反相微乳液法

仪器信息网反相微乳液法专题为您整合反相微乳液法相关的最新文章,在反相微乳液法专题,您不仅可以免费浏览反相微乳液法的资讯, 同时您还可以浏览反相微乳液法的相关资料、解决方案,参与社区反相微乳液法话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

反相微乳液法相关的耗材

  • 乳液生成器 树脂3d打印
    乳液生成器外形尺寸:11.5x11.5x12mm³ 一体成型管径低至0.1mm低荧光效应
  • 二甲硅油均质乳化机如何选型,转相法高剪切乳化机,上海徐工推荐医药西甲硅油乳化机,在线式工业化乳化机,14000转超高速乳化机,硅油乳化机设备上海生产厂家,油水均质乳化机价格
    二甲硅油均质乳化机如何选型,转相法高剪切乳化机,上海徐工推荐医药西甲硅油乳化机,在线式工业化乳化机,14000转超高速乳化机,硅油乳化机设备上海生产厂家,油水均质乳化机价格...更多详情请咨询上海依肯 销售 徐工 1-8-2-0-1-8-9-1-1-8-3 甲基含氢硅油乳液与甲基羟基硅油乳液共用,能防水又可保持织物的透气性并能提高织物的撕裂强度、磨擦强度和防污性,改善织物的手感和缝合性能。另外,用作纸张的防粘隔离剂和交联剂。油相水相混合采用转相法还是连续法这是硅油乳化效果的决定因素:对于制备,牵涉到主要设备分散乳化机的转速问题,分散乳化机有两大作用,一是搅拌功能,二是高剪切功能。这就需要我们在工业生产中如何去实现他们的不同功能。而德国IKN工业设备在从实验室产品到工业设备就利用它du特的设计和计算线速度的方法,很好的解决了这一问题。同时还有初乳制备过程中的产生气泡问题,传热问题乳化不均,浮油问题等等。 我司工程师建议采用的方案为:在罐体内先进行固体物料的简单混合,将需要的配比浓度的物料投入罐体内,开动低速搅拌机进行简单混合,使得物料形成较为均一的物料;然后再罐体底部的物料出口开动阀门使得物料由管路进入我司的管线式分散机进行剪切分散处理,经过剪切分散后在由设备的出口管路输送进入罐体内,实现物料的一次循环处理!经过多次罐外循环处理能达到很好的分散悬浮效果,物料颗粒细度均一。当对于某些物料经过20000转设备一遍高剪切乳化即可达到要求的,可采用连续式工艺方式。 连续式转相法高速乳化机,乳化转相法高速乳化机是高效、快速、均匀地将一个相或多个相(液体、固体)进入到另一互不相溶的连续相(通常液体)的过程的设备的设备。当其中一种或者多种材料的细度达到微米数量时,甚至纳米时,体系可被认为均质。当外部能量输入时,两种物料重组成为均一相。高剪切均质机由于转子高速旋转所产生的高切线速度和高频机械效应带来的强劲动能,使物料在定、转子狭窄的间隙中受到强烈的机械及液力剪切、离心挤压、液层摩擦、撞击撕裂和湍流等综合作用,形成悬浮液(固/液),乳液(液体/液体)和泡沫(气体/液体)。高剪切均质机从而使不相溶的固相、液相、气相在相应熟工艺和适量添加剂的共同作用下,瞬间均匀精细的分散乳化,经过高频管线式高剪切分散均质乳化机的循环往复,终得到稳定的高品质产品。 影响分散乳化结果的因素有以下几点:1 乳化头的形式(批次式和连续式)(连续式比批次好)2 乳化头的剪切速率 (越大,效果越好)3 乳化头的齿形结构(分为初齿,中齿,细齿,超细齿,约细齿效果越好)4 物料在分散墙体的停留时间,乳化分散时间(可以看作同等的电机,流量越小,效果越好)5 循环次数(越多,效果越好,到设备的期限,就不能再好)线速度的计算剪切速率的定义是两表面之间液体层的相对速率。– 剪切速率 (s-1) = v 速率 (m/s) g 定-转子 间距 (m)由上可知,剪切速率取决于以下因素:– 转子的线速率– 在这种请况下两表面间的距离为转子-定子 间距。 IKN 定-转子的间距范围为 0.2 ~ 0.4 mm 速率V= 3.14 X D(转子直径)X 转速 RPM / 60 连续式转相法高速乳化机,乳化转相法高速乳化机的高的转速和剪切率对于获得超细微悬浮液是重要的。根据一些行业特殊要求,依肯公司在ERS2000系列的基础上又开发出ERX2000超高速剪切乳化机机。其剪切速率可以超过200.00 rpm,转子的速度可以达到66m/s。在该速度范围内,由剪切力所造成的湍流结合门研制的电机可以使粒径范围小到纳米。