多器官保存液

仪器信息网多器官保存液专题为您整合多器官保存液相关的最新文章,在多器官保存液专题,您不仅可以免费浏览多器官保存液的资讯, 同时您还可以浏览多器官保存液的相关资料、解决方案,参与社区多器官保存液话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

多器官保存液相关的耗材

  • 医脉赛科技样本保存液样品保存管
    产品用途:灭活DNA和RNA酶,防止RNA降解;变性灭活病毒和其他微生物;用于鼻咽部、口咽部、痰液、肺泡灌洗液等病毒/病菌样本的采集、运输和储存;样本室温保存30天;-20oC长期保存产品性能:灭活原理:可对新鲜采集的感染性临床样本进行蛋白质变性而起到灭活病原体作用,降低采样、样本转运、检验过程中医护人员的生物传染风险。DNA/RNA稳定性原理:抑制核酸酶,从而保证释放出来的核酸不被降解。成分中的核酸保护剂能进一步对核酸特别是单链的RNA起到保护作用,使RNA能够在碱性环境中得以保存。对不能及时进行检测的病原体(如新型冠状病毒COVID-19)临床标本或者需要长途运输的标本起到很好的保护作用,防止标本中病原体DNA/RNA的降解。产品稳定性数据:实验数据证明稳定性PCR扩增曲线样本收集后分别在-20℃,4℃,常温,37℃,55℃ 保存长达30天,荧光定量结果显示:和起始Ct值相比,在不同温度和时间保存的样本Ct值无明显变化;证明本产品保存效果稳定达30天,为核酸检测结果正确性提供有力支持。产品采集方式本产品通过采集拭子采集鼻咽/口咽分泌物等临床样本,然后将采集有样本的拭子与保存液进行混合保存;如果是液体样本,可以直接吸取样本与保存液混合保存。
  • 样本保存液
    预期用途:用于采集样本的转运保存。病毒样本采集后,将采集拭子放入运送培养基中保存、运输,可稳定保存病毒样本,防止病毒核酸降解。 产品特点:稳定:可有效抑制DNase/RNase活性,长期稳定保存病毒核酸;便捷:适合各种不同场景下使用,常温条件下运输即可,使用方便。 操作步骤:使用采样拭子采集样本;拧开培养基管旋盖,将拭子放入管内;折断拭子;盖上并拧紧保存液旋盖;做好样本标识; 产品名称规格货号管子保存液说明样本保存液(带拭子)50pcs/kitBFVTM-50A5ml2ml口腔拭子1个;非灭活型样本保存液(带拭子)50pcs/kitBFVTM-50B5ml2ml口腔拭子1个;灭活型样本保存液(带拭子)50pcs/kitBFVTM-50C10ml3ml鼻拭子1个;非灭活型样本保存液(带拭子)50pcs/kitBFVTM-50D10ml3ml鼻拭子1个;灭活型样本保存液(带拭子)50pcs/kitBFVTM-50E10ml6ml拭子10个;非灭活型
  • 游离DNA样本保存管,品牌:国盛医学,一文读懂液体活检
    肿瘤的液体活检主要包括循环肿瘤DNA(ctDNA)、游离肿瘤细胞(CTC)及外泌体(exosome)。众多研究表明三者与肿瘤的早诊、治疗、预后等均存在相关性。目前在临床应用最多的当属ctDNA检测。正常人的体液内亦存在来自于机体正常细胞的游离DNA,简称循环游离DNA或cfDNA;在肿瘤患者体内,循环游离DNA不仅仅来自于正常细胞,还有一部分来自于肿瘤细胞,即ctDNA,也是循环游离DNA的一部分,因此我们可以通过检测ctDNA相关变异状态作为来自肿瘤细胞的标志物。目前临床肿瘤ctDNA检测最常见的应用领域为治疗方案选择及耐药监测。 由于ctDNA具有片段化程度高、丰度低等特点,其主流检测方法包括Cobas法、Super-ARMS法、高通量二代测序(NGS)及数字PCR。