准确性和稳定性,采用激光干涉仪位移测量系统,并结合各种不同的实验环境和密封手段,对不同光程长度进行了测试。[color=#990000]3.1. 可行性试验装置和方法[/color]  可行性试验装置是在一个可拆装式木箱中放入一块0.6 m左右的石英板,石英板上分别放置参考反射镜和测量反射镜,并在石英板一侧固定激光器和干涉仪,整个木箱放置在气悬浮隔振台上,整个装置结构如图3-1所示。[align=center][color=#990000][img=,690,305]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232025524053_1160_3384_3.png!w690x305.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 可行性考核试验装置结构示意图[/color][/align]  为考核方案的可行性,设计了两种测量模式,如图3-2所示。[align=center][color=#990000][img=,690,215]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232026226487_6991_3384_3.png!w690x215.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-2 测量模式示意图[/color][/align]  在空载测量模式下,测量光和参考光都照射在一个平面反射镜上,这时激光干涉仪的位移测量值应为零。空载测量模式常用来考核激光干涉仪的系统测量误差,即考核各种试验环境条件对激光干涉仪位移测量的影响。  在差分测量模式下,测量光和参考光分别照射在测量反射镜和参考反射镜上,两反射镜之间的距离变化量就代表被测物热变形大小,由此来考核大气环境下空气波动对激光干涉仪位移测量稳定性的影响。[color=#990000]3.2. 考核测试条件和结果[/color]  为了模拟不同大气环境条件,设计了以下几种试验环境,如表3-1所示。[align=center][color=#990000]表3-1 大气环境试验条件[/color][/align][align=center][img=,690,202]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232026395370_1501_3384_3.png!w690x202.jpg[/img][/align]  在以上测试环境条件下,分别进行空载和差分两种模式测量,每种模式下的测试持续15分钟(选择更长测试时间会受到环境温度变化带来的影响),并进行多次重复测量,计算出不同环境条件和测量模式下的测量误差平均值。测量结果如表3-2所示。[align=center][color=#990000]表3-2 考核试验结果[/color][/align][align=center][img=,690,323]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232026537688_1320_3384_3.png!w690x323.jpg[/img][/align]  由表3-2所示的测试结果可以看出,通过增加密闭形式的木箱,可以大幅度降低空调和大气环境对测量带来的影响,在狭窄的密闭空间内,即使是大气环境下也能达到纳米量级的测量精度,由此证明了密闭容器大气环境下采用激光干涉法测量热变形技术方案的可行性。[color=#990000][b]4. 参考文献[/b][/color]  (1)刘国青, 阮剑华, 罗文波, 白刚. 航天器高稳定结构热变形分析与试验验证方法研究. 航天器工程, 2014, 23(2):64-70.  (2)马立, 杨凤龙, 陈维强, 齐卫红,李艳辉. 尺寸高稳定性复合材料桁架结构的研制. 航天器环境工程, 2016, 33(3).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center] [img=,690,215]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232023218793_4119_3384_3.png!w690x215.jpg[/img][/align]

  • 【原创大赛】太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案

    【原创大赛】太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案

