分析方法对比

仪器信息网分析方法对比专题为您整合分析方法对比相关的最新文章,在分析方法对比专题,您不仅可以免费浏览分析方法对比的资讯, 同时您还可以浏览分析方法对比的相关资料、解决方案,参与社区分析方法对比话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

分析方法对比相关的耗材

  • 双柱对比认证分析压环备件
    双柱对比认证分析压环备件1/8-Inch 和 1/16-Inch◇1/16-inch双孔压环及 1/16-inch 毛细管进气接头备件(cat.#27185)。◇1/8-inch双孔压环及 1/8-inch 毛细管进气接头备件(cat.#20645)。双柱对比认证分析压环备件压环尺寸螺帽 ID毛细管柱 ID数量Vespel/Graphite1/16"0.4 mm0.25/0.28 mm5件248481/16"0.5 mm0.32 mm5件248491/8"0.8 mm0.45/0.53 mm5件20246
  • 双柱对比认证分析压环备件
    双柱对比认证分析压环备件1 / 8 -Inch 和 1 / 16 -Inch1、1 / 16 -inch双孔压环及 1 / 16 -inch 毛细管进气接头备件(cat.#27185)。2、1 / 8 -inch双孔压环及 1 / 8 -inch 毛细管进气接头备件(cat.#20645)。压环尺寸 螺帽 ID 毛细管柱 ID 数量 Vespel/Graphite1 / 16 " 0.4 mm 0.25/0.28 mm 5件 24848 1 / 16 " 0.5 mm 0.32 mm 5件 24849 1 / 8 " 0.8 mm 0.45/0.53 mm 5件 20246
  • 氨基酸专用分析方法包
    博纳艾杰尔科技推出的Venusil AA 氨基酸分析方法是基于目前广泛使用的PITC( 异硫氰酸苯酯) 衍生剂的HPLC 氨基酸分析方法。简化了衍生方法,衍生方便、快速,衍生物单一、稳定,-20 可贮存数月;4 水溶液3 天;分析时间短;结果准确,试剂、副产物、溶剂等多种干扰因素可通过快速蒸发去除;紫外检测(254nm) 灵敏度高,可达到1 pmol;一、二级氨基酸均可检测。是目前氨基酸分析中最具吸引力的分析方法。本法已拓展至磷酸氨基酸、硫酸氨基酸等修饰氨基酸与不同组织氨基酸分析。Venusil AA氨基酸分析方法包中提供的试剂量和相应的包装,均经过准确计算,仅需按照说明书操作,加入相应量的溶剂即可得到所需浓度的试剂,省却了繁琐的计算过程。Venusil AA 氨基酸分析方法包提供:Venusil AA 氨基酸分析专用柱(4.6×250,5μm),1支;氨基酸标准溶液,2瓶,1mL/瓶(含17种氨基酸,其中天门冬氨酸、谷氨酸、丝氨酸、甘氨酸、组氨酸、精氨酸、苏氨酸、丙氨酸、脯氨酸、酪氨酸、缬氨酸、蛋氨酸、异亮氨酸、亮氨酸、苯丙氨酸、赖氨酸为2.5μmol/mL,胱氨酸1.25μmol/mL);内标物正亮氨酸(Nle),一瓶,100mg/瓶;异硫氰酸苯酯(PITC),10 瓶,25μL/瓶;三乙胺(TEA),2瓶,1.4mL/瓶;Venusil AA 氨基酸分析专用柱分析方法手册;