剪切力更强,乳液的粒经分布更窄。由于能量密度高,无需其他辅助分散设备,可以达到普通的高压均质机的400BAR压力下的颗粒大小. 标准流量(H2O)输出转速标准线速度马达功率进出口尺寸型号l/hrpmm/skWERX2000/430020000665.5DN25/DN15ERX2000/51,50015,7506615DN40 /DN 32ERX2000/105,00010,9506630DN50 / DN50ERX2000/2010,0007,3006655DN80 /DN 65ERX2000/3030,0004,0006690DN150 /DN 125ERX2000/5050,0003,00066160DN200 /DN 1501 表中上限处理量是指介质为“水”的测定数据。2 处理量取决于物料的粘度,稠度和终产品的要求。3 参数内的各种型号的流量主要取决于所配置的乳化头的精密程度而定。4 本表的数据因技术改动,定制而不同,正确的参数以提供的实物为准
  • 科研实验室型高剪切乳化机,高校科研型高速分散乳化机,高校实验室高速乳化机,实验室高速均质乳化机,科研型高速乳化机
    科研实验室型高剪切乳化机,高校科研型高速分散乳化机,高校实验室高速乳化机,实验室高速均质乳化机,科研型高速乳化机 管线式高剪切乳化机就是高效、快速、均匀地将一个相或多个相(液体、固体、气体)进入到另一互不相溶的连续相(通常液体)的过程。而在通常情 况下各个相是互不相溶的。当外部能量输入时,两种物料重组成为均一相。由于转子高速旋转所产生的高切线速度和高频机械效应带来的强劲动能,使物料在定、转子狭窄的间隙中受到强烈的机械及液力剪切、离心挤压、液层摩擦、撞击撕裂和湍流等综合作用,形成悬浮液(固/液),乳液(液体/液体)和泡沫(气体/液体)。从而使不相溶的固相、液相、气相在相应成熟工艺和适量添加剂的共同作用下,瞬间均匀精细的分散乳化,经过高频的循环往复,终得到稳定的高品质产品。 高剪切乳化机,主要应用于处理大量乳液和生成超细悬乳液。由于同时用三个工作头(转子和定子)进行处理,可获得很窄的粒径分布,获得更小的液滴和颗粒,因而生成的混合液的稳定性更好。分散头容易更换,适合于各种不同的应用。不同的机器都有相同的转速和剪切率,这样便于规模扩产。符合CIP和SIP的清洁标准,因此特别适合于食和药品生产。 ER2000系列管线式高剪切分散乳化机具有非常高的剪切速度和剪切力,粒径约为0.2-2微米可以确保高速分散乳化的稳定性。该设备可以适用于各种分散乳化工艺,也可用于生产包括对乳状液,悬浮液和胶体的均质混合。高剪切分散乳化机由定/转子系统生的剪切力使得溶质转移速度增加,从而使单一分子和宏观分子媒介的分解加速。 科研实验室型高剪切乳化机,高校科研型高速分散乳化机,高校实验室高速乳化机,实验室高速均质乳化机,科研型高速乳化机高剪切乳化机设备等:化工、卫生I、卫生II、无菌电机形式:普通马达、变频调速马达、防爆马达电源选择: 380V/50HZ、440V/50HZ乳化机材质:SUS304 、SUS316L 、SUS316Ti乳化机表面处理:抛光、耐磨处理进出口联结形式:法兰、螺口、夹箍乳化机选配容器:本设备适合于各种不同大小的容器 高剪切乳化机主要应用域:奶油化妆品牙膏果汁洗涤剂浆糊纳米材料聚合物乳化液农药(除草剂 杀虫剂)疫苗脂肪乳药乳液药膏药物包衣血清抗生素乳化柴油乳化重油乳化硅油研磨白炭黑REACTOR标准流量输出转速标准线速度马达功率进出口尺寸高剪切乳化机型号l/hrpmm/skWER 2000/4300-1,0009,000232.2DN25 / DN15ER 2000/53,0006,000237.5DN40 / DN32ER 2000/108,0004,2002315DN50 /DN 50ER 2000/2020,0003,0002331DN80 /DN 65ER 2000/3040,0001,5002355DN150 /DN 125ER 2000/4070,0001,5002395DN150 / DN125ER 2000/50125,0001,10023160DN200 / DN150 科研实验室型高剪切乳化机,高校科研型高速分散乳化机,高校实验室高速乳化机,实验室高速均质乳化机,科研型高速乳化机