    [align=center][b][color=#3333ff]太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案[/color][/b][/align][align=center]Design Proposal of Ultralow Thermal Expansion Coefficient Measurement System for Composite Truss Used in Space Telescope[/align][b][/b]摘要:太空望远镜用各种大尺寸复合材料桁架管件和镜筒普遍要求超低热膨胀系数以保证太空望远镜的热稳定性,传统热膨胀系数测试中的小尺寸试样已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文基于成熟的激光干涉法微位移测试技术,根据复合材料桁架管件工艺质量控制技术要求,提出了大尺寸构件超低热膨胀系数测试系统设计方案。[align=center][img=太空望远镜超低热膨胀系数桁架管件,483,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220048_02_3384_3.png[/img][/align][align=center][color=#ff0000]上海依阳实业有限公司(www.eyoungindustry.com)[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#ff0000]1.需求背景[/color][/b] 在太空中运行的望远镜由于没有大气层保护,其工作温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,太空望远镜在空间环境中,望远镜桁架材料的热膨胀,会引起太空望远镜光学结构的尺寸变化,从而造成望远镜观测精度下降。这样对太空望远镜的某些部件和仪器的技术要求就是热稳定性要好,要求太空望远镜的大尺寸桁架结构在一定的环境温度变化范围内不因热应力产生变形或者变形极小,热膨胀系数达到E-08/K量级,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,无法满足大尺寸构件的超低热膨胀系数测量。为适应太空望远镜制造的要求,特别是对于以米为单位的大尺寸E-08/K量级部件的超低热膨胀系数,需要更加准确的测量。因此,研究太空望远镜用复合材料工程构件的超低热膨胀系数测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文基于成熟的激光干涉法微位移测试技术,根据复合材料桁架管件工艺质量控制技术要求,提出大尺寸构件超低热膨胀系数测试系统设计方案,为管件的设计、生产和质量评价提供技术支撑,并为今后整体桁架结构的尺寸稳定性测试评价奠定技术基础。[b][color=#ff0000]2.超低热膨胀系数测试系统技术要求[/color][/b][color=#ff0000]2.1. 样件形式和尺寸范围[/color] (1)刚性固体复合材料制成的横截面为圆柱形、矩形和T型等形式的管件; (2)样件外径范围为70mm~150mm; (3)样件长度范围为500mm~2000mm; (4)样件端面平整度小于0.05mm; (5)样件两端面平行度小于0.05mm。[color=#ff0000]2.2. 技术指标[/color] (1)测试温度范围:0℃~40℃; (2)测温精度:≤0.01℃; (3)样件温度均匀性:≤0.05℃; (4)变形测量分辨率:0.4nm; (5)变形测量不确定度:≤30nm; (6)测温点数:1个/2℃; (7)热膨胀系数测量不确定度:≤1×10-8/K。[color=#ff0000]2.3. 验收大纲[/color] (1)验收测量长度为1m的2等量块或同等制造精度的碳纤维复合材料管件(其直径为70mm~150mm,长度为1000mm~2000mm)。 (2)以1m的碳纤维复合材料管件为验收样品,在温场均匀度优于0.05℃、测温步长为2℃条件下,5次测量结果的长度变化量优于30nm,热膨胀系数标准偏差优于1×10-8/K。[b][color=#ff0000]3. 整体结构设计[/color][/b] 大尺寸样件超低热膨胀系数测试系统主要由真空系统、试验系统和测量系统三部分组成,整个测试系统放置在气浮隔振台上,如图3-1所示。[align=center][img=大尺寸管件超低热膨胀系数测试系统,690,269]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220049_01_3384_3.png[/img] [/align][align=center][color=#6633ff]图3-1 整体结构示意图(侧视图)[/color][/align] 针对大尺寸样件,超低热膨胀系数测试系统可以根据激光干涉仪的分布位置设计为单端测量和双端测量布局两种形式。[color=#ff0000]3.1. 单端测量布局[/color] 单端测量布局形式如图3-2所示。[align=center][img=超低热膨胀系数测试系统单端结构,690,439]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220050_01_3384_3.png[/img] [/align][align=center][color=#3333ff]图3-2 单端测量结构示意图(俯视图)[/color][/align] 单端测量布局的特点: (1)光程差大(试件长度),两反射镜平行度要求高,可能会带来一定误差。 (2)优点是便于今后多通道测量和扩展,一台激光器可带三台干涉仪进行三个试样测量。 (3)关键是可以进行空载测量,确定系统误差。[color=#ff0000]3.2. 双端测量布局形式[/color] 双端测量布局形式如图3-3所示。