分析方法对比相关的仪器

  • 梅特勒托利多服务部门凭借多年的行业和设备经验,为您提供专业培训及业务咨询服务,从而高效地运行和维护设备。■ 本期课程:料罐称重的标定与校准方法对比分析几十年来,各行各业的企业为料罐秤或称重模块系统尝试过多种耗时、繁琐或成本高昂的校准方法。对于多数企业,往往会由于开展料罐校准非常艰难,而只对自己的客户或第三方审核所急迫要求的料罐进行某种形式的”校准“,其目的可能仅仅是获得一份数据难保可靠的证书或报告。还有一些企业,谈及料罐校准,只能望罐兴叹,束手无策。所有这些困境和现状,都为料罐秤或称重模块系统的最终用户带来了极大的困扰和计量管理风险。那么,目前料罐校准的现状如何?这些传统校准方法有何特点?作为料罐秤的最终用户,我们是否有可能为料罐进行更高效率、更好精度、具有追溯性且易于操作的校准呢?梅特勒托利多资深服务专家李小兔通过系列在线课程,为我们系统的介绍了料罐称重系统的标定&校准方法对比分析。■ ■ 课程介绍01 | 罐体称重概况介绍02 | 传统标定和校准方法03 | Rapidcal料罐快速校准■ ■ 课程通道扫描下方二维码或浏览器输入:kl9373.umu.cn 直达课程,为您解锁居家学习新思路。您还可以搜索关注“梅特勒托利多服务在线”公众号,或拨打免费服务咨询热线 ,时刻获取前沿资讯和精选培训课程。
    留言咨询
  • 仪器简介:典型应用:电厂化水补给水、锅炉水、蒸汽和冷凝水中在线监测。检测方法:国际通用标准的杂鉬蓝分析法;与实验室方法的数据对比重现性好。技术参数:测量范围:0-5000 ppb;以SiO2 表示;检 出 限:小于0.5 ppb;精 确 度:± 0.5 ppb 或读数的± 1.0% ,取较大值。响应时间:8.8 分钟,当样品温度是30 to 50℃时,15 分钟,当样品温度是 5- 40℃,环境温度: 10 - 45℃,(一般室内安装)样品要求:5± 3 psig (34.5 ± 20.7 kPa).样品流量:100 to 300 mL/分钟模拟输出:几种模拟输出可选:0-0.01V, 0-0.1V, 0-1V or 4-20mA.,量程可设置电源要求:115/230 Vac, 50~60Hz,可选择.报警信号:2个样品浓度警报,1个分析仪系统警告和1个分析仪系统停机报警。防护等级:ABS塑料,NEMA 4X/IP65安装方式:台式安装或面板式安装主要特点:● 先进的自诊断、报警系统,当样品流突然中断时,有报警信号;● 每个样品分析都进行自动调整零点;扣除干扰。● 具有灵活、实用的抓样分析方法;● 专利的压力法试剂传输系统,试剂消耗量低;维护量小● 可编程的自动校准,有三种校准方式可供选择。● 先进的分析门开关保护系统。● 预制的、即开即用的试剂节省时间;试剂的成批制备,保证了试剂质量的均匀、和稳定。● 可配置为8通道硅分析仪
    留言咨询
  • Lionheart LX是一款高性价比的全自动显微成像系统,整个机型设计紧凑,无需人眼通过目镜观察样本,有效的避免长时间人眼观察造成的视觉疲劳,也无需耗费高昂的采购成本和学习成本,搭载具有高内涵分析功能的Gen5软件,可以自动化进行图片拍摄、处理和分析,在实验室应用非常广泛。特点全自动智能显微成像系统:Lionheart LX拥有全自动的6位物镜转轮,能够同时实现4色荧光通道的成像,具有高精度电动载物台,可以自动聚焦、自动曝光、一键式成像,Gen5软件功能可以让用户体检轻松简单的全自动图像拍摄和分析。具有高对比度明场、彩色明场和荧光成像模式:明场、彩色明场和20多种荧光通道成像可选,Lionheart LX 突破多种成像拍摄体验,从Z轴层切(Z-stacking)到Z轴图像展示(Z-projection),Montage拍摄实现图像拼接,并且具有视频录制、自定义坐标拍摄和高通量整版拍摄功能,极大的拓宽了Lionheart LX在生命科学领域的应用。非标记细胞成像:可以通过高对比度明场进行非标记细胞成像,利用Gen5软件全自动完成图片拍摄、图片处理和结果分析,方法简便,适用于细胞计数、细胞毒性、细胞增殖和融和度相关实验。Lionheart LX典型应用:——终点法活细胞检测细胞凋亡细胞自噬细胞周期细胞毒性线粒体膜电位——组织学(HE)——非标记细胞计数——融合度分析——基因毒性彗星分析γH2AX——表型分析免疫荧光
    留言咨询

分析方法对比相关的方案

分析方法对比相关的论坛

  • 对比结果的分析方法如何选择?

    实验室包括人员比对、 仪器比对、 方法比对、 标准物质比对、 留样再试、 实验室间比对等。各种比对中比对结果评价是一个难点。比对结果的分析方法包括: t 检验法、 En 值判断法、 CD 值判断法、 专业标准判断法、 Z 比分数等。由于比对试验结果的分析正确与否是整个比对试验成败的关键,使用不同的分析方法对同一比对试验的结论往往不尽相同,若分析不当将使整个比对试验变得毫无意义。因此如何在各种比对试验中选用合适的分析方法就显得至关重要。那么对比结果的分析方法如何选择应用呢?什么情况下该选择哪种方法?

  • 做不同方法对比需要分析测试过程中的区别吗?

    在内部质量控制中有不同方法对比这一项,然而既然方法不一样了用的设备、环境等一些条件自然不一样了,如果结果有差别的话是不是有偶然的情况,需要分析检测过程中的区别吗?又会如何下结论哪?