反相微乳液法相关的仪器

  • PDM乳液液滴监测系统 400-860-5168转4926
    PDM乳液液滴监测系统乳液液滴监控系统(PDM)技术是为在线分析工业过程中液滴和乳液而设计。这种技术结合了直接光学成像技术和高级图像分析技术。PDM提供了一种悬浮液实时观测相机和液滴特性细节的实时测试数据,例如液滴尺寸分布和浓度。PDM有两个配置选项:可以安装在过程管线和采样线上的Pixcell流通管和安装在反应釜和罐体上的Pixscope探头。液滴尺寸和悬浮液均一性的测试信息可以帮助您对过程进行优化、控制和故障排查。使用PDM您可以提高过程产能,将最终产品的质量波动降为最小。PDM乳液液滴监测系统 PDM测试基于高放大倍数相机系统对悬浮液进行直接图像观测。专利的图像分析算法可以检测液滴并对其特征和其它悬浮液特性生成细节的实时数字信息。对液滴的实时照相机观察为您的过程提供有价值的可视化信息。PDM生成的测试结果包括:- 液滴尺寸分布:尺寸、面积和体积的平均直径,尺寸分布的百分比(D10, D50, D90等)- 液滴计数- 液滴浓度- 液滴流动速率- 悬浮液浑浊度
    留言咨询
  • ▓ 公司概况 美国Xigo是2004年成立于美国的专业纳米颗粒分析仪器公司,为纳米材料产业提供新的创新的分析工具,为粒子的分散性,浸润性,稳定性提供有效解决方案。自从2007年XIGO NANOTOOLS将乳液稳定性分析仪Acorn Drop推进中国市场后,为中国区广大用户所接受,是用户可信赖的分析研究仪器。▓ 产品简介 乳液稳定性分析仪Acorn Drop采用专利核磁共振(NMR)技术,除了可以测量悬浮液颗粒的比表面积外,还可以测量乳液或泡沫液滴的大小和分布,完全不用稀释。只需将0.5毫升的样品放入5毫米外径的核磁样品管中,将其插入仪器中,然后按“开始(Start)”。几分钟后就可以得到结果了。相比之下,传统的粒径测量技术(如激光衍射法)需要对乳剂进行大量稀释才能测量液滴的尺寸。▓ 工作原理 乳液稳定性分析仪Acorn Drop基于核磁共振(NMR)原理,与传统的比表面积测量技术相比,具有多项独特的优势。与各种传统比表面积测量技术不同,Acron粒子接口特性评价装置可以直接对浓悬浮液,乳液,浆体等样品进行直接地测量。整个过程中无需对样品进行稀释或干燥等前处理。从开始到结束只需要5分钟时间。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作。▓ 产品优势 乳液稳定性分析仪Acorn Drop的测量范围非常宽,从10纳米到100微米。高浓度、高粘度、不透明和光敏乳剂可以直接测量,也可以测量不能稀释的纳米或微乳液(由于其成分依赖性)。该方法是非破坏性的——同一乳液样品可以在几分钟、几天或几周后重复测定研究,有助于分析乳液的稳定性。▓ 性能参数 ■ 可以测量乳液或泡沫液滴的大小和分布,完全不用稀释 ■ 只需将0.5毫升的样品放入5毫米外径的核磁样品管中 ■ 非破坏性直接测量微乳液,适用于高浓度、高粘度、不透明和光敏乳剂 ■ 乳滴粒径测试范围:0.25μm - 100μm。动力学测定有助于分析乳液的稳定性 ■ 包括Xigo Area的功能,可在线流动测定 ■ 用于高浓度、高固体含量浆料和乳液的分散特性监测 ■ 测定或计算功能:弛豫时间T1、弛豫时间T2、T2时间扫描、润湿比表面积、水油或油水两相受限扩散的液滴直径▓ 应用案例1 乳液稳定性分析仪Acorn Drop用于银浆的分散研究 银浆是光伏和新能源行业不可或缺的导电剂。将样品分成6份, 加入不同的分散剂。 RSP是材料特有的弛豫速率,是弛豫时间的倒数。当只监测给定的 颗粒-液体组合的颗粒表面积的相对变化时,弛豫时间的差异是绝对的,因此不需要计算表面积值。显然,6号样品中的分散剂更好。▓ 应用案例2 乳液稳定性分析仪Acorn Drop用于颜料生产工艺中批次差异原因的探究 颗粒润湿状态下的表面积测量对粒径分布的变化非常敏感,尤其是对较细的颗粒。表面积测量可以比激光衍射法粒度分析更灵敏地检测细颗粒的存在,因为细颗粒占总润湿表面积的大部分。光学法对细颗粒的灵敏度很低,散射光的强度很低,大颗粒会掩盖小颗粒的散射。因此,光学法通过的样品不一定合格。▓ 应用范围 ■ 陶瓷: 铸造卫生洁具用陶瓷浆料、多层陶瓷电容器用高性能陶瓷的配方开发 ■ 电子材料: 二氧化硅、氧化铝、二氧化铈CMP浆的研制及质量控制 ■ 墨水: 喷墨配方开发与质量控制、导电油 墨、碳基油墨、铜-铂卤菁、银等 ■ 新能源: 燃料电池,太阳能电池板分散,电池,催化剂。炭黑、碳纳米管、纳米石墨、石墨烯等材料 ■ 制药和个人护理: API 开发和质量控制药物产品配方开发、注射剂、口腔护理用二氧化硅、银和金纳米粒子毒性 ■ 其他: 纸纤维、粘土分散体系、NaHCO3、 CaCO3、聚合物分散体系
    留言咨询
  • ECA乳液颗粒分析系统 400-860-5168转4926
    ECATM乳液稳定性分析系统德国SEQUIP的ECATM可用于实时监测乳液体系的沉降速度、沉降粒度、粒子数量等,所有的操作均为在线实时监控,无需取样、样品前处理等步骤。可用于追踪小颗粒的下降指数,以及大颗粒达到峰值的时间,可以将大颗粒的百分比浓度与乳化剂的浓度进行关联,用以指导配方开发工艺过程。流动保障是石油运输过程中的一个重要问题,SEQUIP公司的专利技术可以直接测试石油中的颗粒和液滴,可以为引起限制流动的原因分析提供数据支持,从而避免因石油气体水化物、析腊、沥青质、水油乳浊液等问题而引起巨大的代价。
    留言咨询