[align=center] [img=超低热膨胀系数测试系统双端结构,690,250]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220050_02_3384_3.png[/img][/align][align=center][color=#3333ff]图3-3 双端测量结构示意图(侧视图)[/color][/align] 双端测量布局的特点: (1)光程差小,两端反射镜平行度要求不高,有利于保证测量精度。 (2)多通道测量和扩展成本高,两台干涉仪只能测量一个试样。[color=#ff0000][b]4. 分系统设计[/b]4.1. 真空系统[/color] 真空系统为大尺寸样件的热膨胀系统测量提供精确恒定的真空环境,避免激光干涉测量受到气体(气压)波动的影响。[color=#ff0000]4.1.1. 真空腔体及整体布局[/color] 真空腔体及整体布局如图4-1所示。[align=center] [img=,346,200]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220043_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-1 真空腔体布局示意图[/color][/align] 真空腔体为矩形上开盖结构,因真空会使腔体变形不便做成大跨度的多试样整体结构,只能做到长矩形腔体并进行加固,减少腔体对测量影响。 今后扩展采用独立真空腔体形式,至少可在两个方向上扩展,甚至可能在三个方向上扩展。 设计中考虑了激光干涉测量系统光路扩展,留有扩展功能。[color=#ff0000]4.1.2. 光学窗口[/color] 光学窗口是实现真空条件下测量稳定性的关键,其功能是保证真空环境形成过程中对激光光路的影响最小。光学窗口的结构如图4-2所示。[align=center][img=,512,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220044_01_3384_3.png[/img] [/align][align=center][color=#3333ff]图4-2 光学窗口结构示意图[/color][/align] 光学窗口设计有以下两个特点: (1)采用局部刚性密封避免石英片移动。 (2)采用弹性调节和固定方式,将光学窗口石英片水平面调节和固定在常用真空度恒定时的位置上,同时保证与激光光路垂直。[color=#ff0000]4.1.3. 真空度测量和控制系统[/color] 真空腔体内的真空度(气压)需要长时间的精确恒定控制,采用高精度薄膜电容规测量真空度,采用特制的控制器进行自动控制,真空度精确控制在100Pa,波动率小于±1%,气氛为干燥氮气。 选择真空度为100Pa是为了既能消除气体折射率波动对激光干涉测量的影响,同时还能最大限度利用气体传热能力便于试件温度快速达到热平衡。 采用干式真空泵抽取真空,降低真空泵对光学器件的污染。真空度控制系统结构如图4-3所示。[align=center] [img=,507,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-3 真空度控制系统结构示意图[/color][/align][color=#ff0000]4.2. 试验系统[/color] 试验系统整体放置在真空腔内,用于放置被测试件、加热试件、保证试件受热膨胀形成单方向变形并将试件热变形转换为光程变化。[color=#ff0000]4.2.1. 支撑平台机构[/color] 热膨胀系数测试中,被测试件无论通过什么形式都要与真空腔体底部发生连接关系,真空腔体温度变化及其不均匀性都会造成这些连接关系发生二维形变。支撑平台机构除了给试件与真空腔底部提供连接关系之外,其重要功能是为试件提供一个基准平台,此基准平台只在光学测量方向上产生一维变形。支撑平台机构如图4-4所示。[align=center] [img=,690,234]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-4 被测样件支撑结构示意图[/color][/align] 试件变形测量的基准为导轨板,导轨板水平方向上的变形必然是二维形式。通过固定在真空腔底板和导轨板一端的单向平移机构保证导轨板一维变形,通过导轨板另一端的轴承导轨结构消除掉另一个水平方向上的位移,保证导轨板单向水平移动。[color=#ff0000]4.2.2. 试件支架结构[/color] 试件支架结构如图4-5所示。[align=center][img=,526,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_03_3384_3.png[/img] [/align][align=center][color=#3333ff]图4-5 试件支撑结构示意图[/color][/align] 为使试样尽量处于轴向自由移动状态,整个试样采用两个弧形支架支撑,尽可能减少试样与支架的接触面积。 支架采用铜材料,其中安装测温用热电阻测量试样温度。 采用氟塑料进行隔热,避免试样温度向下传递。 铜支架放置在可调节水平和高度的微调平台上,并能滑动以改变支点位置满足不同长度试件要求。[color=#ff0000]4.2.3. 