  • 涂料中苯系物检测方法对比分析

    大家好! 我刚刚进入检测分析行业不久,感觉自己还是个门外汉,前不久领导送来一批样品,是涂料,说要检测苯、甲苯和二甲苯,由于之前实验室有在做烟标的VOC检测(《卷烟条与盒包装纸中挥发有机化合物的测定 顶空-气相色谱法》),其中就有检测苯、甲苯和二甲苯,所以就想用此方法来检测(用顶空比较简便)。不过后来领导不知又从哪里弄来了一个标准(HJ/T 201-2005《环境标志产品技术要求 水性涂料》),是采用内标法,直接进样测试,并督促要用参考此方法,再进行检测。认真看了HJ/T201-2005后,发现实验室目前没有理想的内边物,经过思量之后决定采用外表法做,并对其进行加标回收试验,和顶空—气相色谱法进行对比。 以下是这次加标回收对比实验的过程描述、相关数据分析及结论,希望大家看完后就我这份分析报告能给点建议和意见,从实验设计、数据处理,以及结果分析等等任何方面都可以说说。 望大家不吝赐教!加标回收试验过程简述:选取前测试样品作为基样,甲苯为标准物质。用万分之一的电子分析天平准确称量基样32.7675g,再立刻加入标准物质0.8658g,然后迅速搅匀,在最短时间里完成若干测试样品的称量,并记录相关数据。分别按照两种不同的检测方法【YC/T207-2006《卷烟条与盒包装纸中挥发有机化合物的测定 顶空-气相色谱法》(以下称顶进样空法)和HJ/T 201-2005《环境标志产品技术要求 水性涂料》 附录F(以下称直接进样法)】对待测样品进行前处理和检测。试验过程中的相关数据: 表 1 混样中相关数据 基样质量 加标质量 混标总质量 加标浓度 32.7675g 0.8658g 33.6333g 25742.34mg/kg 表2 顶空进样法相关数据 实验标号 称重(g) 目标物浓度(mg/kg) 平均回收浓度(mg/kg) 平均回收率 基样 0.0656 40.000 —— —— 1 0.0870 18604.218 —— —— 2 0.0709 19367.715 —— —— 3 0.0802 19276.397 —— —— [