反相微乳液法相关的试剂

反相微乳液法相关的方案

  • 低场核磁法研究abs乳液聚合及橡胶含量
    乳液聚合是单体借助乳化剂和机械搅拌,使单体分散在水中形成乳液,再加入引发剂引发单体聚合。在用乳液聚合方法生产合成橡胶时,除加入单体、水、乳化剂和引发剂四种主要成分外,还经常加入缓冲剂(用于保持体系PH不变)、活化剂(形成氧化还原循环系统)、调节剂(调节分子量、抑制凝胶形成)和防老剂(防止生胶及硫化胶老化)等助剂。工业化品种有乳聚丁苯橡胶,聚丙烯酸酯乳液等。
  • 乳液的稳定性及货架期推算的精确快速评价法
    乳液作为化妆品中最基本的产品,种类繁多。一般由两种及以上流体成分混合而成,其中一种必以液滴的形式分散于另外一相中,形成O/W分散相。乳液属于热力学不稳定体系,产品容易变得不稳定,因此货架期稳定性评估成为化妆品乳液产品生产发展的主要问题。传统方式进行乳液稳定性及货架期推算大多采用静置或条件静置方式,周期过长且不够准确。而采用多重光散射及离心加速的方式可以更为有效科学的对乳液稳定性及货架期进行评估、推算。
  • 评估破乳剂对原油乳液稳定性的影响– 实时和加速分析
    由于生产条件的原因,原油大多以油包水乳液的形式获得,这些乳液通过沥青质、蜡和细颗粒来稳定。实际上,提炼原油的第一步是分离水。目的是最经济有效地破坏乳液,使水相完全分离。通常使用表面活性物质与热处理相结合,促使水滴聚结、水分离。原油是一种非常复杂的混合物,其化学成分和物理性质因产地不同而有很大差异。水、盐和矿物质的含量变化很大。混合料的不同不仅会影响其粘度、密度等宏观特性,还会影响破乳剂的种类和最佳用量。因此,市场上不断开发新的破乳剂。为了开发和选择合适的破乳剂,必须使用多种不同的破乳剂测试各种原油乳液。出于技术和经济原因,必须确定其最佳浓度。一种短时间内量化分离过程的有效的测试方法,将作为期瓶试法的替代方案。