试样绝对变形量传递装置[/color] 试样绝对变形量传递装置如图4-6所示[align=center] [img=,690,530]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220046_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-6 绝对变形量传递装置示意图[/color][/align] 绝对变形量传递装置的核心是将两个平面反射镜设法固定在试件的两个端面上,试件长度方向上的受热变形会使得平面反射镜同步线性位移。 此设计方案并未采用简陋的胶粘方式将两个平面反射镜固定在试件两个端面上,这是因为胶粘后的两个平面反射镜并不能保证相互的平行度,会给激光干涉测量带来很大误差,甚至无法进行测量。 新型绝对变形量传递的基本原理是采用弹簧机构把贴附在试件两端面上的平面反射镜拉紧固定,并采用调整机构使得两个平面反射镜相互平行,从而保证两个平面反射镜随着试件尺寸变化进行单向移动,将试件变形转换成平面反射镜的单向位移。 单端测试时采用一个平移机构,另一端平面镜固定不动。双端测试时采用两个平移机构。[color=#ff0000]4.2.4. 试样加热装置[/color] 根据技术指标要求,在大尺寸试件上要保证温度测量精度达到0.01℃和均匀性达到0.05℃,采用普通电加热和油浴加热方式都很难实现,且实现所需时间非常漫长。试样加热装置如图4-7所示。 采用分段闭合筒式加热结构,便于安装和卸载试样,并满足不同长度试件的加热需要。 加热套外部采用半导体热电器件进行温度控制,0.01℃超高精度温度控制,并通水冷却,最外部覆盖隔热材料。 加热桶壁上开小孔导入铂电阻温度传感器,并粘贴在试件上测试试件温度分布。[align=center] [img=,518,380]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220046_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-7 试件加热装置结构示意图[/color][/align][color=#ff0000]4.3. 测量系统[/color] 测量系统包括激光干涉仪测量装置、光路调整装置以及光学测量环境保障装置三部分。[color=#ff0000]4.3.1. 激光干涉仪测量装置[/color] 激光干涉仪测量装置是微位移测量的关键,在激光干涉仪选型中必须要满足以下三方面要求: (1)必须是外差式双频激光干涉仪,这样才能消除环境振动等因素对测量的影响,保证测试系统可以长时间连续运行而不受外界干扰,实现在普通实验室内的操作条件下进行微位移测量。 (2)激光干涉仪温度偏移小,否则很难实现高精度的微位移测量。 (3)外差式双频激光干涉仪抗偏移性能优良,就算测量光和参考光发射一定偏离造成干涉信号强度下降30%以上,照样可以进行测量。[color=#ff0000]4.3.2. 光路调整装置[/color] 在放入试件且抽真空后,整个光路将不能进行调整,再需调整还要充气并打开真空腔。 为了便于真空环境下的光路进一步精细调整,在真空腔内的相应位置上增加压电陶瓷驱动的微位移调节装置,从而保证起始温度下具有稳定的起始位置。[color=#ff0000]4.3.3. 激光干涉仪测量装置的密封和恒温[/color] 密封和恒温装置如图4-8所示。[align=center] [img=,467,250]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220047_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-8 光学系统密封和恒温结构示意图[/color][/align] 采用半导体热电控温装置对干涉仪恒温套进行恒温控制和测量,始终使干涉仪处于恒温状态避免收到环境温度的影响,减小激光干涉仪温度漂移。 激光器和干涉仪全部放置在密封箱内,通过专门进出气口对激光器通风冷却。[b][color=#ff0000]5. 结论[/color][/b] 太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案借鉴了国内外的成功经验,整个测试系统的硬件设计充分考虑了各个测量不确定度分量对应的工程内容,提出了切实可行的解决方案。 整个测试系统设计考虑了测量的准确性、可靠性、操作便利性和可扩展性,整个实施方案的技术成熟度较高、工程实现性强。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

复合材料桁架相关的资料

复合材料桁架相关的资讯

  • 岛津赞助第二届全国玻璃钢/复合材料创新大赛
    ? 11月15日,第二届全国玻璃钢/复合材料创新大赛在岛津企业管理(中国)有限公司上海分析中心隆重拉开帷幕。本次大赛的宗旨是旨在培养行业从业人员的创新精神,提升创新能力,鼓励创新实践,推动玻璃钢/复合材料行业科技进步与技术发展。本次大赛的主办单位是中国硅酸盐学会玻璃钢分会,岛津作为本次大赛的唯一测试仪器赞助商,提供了先进的材料试验机,确保了本次大赛的测试结果准确、可靠、公正。岛津工作人员正在紧张地进行测试 本次大赛共有26组参赛队伍,分别有来自华东理工大学、东南大学、武汉理工大学、湖南工学院、青岛理工大学、西南科技大学、中北大学、南京工业大学、合肥工业大学、天津工业大学、北京玻璃钢院复合材料有限公司等各高校和研究院的参赛选手。因分析中心场地有限,故本次大赛采用视频直播的方式,即参赛选手于一楼分析中心进行比赛,其他选手于二楼会议室观看比赛。