分析方法对比相关的资料

分析方法对比相关的资讯

  • 常见比表面积测试方法对比分析
    p style=" text-align: justify text-indent: 2em " strong 动态色谱法 /strong /p p style=" text-align: justify text-indent: 2em " 动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量;静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量;  /p p style=" text-align: justify text-indent: 2em " 动态色谱法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。  /p p style=" text-align: justify text-indent: 2em " 由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫BET比表面。统计吸附层厚度法主要用于计算外比表面; /p p style=" text-align: justify text-indent: 2em " 动态色谱法仪器中有种常用的原理有固体标样参比法和BET多点法; /p p style=" text-align: justify text-indent: 2em " 动态色谱法之固体标样参比法 /p p style=" text-align: justify text-indent: 2em " 固体标样参比法也叫直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以此种简单的方法所得出的比表面值与BET多点法得到的值一致性较好的原因; /p p style=" text-align: justify text-indent: 2em " strong 动态色谱法之BET多点法 /strong /p p style=" text-align: justify text-indent: 2em " BET多点法为国标比表面测试方法,其原理是求出不同分压下待测样品对氮气的绝对吸附量,通过BET理论计算出单层吸附量,从而求出比表面积;其理论认可度相对固体标样参比法高,但实际使用中,由于测试过程相对复杂,耗时长,使得测试结果重复性、稳定性、测试效率相对固体标样参比法都不具有优势,这是也是固体标样参比法的重复性标称值比BET多点法高的原因; /p p style=" text-align: justify text-indent: 2em " 动态色谱法和静态容量法是目前常用的主要的比表面测试方法。两种方法比较而言动,态色谱法比较适合测试快速比表面积测试和中小吸附量的小比表面积样品(对于中大吸附量样品,静态法和动态法都可以定量的很准确),静态容量法比较适合孔径及比表面测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等,使得测试效率相对动态色谱法的快速直读法低,对小比表面积样品测试结果稳定性也较动态色谱低,所以静态法在比表面测试的分辨率、稳定性方面,相对动态色谱并没有优势;在BET多点法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以相对动态法省时;静态法相对于动态色谱法由于氮气分压可以很容易的控制到接近1,所以比较适合做孔径分析。而动态色谱法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。 /p p style=" text-align: justify text-indent: 2em " strong 静态容量法 /strong /p p style=" text-align: justify text-indent: 2em " 在低温(液氮浴)条件下,向样品管内通入一定量的吸附质气体(N2),通过控制样品管中的平衡压力直接测得吸附分压,通过气体状态方程得到该分压点的吸附量; /p p style=" text-align: justify text-indent: 2em " 通过逐渐投入吸附质气体增大吸附平衡压力,得到吸附等温线;通过逐渐抽出吸附质气体降低吸附平衡压力,得到脱附等温线;相对动态法,无需载气(He),无需液氮杯反复升降; /p p style=" text-align: justify text-indent: 2em " 由于待测样品是在固定容积的样品管中,吸附质相对动态色谱法不流动,故叫静态容量法。 /p
  • 致力于最优的解决方案-吉天仪器SA-50 砷形态快速分析方法对比国标