反相微乳液法相关的论坛

  • 【求助】有关微乳液

    求助,请问制备反相微乳液有什么条件限制,制得的产品怎么表征?能否给些有关反相微乳液的相关资料!谢谢

  • 相微乳液技术配方

    求微乳液技术配方在植物油中加入百分之三十的水剂,要形成非常稳定的油包水,其油性不能变,颜色可以是微黄色,在酸减中稳定.

反相微乳液法相关的资料

反相微乳液法相关的资讯

  • SAXSpoint 5.0 | 微乳液凝胶的结构表征
    简介微乳液基纤维素凝胶是自然界中最丰富的可再生生物聚合物,已被用作生物相容性成分的载体,为生物相容性封装提供了巨大的潜能;它们广泛用于各种应用,如食品,药物输送和催化。基于诸如纤维素或淀粉之类的多糖生物聚合物的凝胶引起了人们的极大关注,因为它们源自可再生资源,可以高效生产并且可生物降解。SAXSpoint 5.0 本文,研究了基于HPMC 和由双-(2-乙基己基)磺基琥珀酸钠盐(AOT)异辛烷微乳液形成的MBG体系。脂肪酶被用作模型封装分子。使用Anton Paar SAXSpoint 5.0 实验室的SAXS/WAXS系统进行的SAXS测量,对所研究的微乳液和最终获得的MBG体系提供有价值的发现:AOT 微乳液的结构和尺寸微乳液的AOT浓度实验分析采用不同含量的水和微乳液制备不同的MBG样品。 对冻干样品进行SEM 确定样品的形貌:向HPMC凝胶中加入微乳液会形成多孔MBG网络结构;随着表面活性剂的增加,会得到更光滑、更均匀的网络结构,具有小而均匀分布的孔 (图1)。图 1: 冻干HPMC基MBGs的SEM图:(a) 不含有机溶剂的MBG体系,(b) 含0.1 M AOT微乳液的MBG体系,(c) 含0.2 M AOT 微乳液的MBG 体系微乳液和选定的MBG样品的SAXS测试在SAXSpoint仪器上进行,微乳液装到1mm直径的石英毛细管中测量,MBG样品转到多位粘性样品支架中测量。采集的2D散射图样进行q-转换,积分得到1D曲线,校正背景(空样品架)并转成绝对强度。图 2: 绝对强度标尺的散射数据HPMC基MBGs (▬) 和 微乳液 (▬) 0.05 M AOT (A) 和0.2 M AOT (B)。注意: 将系数 0.2 应用于微乳液 (▬) 来显示胶束信号在凝胶中的预期贡献。 由于凝胶样品含有20 % 的微乳液,普通微乳液的强度按照比例缩放为散射强度的20 % (见图2中的红色曲线)。微乳液显示出纳米级液滴的清晰散射特征,可以通过间接傅里叶变换方法进行详细分析2。含有0.05 M AOT的微乳液形成直径约11 nm的球形胶束,而含有0.2 M AOT的微乳液显示的平均直径约为5 nm。对应的对距离分布函数p(r) 如下图3所示:图 3: 微乳液的 p(r) 函数, 0.05 M AOT (▬) 和 0.2 M AOT (...). 注意: 为了更好的对比,对p(r) 函数进行了归一化。微乳液与相应凝胶样品SAXS曲线的对比清晰地表明,特征微乳液信号没有贡献。低散射角下的衰减归因于凝胶网络的大结构,并且超出了SAXS分辨率极限。为了更进一步了解凝胶特性,应用凝胶拟合模型Gel Fit Model (SasView3) 对SAXS数据进行更详细的评估 。SAXS数据符合以下给出的相关长度模型 Correlation Length Model:其中第一项描述了簇的Porod散射,第二项描述了从聚合物链散射的洛伦兹Lorentzian函数。两个乘法因子A和C,常数背景B以及两个指数n和m用作拟合参数。最后一个参数ξ是聚合物链的相关长度,而 Porod 和 Lorentz指数分别用于分析分形结构和聚合物/溶剂相互作用。从MBG的相关长度模型获得的结构参数如下表所示。