二楼会议室设有两块屏幕,一块屏幕显示比赛现场实时视频,一块屏幕显示比赛测试数据和图像。岛津试验机先进的usb camera功能,可以在测试程序中内嵌一个视频窗口,实时显示试件在测试过程中的状态,参赛者亦可通过回看测试过程中试件的变形情况来改进加工机制。 双屏幕模式使直播更加生动直观 本次大赛中,岛津公司提供用于学生测试的机器是岛津电子万能试验机AGS-X 300kN。AGS-X 300kN材料电子万能试验机采用了国际化的全新设计,测试过程更加便利,测试结果更加值得信赖。AGS-X 300kN材料电子万能试验机的特点是:1、数据更可靠、操作更便捷,具有更高的测定性能,同时操作便捷。2、可为用户提供全量程内的高性能;使人放心的便利操作和简单快速的测试软件。3、通过超高速采样功能,试验中不放过任何突如其来的强度变化。4、控制分辨率提高八倍,测试结果的可信度更高。5、从微小载荷到满载都能进行S-S曲线的精确测量。 岛津试验机先进的技术水准、便捷的操作方法、智能的测试程序都给参赛的老师和学生留下了非常深刻的印象,大家纷纷赞不绝口。评委正在严格判定桁架尺寸是否符合要求 经过一天紧张有序的比赛,最终由来自北京玻璃钢研究院和东南大学的参赛组夺得了奖项,岛津公司也在此向得奖选手表示衷心的祝贺,也希望其他各组选手能充分总结此次比赛的经验,再接再厉,在明年的比赛中取得好成绩,也希望各位选手以后能成为复合材料行业的新生力量。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 有机无机复合材料国家重点实验室成立
    有机无机复合材料国家重点实验室揭牌仪式近日在京举行。本实验室依托四大实验室进行组建。它们分别是纳米材料先进制备技术与应用科学教育部重点实验室、北京市新型高分子材料制备与加工重点实验室、北京市生物加工过程重点实验室和教育部超重力工程研究中心等实验室。   本实验室充分利用了北京化工大学在材料、化工和机械三个一级学科专业方向完整、研究实力雄厚的优势,通过材料、化工、机械、生物等学科间的交叉、渗透和整合以及多年的良性发展,针对有机无机复合材料领域中的重大主题,确立了五个特色研究方向:基础相材料及复合材料模拟与设计 无机相/有机相材料制备基础 树脂基功能纳米复合材料 弹性体基纳米复合材料 碳纤维复合材料。   实验室现有面积6919平方米,5万元以上仪器设备238台件,固定资产原值8270万元,仪器装备水平在材料科学与工程领域属国内一流,并拥有一支学术水平较高、创新能力强的研究队伍,基本满足了国家重点实验室的建设要求。来源科技网
  • 3D打印超材料骨架的无铅压电复合材料用于机电能量转换
    超材料是指一类具有天然材料所不具备的超常物理特性的人造复合结构。其优异性能来自人工结构,而不是材料本身。超材料突破了传统的设计原则,通过物理尺度上的有序结构设计获得了优异的性能。超材料的优异性能引起了各个领域的关注,促使其在广泛应用于隐形斗篷、零折射率材料、等离子传感器、能量收集器等领域。近期,来自南方科技大学的汪宏教授团队以超材料为模板设计了一种陶瓷-聚合物复合材料。该团队首先利用高精度3D打印实现了超材料模板,再通过溶胶-凝胶牺牲模板法制备出了无铅压电陶瓷骨架,将聚二甲基硅氧烷(PDMS)浇筑在陶瓷骨架上形成了一种独特的三维互连的压电陶瓷-聚合物复合材料。这种压电超材料具有高机电响应和力学灵活性。这种三维互连结构的复合材料在人体运动监测、人造肌肉和皮肤中作为传感和自发电器件具有潜在的应用。相关成果以“Lead-free piezoelectric composite based on a metamaterial for electromechanical energy conversion”为题发表在《Advanced Materials Technologies》期刊上。该研究使用面投影微立体光刻技术(nanoArch S140,摩方精密) 打印树脂结构,并以该结构作为超材料模板。超材料模板尺寸:40 mm×40 mm×10 mm,打印层厚设置为10 μm,并通过最小微单元晶格调控实现定制化打印。随后通过模板法制备无铅压电陶瓷骨架:为了使模板表面附着更多的钛酸钡溶胶,该团队设计通过表面处理法使模板表面吸附一层厚厚的聚多巴胺层,之后将附着聚多巴胺的超材料浸泡在钛酸钡溶胶中一段时间再取出,最后经过风干—熟化—煅烧的处理获得最终的陶瓷骨架。 用聚二氧机硅氧烷封装无铅压电陶瓷骨架,得到了一种具有超材料结构的压电复合材料。钛酸钡超材料-PDMS复合材料拥有良好的力学特性,在相同钛酸钡体积下其压电极化程度也比无序混乱分布的钛酸钡-PDMS复合材料高许多。钛酸钡超材料-PDMS复合材料具有高灵敏度,可以应用于不同的传感器,如运动计步、重量感应和心跳监测等。我们相信,这项研究将为开发用于能量采集器、传感器和人造皮肤等机电设备的高性能柔性材料提供了一种新策略。 图1 面投影微立体光刻技术示意图 图2 面投影微立体光刻技术打印树脂结构作为超材料模板 图3 面投影微立体光刻技术打印的超材料表面附着聚多巴胺层的制备 图4 溶胶—凝胶法制备超材料骨架及PDMS封装制备压电复合材料 图5 钛酸钡超材料-PDMS复合材料的压电性能测试 图6 钛酸钡超材料-PDMS复合材料应用于可穿戴装置 图7 钛酸钡超材料-PDMS复合材料应用于能量收集
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制