    砷是自然界中常见的有毒致癌性元素之一,砷的生物毒性不仅与其含量有关,更大程度上还与其存在形态有关。砷的主要形态有亚砷酸盐(As3+)、砷酸盐(As5+)、一甲基砷(MMA)、二甲基砷(DMA)、砷甜菜碱(AsB)、砷胆碱、砷糖等。其中,无机砷的毒性大于有机砷,砷与有机基团结合越多,毒性越小。无机砷(As3+、As5+)的毒性很高,而有机砷仅一甲基砷和二甲基砷化合物有较小的毒性,其他有机砷形态大多无毒。所以,对砷的形态分析在环境科学、食品科学等方面具有十分重要的意义。GB5009.11-2014食品安全国家标准  食品中总砷及无机砷的测定中关于无机砷的测定方法采用了HPLC-AFS联用作为第一法对无机砷(As3+、As5+)进行含量测定。采用磷酸二氢铵缓冲盐作为流动相,使用聚光科(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)针对砷形态分析专门研发的快速分析阴离子交换色谱柱进行分离,AFS进行检测。本解决方案在国标的基础上,优化了分析方法,采用快速色谱柱进行了4种As的形态分析,加快了分析速度、提高了灵敏度。吉天仪器SA-50液相色谱-原子荧光联用仪(LC-AFS形态分析仪)科研不断探索未知,攻克挑战,吉天仪器新品,强强联用,致在优质的解决方案!仪器型号:吉天仪器SA-50 与Kylin S18联用色谱柱:吉天砷形态快速分析专用柱待测物:砷酸盐、亚砷酸盐、一甲基砷、二甲基砷、砷甜菜碱均来自于中国计量科学研究院测试条件:  流动相:水、2种盐混合缓冲溶液梯度洗脱  载流:7%盐酸  还原剂:2%硼氢化钾/0.5%氢氧化钾  负高压:290V  灯电流:100mA-50mA  炉高:10mm测试结果:  1. 重复性:对于As3+、As5+、MMA、DMA(10ng/mL)混合溶液,在仪器稳定后连续进样6针,重复性RSD,结果见下图:  2. 线性: 对于不同浓度的As3+、As5+、MMA、DMA(20ng/mL、15 ng/mL 、10 ng/mL、5 ng/mL、2.5 ng/mL)混合溶液分别进样,制作曲线,结果见下表及下图;浓度(ng/mL)荧光强度As3+DMAMMAAs5+2.525002.114602.917859.17540.1550960.229006.234158.215092.61010146565544.675930.635131.21515279010056811529151291.82021360313807214945069886.4线性方程y=10662x-3189.3y=7098.1x-4971.3y=7657.9x-1870.5y=3579.7x-1798.4相关系数r0.99920.99960.99930.9994   3. 检出限:把As3+、As5+、MMA、DMA(1 ng/mL)混合溶液进样,测试结果见下图:只因内”芯“的从容!才要更出色!与国标等度方法对比分析:  在已发布的《液相色谱-原子荧光光谱法测定食品中无机砷的解决方案》文中采用了国标等度方法、HamiltonPRP-X100阴离子交换色谱柱(4.1mm*250mm*10μm)或CNWSep AX 4.0mm*250mm*10um色谱柱进行了四种As形态(As3+、As5+、MMA、DMA)的分析,测试结果与本文中采用优化方法的对比图分别如下(上图为方法一与国标法对比;下图为方法二与国标法对比),由实验结果可知四种As形态的分离时间有了较大的减少,灵敏度也有了较大提高。创新性LC-AFS分析技术,智能高效、精益求精  全内置的液相泵,结构紧凑,设计更美观  内置双柱柱温箱,实现双色谱柱同时预热  双色谱柱自动切换,提高更换效率  实现紫外消解流路自动切换  多色LED指示灯,直观显示仪器多种状态  全面的软件控制,人机友好互交  更多优异的性能、全面的解决方案等你关注哦!!!LC-AFS
  • 工业CT无损检测国内外标准对比分析
    本文作者:肖鹏,章镇工作单位:上海飞机制造有限公司复合材料中心第一作者简介:肖鹏,高级工程师,主要从事民机复合材料无损检测研究工作。本文来源:《无损检测》2023年5期计算机层析成像(CT)检测技术可以得到试件的层析图像,清晰地展示检测对象的内部结构关系、物质组成及缺陷状况,其重建数据可用于各种分析研究。对于任何一项技术来说,标准的制定是其大规模推广应用的基础,工业CT技术也不例外。工业CT标准的制定,对CT的技术术语和性能指标逐步建立了比较清楚的概念,也建立了CT设备检验和验收的科学规范。目前与工业CT检测相关的标准共有40多项,包括国际标准(ISO)4项,美国材料试验协会标准(ASTM)7项,国家标准(GB)20项,国家军用标准(GJB)3项,行业标准12项。标准的类型有技术导则、特定检测方法、测试卡、系统性能测试方法等。 标准体系简介 1 ISO标准体系国际标准化组织无损检测技术委员会射线检测分委会(ISO/TC 135/SC 5)于2002年分别发布了ISO 15708-1:2002和ISO 15708-2:2002。这两个标准提供了CT理论、使用的教程介绍以及检测方法指南。2017年,ISO 15708系列标准陆续升版。ISO 15708:2017系列标准对工业CT检测技术用语进行了定义,规定了射线工业CT的一般原理、使用设备、样品、材料和几何形状的基本注意事项,规定了系统的操作设置、检测结果的解释,并规定了系统在执行不同检测任务时进行性能验证的基本要求,旨在为检测人员提供相关技术信息,以便在检测过程中选取合适的参数,并对检测结果进行合理分析和评定。ISO标准体系组成(CT)如下:1.1 ISO 15708-1:2017Non-destructive testing-radiation methods for computed tomography part 1:terminology无损检测-工业射线计算机层析成像检测-第一部分:术语1.2 ISO 15708-2:2017Non-destructive testing-radiation methods for computed tomography part 2:principles, equipment and sample无损检测-工业射线计算机层析成像检测-第二部分:原理、设备与样品1.3 ISO 15708-3:2017Non-destructive testing-radiation methods for computed tomography part 3:operation and interpretation无损检测-工业射线计算机层析成像检测-第三部分:操作和解释1.4 ISO 15708-4:2017Non-destructive testing-radiation methods for computed tomography part 4:qualification无损检测-工业射线计算机层析成像检测-第四部分:验证2 ASTM标准1995年,美国材料试验协会无损检测委员会射线分委会(ASTM E 07.01)相继发布了ASTM E 1695:95和ASTM E 1672:95。