由0.05 M和0.2 M AOT微乳液形成的凝胶网络的相关长度ξ 远高于水-HPMC-异辛烷体系的。此外,微乳液中表面活性剂浓度的增加—结果,在最终的微乳液基凝胶中—导致HPMC的缠结长度增加,从而创造了更高刚度的环境。从这个意义上来说,酶或活性成分可以通过凝胶网络内的固定来有效地稳定。结论在这项研究中,可以证明使用HPMC网络与微乳液相结合代表了一种成功的固定/封装基质,例如活性成分或酶。通过结合不同的结构表征技术,如电镜和小角X-射线散射,可以成功地表征该体系。特别是,在实验室系统上进行SAXS测量揭示了有关所研究微乳液的结构细节和基于微乳液的有机凝胶网络的整体特性的信息。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 济南微纳参加2019第二届水性乳液及分散体技术发展论坛
    2019年5月15至17日,弗格2019第二届水性乳液及分散体技术发展论坛在美丽的杭州召开,济南微纳颗粒仪器股份有限公司赴会做技术交流。凡是用水作溶剂或者作分散介质的涂料,都可称为水性涂料。依据涂料中粘合剂类别,水性涂料被分天然物质或矿物质(如硅酸钾)的天然水性涂料和人工合成树脂(如丙烯酸树脂)的石油化工水性涂料。常见的水性涂料主要有水性聚氨脂型、环氧树脂型、丙烯酸树脂型、无机水性涂料。环氧树脂具有优异的物化性能,如良好的附着力,优异的耐化学品性和耐溶剂性,硬度高,耐腐蚀性和热稳定性优良,水性环氧树脂涂料可广泛地用作高性能涂料、设备底漆、工业厂房地板漆、运输工具底漆、汽车维修底漆、工业维修面漆等。在所有的丙烯酸乳液、聚醋酸乙烯乳液、水性聚氨酯、水性环氧等乳液/分散体产品中,丙烯酸乳液仍然占据大部分市场份额;其中水性聚氨酯虽然只有约十几万吨的产量,但其优异性能也使得其在水性产品应用中拥有较大影响力。为了呈现我国水性乳液/分散体技术的zui新研究成果,促进技术与市场交流,更好推动水性材料发展,第二届水性乳液/分散体技术发展论坛特别邀请国内外大学教授、企业专家,与全行业人士携手共同促进水性技术成果转化,共同推动我国水性材料及分散体产品的技术进步与产业化发展。济南微纳作为激光粒度仪研发生产企业,在粒度测试领域贡献突出,颗粒粒度的大小对于水性材料的性能起着很重要的作用,拿涂料做例子,涂料粒子的粒径分布和涂料增稠机理对涂料的粘度及成膜的性能有很大影响。发现粒径小于350纳米的双峰乳液成膜弹性好、光泽度高、颜料分散均匀、干燥时间短且机械性能表现更好。水性乳液的颗粒粒径一般分为纳米级和微米级,针对纳米级别的水性材料我们推荐winner803纳米激光粒度仪,它采用双波长激光器,全自动切换,对于具有吸光属性的样品可进行有效检测,专注于有色颗粒粒度分析检测。 微米级水性材料我们推荐Winner2018湿法激光粒度分析仪,测试范围0.1到450微米,可满足一般水性材料测试需求。
  • 沥青乳液表征 | 道路千万条,沥青少不了
    在今年的两会上,与会代表提出“取消重大节假日高速公路免费通行政策,与此同时,全面降低高速公路收费标准”的建议,引起了大家的热议。高速公路已经与人们出行密不可分,影响高速公路质量的重要材料——沥青。沥青乳液沥青乳液不仅使沥青的加工和储存变得简单,也使得道路的铺设过程更为方便(1)。沥青乳液的物理、化学及应用性能在很大程度上取决于沥青、乳化剂和水的含量比,以及沥青乳液的粒径分布(2)。常温下,沥青是不可加工的。因此,为了使沥青变的可加工,需采用不同的工艺对其处理。最常见的技术是将沥青加热到液态。另一种技术是将沥青加工成乳状液。然而,单纯将沥青和水混合在一起并不能形成一个稳定体系。因此,要根据具体的应用需求在沥青中添加一定的稳定剂和乳化剂。