文中讨论的4篇ASTM通用标准并不像ISO标准一样对工业CT检测的全流程进行系统性的规范与指导,这些标准分别侧重于技术和原理的教程、性能参数测试、设备部件选购以及扇形射束CT。ASTM标准体系组成(CT)如下:2.1 ASTM E 1441:19Standard guide for computed tomography (CT)计算机层析成像的标准指南2.2 ASTM E 1695:20Standard test method for measurement of computed tomography (CT) system performance测量计算机层析成像系统性能的标准试验方法2.3 ASTM E 1672:20Standard guide for computed tomography (CT) system selection选购计算机层析成像系统的标准指南2.4 ASTM E 1570:19Standard practice for fan beam computed tomographic (CT) examination扇束CT检测的标准规程3 GB标准2012年,全国无损检测标准化技术委员会(SAC/TC 56)发布了6篇与工业CT相关的国家标准。2017年后,针对工业CT系统的性能指标测试,SAC/TC 56发布了一系列测试卡标准(文中只讨论空间分辨率和密度分辨率的测试卡标准),GB标准体系组成(CT)如下:3.1 GB/T 29034-2012Non-destructive testing-guide for industrial computed tomography (CT) imaging无损检测 工业计算机层析成像(CT)指南3.2 GB/T 29067-2012Non-destructive testing-test method for measuring industrial computed tomography (CT) image无损检测 CT图像测量方法3.3 GB/T 29068-2012Non-destructive testing-guide for industrial computed tomography (CT) system selection无损检测 CT系统选型指南3.4 GB/T 29069-2012Non-destructive testing-test method for measuring industrial computed tomography (CT) system performance无损检测 CT系统性能测试方法3.5 GB/T 29070-2012Non-destructive testing-industrial computed tomography (CT) general requirement无损检测 CT检测通用要求3.6 GB/T 35391-2017Non-destructive testing-spatial resolution phantom for industrial computed tomography (CT) testing无损检测 CT检测用空间分辨力测试卡3.7 GB/T 35386-2017Non-destructive testing-density resolution phantom for industrial computed tomography (CT) testing无损检测 CT检测用密度分辨力测试卡 具体内容比较 1 设备1.1 概述ISO 15708-2:2017对工业CT设备中的每个部件进行了详细的分类和描述,包括射线源的分类以及不同能量范围下射线源的应用情况与特点、探测器的分类以及应用范围、描述机械运动系统的运动模式以及规定计算机在数据采集、重建和可视化中的应用。ASTM E 1672:20和GB/T 29068-2012专门提到如何选购一套工业CT系统,对于准备采购工业CT的潜在用户极具参考价值。这些标准对射线源、探测器、机械运动系统的要求存在差异,以下将展开详细介绍,而对采集、重建、可视化和存储系统等的要求基本一致,此处不再做分析与讨论。