沥青乳液使用起来非常方便,同时也更容易对其储存、运输和进一步加工。沥青乳液的优势及化学组成沥青乳液的优势:良好的润湿能力低能源消耗和环境友好可通过增塑剂对其改性状态的多样性(如粘度)沥青乳液的化学组成:在沥青乳液中,沥青为分散相,水为连续相。为了保证能够乳化充分并形成稳定的颗粒,对乳化剂的选择变得十分重要。而粒径和乳化剂也同样会影响沥青乳液的加工性能和存储稳定性。乳化剂分子附着在沥青颗粒的表面,使这些颗粒具有均匀的电荷。这导致颗粒间的静电斥力,从而阻止乳液颗粒在运输和储存过程中固化。根据电荷(正电荷或负电荷)的不同,可以将其分为阳离子或阴离子的沥青乳液。沥青乳液的应用取决于其电荷、沥青质量分数、乳化剂、水以及沥青乳液的粒径(2)。实验实验中选取四种不同的沥青乳液(样品1 - 4),固含量均为63%。实验分别研究了样品的粒径、电位及流变行为。电位zeta电位的测量采用安东帕Litesizer 500。样品经水稀释,pH 为8.6±0.2。实验中对电位的测量采用Ω样品池,分别对样品进行三次系列测试。Litesizer 500粒径粒径分布(PSD)采用安东帕PSA 1090 L测定。实验设置为三次系列测量,水为流动相。样品分散不需要超声处理,搅拌和泵速分别设置为中速,遮光度设为10%,并采用夫琅和费近似理论对粒度分布进行计算。PSA流变行为为了表征沥青乳状液的流变特性,采用Anton Paar公司的流变仪及其平板测量系统PP25对样品进行测试。实验中,对每个样品在25°C下的流变曲线和振幅扫描进行测量。流变曲线的剪切速率范围为0.01~100s -1,时间范围为100s~1秒。振幅扫描的角频率为10 rad / s,形变范围为0.01~100% 。SmartPave结果与讨论zeta电位对稳定性的评估通过对沥青乳液zeta电位的表征,可得到样品稳定性的相关信息。zeta电位值越高,体系越稳定。实验中的所有样品zeta电位均为负值,说明沥青乳状液为阴离子型。如表1所示。这说明热处理对沥青乳状液的稳定性没有影响。样品加工性能的表征实验中,对样品1和样品2的加工性能进行了比较。样品1比样品2的粒径分布更宽,同时包含了大颗粒和小颗粒(图1)。两个样品的D90值差异最为明显(表2)。图2显示了样品的剪切速率粘度函数。样品1的小颗粒含量较少,与样品2(小颗粒含量较多)相比其表面积较小。较小的表面积说明颗粒和液体之间较小的界面,导致两相之间的摩擦力和相互作用力较小。从而造成较低的粘度,如图2所示。样品的屈服应力也不同。样品1 (2.33 Pa)颗粒较大(图3),其屈服应力低于样品2 (15.99 Pa)。质量控制沥青配方及工艺参数对其最终产品的粘度均有影响,为了控制产品的粘度,可在生产过程中对工艺参数进行监测。例如,样品3和样品4在粘度上没有差异,但在加工后表现出不同的流变特性(图4)。样品3的屈服应力为31.78 Pa,高于样品4的22.63 Pa。此外,样品3的损耗模量G”更高,这意味着它比样品4的粘性更大(图5)。这些结果表明,沥青乳液样品的界面性质不同,可通过测量粒度分布来实现质量控制。表3和图6汇总了各个样品的粒径结果。结论及参考文献结论实验展示了粒径对不同沥青乳液流变性能的影响。一般认为,沥青乳液的稳定性很好,同时具有以下特性:粒径越小,粘度越大粒径分布越宽,粘度越小具有混合粒径的沥青乳液,比只有单一粒径的沥青乳液粘度更低粒径分布影响样品的粘弹行为和屈服点利用现代测量技术,有利于开发出黏度相对较低但固体含量较高的高稳定性沥青乳液。沥青乳液的屈服应力和粒径分布影响着沥青乳液的应用性能,因此对这些参数的分析具有重要的意参考文献安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制