1.2 射线源项目ISO 15708-2ASTM E 1672GB/T 29068分类开管X射线机:高分辨率,低能量,管电压为0~225 kV,管电流为0~3 mA,焦点尺寸小于100 μm(微焦点),焦点尺寸小于1 μm的为纳米焦点,真空室能打开从而允许更换灯丝X射线源:给定焦点尺寸下,X射线源比同位素源强度高几个量级;X射线源在关闭时会停止辐射;未校正情况下,X射线源的多色性会导致射束硬化同ASTM E 1672密封管X射线机:管电压为0~450 kV,管电流为0~60 mA,焦点尺寸小于250 μm(小焦点),真空室不能打开从而无法更换灯丝,常用于成像尺寸或密度较大的样品同位素(单色性):不存在射束硬化,也不需要笨重且耗能的电源,输出强度更稳定,强度受到比活度的限制直线加速器:不普遍使用,用在高密度、高能量的系统中,能量为1~16 MeV,焦点尺寸小于2 mm同步辐射:产生连续谱射线,受穿透能力限制,只能检测小尺寸的物体,使用较少射线靶透射靶承受较高电压,强度更大反射靶焦点尺寸更小,辐射角度更大,几何放大倍数更大无无1.3 探测器ISO 15708-2ASTM E 1672GB/T 29068电离探测器:坚固耐用,可用于探测2 MeV的能量LDA与扇形束CT系统一起使用,在扇形束CT系统中准直到一个小狭缝以减少散射辐射,通常适用于探测0.4~20 MeV的射线能量单探测器:效率最低,复杂度最小,不受散射和不一致性影响闪烁探测器:设计灵活,非常耐用,使用DDA时辐射散射更大,DDA采集投影速度更快(与LDA相比)DDA与锥束CT系统一起使用,锥束CT系统可以较平行和扇形束几何系统更快地获得3D体积图像,但容易散射辐射,可以通过软件进行校正DDA采集速度快,需要高传输带宽和储存量,效率低,动态范围小,难以实现准直和屏蔽半导体探测器:使用半导体直接将入射射线转化为电荷的面阵探测器,避免了光散射,可提高分辨率--LDA较好地综合了以上两种探测器的优点,速度较快,散射和不一致性在可接受范围内,可较好实现准直和屏蔽1.4 机械运动系统ISO 15708-2ASTM E 1672GB/T 29068通过增加随机线性运动和执行“连续旋转一个采集周期”这两种方式来减少伪像只规定了基础功能分为立式、卧式结构(细而长的零件适合卧式布局,粗而短的零件适合立式布局)大多数具有水平X射线轴,少数具有垂直X射线轴精度分为扫描运动精度和装配几何精度使用线阵探测器的系统中,应增加样品在旋转轴高度的相对运动轴系统扫描运动精度由机械传动部件精度和控制系统控制精度共同决定与CT数据相关的各机械运动系统的运动定位精度应优于CT系统最高分辨率的1/5系统装配几何精度通过精密零件加工和精密调配调试保证2 样品ISO 15708-2:2017较为全面地描述了在检测过程中有关样品的注意事项,其中包括样品的尺寸、形状与材料。该标准限制样品尺寸,提出最理想的形状是圆柱体,并可以转动至少180°。若由于几何或者穿透限制未能采集到所有角度的投影,则可能会出现伪像。该标准含有一张不同材料和能量的10%穿透率的厚度表。通过查询该表,检测人员可以根据不同需求的待测样品来选择信噪比最好情况下的射线能量。ASTM E 1672:20和GB/T 29070-2012中列出了样品参数与系统性能的关系:① 样品参数包括最大回转直径、最大长度(或高度)、最大重量以及最大等效钢厚度等;② 最大回转直径由系统最大能量、射线分布以及扫描方式等因素决定;③ 最大长度(或高度)由立式系统的最大升降行程或卧式系统的最大平移行程决定;④ 最大重量由系统运动部件及机械结构综合承载能力决定;⑤ 最大等效钢厚度主要由射线源能量决定。3 操作ISO 15708-3:2017规定了CT系统的操作及结果解释,目的是为检测人员提供相关技术信息,以便在检测过程中选取合适的参数。ASTM E 1441:19和GB中也对操作设置做出了相应规定。各标准具体操作指南如下:操作设置ISO 15708-3ASTM E 1441GB/T最佳能量最佳能量是提供最佳信噪比的能量,但不一定是得到最清晰射线照片的能量。可调整加速电压以使其线衰减系数的差异最大给定样品的最佳射线能量不是由提供足够穿透力的最低能量决定的,而是由产生最大信噪比的能量决定无几何布置优先考虑射线源到待测物的距离最小,射线源到探测器的距离宜尽可能小,且锥束覆盖整个探测器对于锥束系统,锥角应小于15°,被测物体通常旋转360°。理想情况下,投影分度数不宜小于π/2×矩阵大小,投影的数量宜大于π×矩阵大小无不宜用大视场直径来检测小直径待测物选择扫描视场时,被测物在图像中,宜占视场的2/3(29070-2012)射线源参数设置最大射束能量和管电流宜采用的衰减比约为1:10使用前置滤波片可获得最佳灰度范围,前置滤波片可减小射束硬化的影响,也会降低射线强度当样品组分物理密度差异较大时,可以在高源能量下获得最佳信噪比,此时,减少图像噪声比增加对比度更重要当样品组分物理密度差异不大时,可以在低源能量下获得对材料的最佳区分,此时,增加对比度可能比减少图像噪声更重要穿透样品的射线强度占入射射线强度的13%时,对比度灵敏度通常最好所选射线能量对应8~10个钢的半值层厚度,应大于检测对象的最大等效钢厚度检测对象的材料密度差很小时,在保证足以穿透的情况下,选择低能量的射线源检测对象尺寸较大、密度较大或者由密度相差较大的材料组成时,宜选择能量高、强度大的射线源(29068-2012)探测器充分考虑曝光时间(帧速率);每个投影的迭加数量;数字增益和偏置;像素合并等参数必要时,宜使用偏置、增益和坏像素校正,数字化的最大辐射强度值不超过其饱和值的90%同时使用的像素点越多,扫描数据采集得越快探测器元件的良好校准(以均衡响应度并减去暗场信号)对于良好的重建至关重要开机时,进行暗场和空气校准;准直器和射线参数调整后,进行空气校准(29070-2012)重建应设定要重建的体积区域、CT图像的大小及其动态范围,宜优化重建算法或校正设置,体积区域由x,y和z轴上的体素数决定无缺陷检测对于单独的孔隙、空洞或裂缝的可检测性,其最小范围通常应为体素大小的2到3倍(在样品位置)尺寸测量确定精确的图像比例,阈值(明确材料表面),调整基本几何体,生成几何数据,标称/实测比较几何数据的进一步处理ISO标准中规定数字化的最大辐射强度值不超过探测器饱和值的90%,能够有效避免射线过曝对探测器造成的伤害以及对检测结果的影响。ISO标准可以有效地通过体素尺寸来描述最小缺陷可检性,为缺陷检测提供了量化的途径。4 图像质量参数CT图像的质量参数是衡量工业CT检测效果最直观的方式。ISO 15708-3:2017规定了对比度、噪声、信噪比、对比度噪声比以及空间分辨率这些基础的图像质量参数,并以实例的方式详细讲述了采用线对卡和固体密度差法来分别测量空间分辨率和密度分辨率的完整方法。ASTM E 1695:20则重点讲述调制传递函数(MTF)和对比度鉴别函数(CDF)的测试方法、测量原理、测量步骤以及最终的结果分析。GB/T 29034-2012将ISO 15708-3:2017和ASTM E 1695:20中的关于图像质量参数的内容融合在一起,更加全面。GB/T 35391-2017和GB/T 35386-2017则汇总了ISO标准和ASTM标准中所有测量密度分辨率和空间分辨率的方法。4.1 空间分辨率上述3份标准都以MTF来表征空间分辨率,MTF描述了CT系统的总不清晰度降低周期性图像对比度的因素,描述了CT系统对图像信号的调制(相对强度变化)的传输,是调制的空间频率。ISO 15708-3:2017规定了两种测量MTF的方法,一种是从均匀圆柱体的CT图像获取MTF,一种是用线对卡来直接测定离散点处的MTF,并在附录中对有关线对测试卡的详细测量方法进行了完整的规定,其中包括线对卡的设计制作、测量原理以及最终的测量结果分析。ASTM E 1695:20只详细说明了从均匀圆柱体图像获得MTF的试验方法,对重建圆柱切片边缘锐度的图像进行分析得出MTF曲线,对计算逻辑、测量过程和测量数据等方面的描述比ISO的描述更加具体和详细。4.2 密度分辨率密度分辨率又称对比灵敏度。ASTM E 1695:20通过CDF曲线来表征密度分辨率,而ISO 15708-3:2017通过固体密度差法和对比度噪声比来表征密度分辨率。GB/T 29034-2012中未提及密度分辨率。ISO 15708-3:2017用对比度噪声比来衡量细节特征和背景之间衰减值是否大于背景噪声水平。通常认为对比度噪声水平不小于3时,具有良好的检测置信度,另外该标准规定了固体密度差法来测量密度分辨率的方法,参考试件由一个包含添加物的圆柱形部件组成,分为高能和低能两种模式,标准详细给出了测量添加物密度的公式,规定了如何通过相关曲线评价系统性能。ASTM E 1695:20提出,在一定的噪声水平下,可以通过CDF曲线,近似地描述从基体判别大小为D的对比度特征的能力。CDF描述了图像噪声对其他同质材料邻域中特征可检测性(对比度灵敏度)的影响,作为该特征在体素中的大小D的函数。该测定基于对均匀圆柱体材料的CT扫描,CDF曲线是分析圆柱体切片中心的对比度和统计噪声的图像得出的。4.3 对比细节图在现实中,人眼能够检测到的有效对比度(成功率为50%)取决于图像噪声和特征直径。只有ASTM E 1695:20和GB/T 29034-2012规定了CDD曲线的要求,ISO 15708-3:2017标准中并没有提到。CDF描述了特定尺寸特征的可检测性和噪声场中的最小对比度(忽略不清晰度的影响),而MTF几乎完全代表不清晰度对特征的影响。这两个量可以在CDD中统一,CDD将感知对比度和物理对比度结合起来,以表征CT系统在给定评估条件下解析和区分特征的总体能力。5 伪像ISO 15708-2:2017,ASTM E 1441:19以及GB/T 29068-2012中提及的伪像成因如下所示(√表示提及,×表示未提及)。这些标准中关于伪像图像及其成因的描述,能让检测人员更好地分辨伪像,进而有效地避免伪像。6 设备性能验证方法各标准性能验证要求性能参数ISO 15708-4ASTM E 1570GB/T 29070总体性能与参考测量结果进行对比,短周期核查(如每周)定期测量和监控设备参数性能无空间分辨率缺陷检测和尺寸测量应用1次/周≥1次/年;安装调试、维修、更换部件后密度分辨率缺陷检测应用1次/周≥1次/年;安装调试、维修、更换部件后切片厚度无1次/周无伪像组件质量评价或组件发生变化后1次/周组件性能无安装、维修或组件发生变化后各标准设备性能验证方法性能参数ISO 15708-4ASTM EGB/T总体性能对参考样件进行检测,比对检测结果,如缺陷(气孔、裂纹)、最薄处、最厚处、厚度等,对总体性能进行监控对空间分辨率、密度分辨率等指标进行核查,检测前验证是否满足使用要求(1570:19)对空间分辨率、密度分辨率等指标进行核查,检测前对缺陷检测能力进行验证(29070-2012)空间分辨率圆盘卡法、线对卡法圆盘卡法(1695:20)线对卡法、圆孔卡法、圆盘卡法(29069-2012)线对卡法(按分辨率分为Ⅰ级、Ⅱ级和Ⅲ级)、圆孔卡法(按孔径分为Ⅰ级和Ⅱ级)、圆盘卡法。测试卡按料料可分为钢质、硅质和其他金属质(35391-2017)密度分辨率缺陷检测应用圆盘卡法(1695:20)空气间隙法、密度差法、圆盘卡法(29069-2012)空气间隙法(单空气、多空气)、固体密度差法、液体密度差法、圆盘卡法。测试卡按材料可分为钢质、铝制、硅质以及其他金属质测试卡(35386-2017)切片厚度无用棱锥体、圆锥体、斜板、螺旋槽等验证(1570:19)无伪像与参考图像比较观察均匀圆盘密度变化(1570:19)机械系统使用坐标测量设备(CMMs)检查移位轴轨迹和定位精度无图像比例用已知空间结构的高精度球体组合(如球杆、哑铃)检查射束轴与探测器的垂直度使用合适的测试样品(如钨丝或细针、球体等)进行测试焦点采用扫描方法、针孔照相机射线照相方法、边缘方法、小焦点和微焦点X射线管的有效焦点尺寸的测量方法测试;通过比较不同放大倍数下
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制