液体活检的运用与优势液体活检最大的优势在于微创、快捷,易于动态监测;一定程度上全面反映肿瘤整体变异状态,不受肿瘤异质性影响;适用人群更广泛,对于难以取得活检肿瘤组织或取得肿瘤组织不够基因检测的患者,液体活检提供了一个了解肿瘤基因变异状态的有效途径。1. 早期诊断肿瘤的早期诊断最大难点是由于肿瘤负荷很低,可能影像学上没有明确的病灶,此时血液中ctDNA的含量亦极低,普通针对ctDNA突变的检测难以满足早诊的要求。但DNA甲基化改变是贯穿整个恶性转化的表观遗传学改变。即使在肿瘤发展的最早期,DNA甲基化模式也已经与正常细胞存在显著差异;其次,甲基化水平的改变是具有组织特异性的,即对甲基化进行检测及比对,能够进行器官溯源,发现到底是哪里可能会发生或已经发生了肿瘤。 因此,对ctDNA的甲基化水平进行检测,是一种有效的肿瘤早期筛查辅助手段。比如SEPT9基因甲基化检测试剂盒对结直肠癌诊断的敏感度及特异性可达74.8%及97.5%[1],现在已经可以作为一种结肠镜前的初筛手段。2. 指导靶向治疗肿瘤的靶向治疗是目前临床最常见的ctDNA检测应用。根据《非小细胞肺癌血液EGFR基因突变检测中国专家共识》,如果有肿瘤组织,推荐使用肿瘤组织进行驱动基因检测;若无肿瘤组织样本或肿瘤组织样本不足的情况下,液体活检可作为很多患者基因检测的首选。无论何种检测方式,应注意的是若组织活检或者液体活检有任何一个是阳性,患者应当考虑使用靶向药物;当液体活检先行的时候,若液体活检为阴性,应提示患者可能存在假阴性,必要时再取活检,以避免错失可能的靶向治疗机会。 3. 耐药监测靶向治疗终归面临耐药的问题,而液体活检由于微创快捷的优势,是理想的耐药监测材料。对于EGFR一代或者二代TKI用药人群,约半数以上的患者出现EGFR 20号外显子T790M而耐药,因此对于此类患者的耐药监测可使用敏感度高且成本低的数字PCR法对T790M单点进行监测。如果患者已经出现了耐药,亟需探索其耐药机制以更换治疗方案,此时推荐使用NGS对基因变异的整体状态进行检测,以便全面寻找耐药原因。4. 预后评估在预后评估方面,微小残留病变(MRD)是目前研究的热点。MRD指的是治疗后传统影像学和实验室方法无法发现,但通过分子诊断可以发现的肿瘤来源的分子异常。多种肿瘤的相关研究表明,ctDNA突变状态可提示接受根治性治疗的患者的预后复发,并且已经在部分临床实验中得到应用。液体活检的样本采集要求血液的规范化处理是保证液体活检结果准确的基本前提。在血液样本的送检方面应注意:1.采血管的选择ctDNA检测的血液需使用EDTA抗凝管或者cfDNA专用采血管。若使用EDTA抗凝管,血液离体后应尽量保存于4℃,2小时内需尽快进行血浆分离;若使用cfDNA专用采血管,血液可在常温保存3-5天。切记严禁使用肝素抗凝管,因为肝素在后续DNA提取过程中难以去除,并且会抑制PCR反应,导致后续ctDNA检测失败。2.采血量及采血注意事项一般而言,ctDNA检测需要采集8-10ml的全血。采血后严禁剧烈震荡血液,或者使用注射器针头对血液进行转移,因为这样的操作均会导致血液中细胞破裂,从而造成基因组DNA的污染,增加ctDNA检测的假阴性。采血后应轻柔将采血管颠倒8-10次进行混匀。3. 患者采血时间的选择一般建议患者空腹进行抽血,特别是血脂较高的患者。这是由于低密度脂蛋白对荧光有屏蔽和吸收的作用,会干扰后续ctDNA的相关检测;三酰甘油会降低ctDNA的提取率;若使用微滴式数字PCR检测技术,血液中的脂质会影响后续微滴的生成。此外,对于正在进行化疗的患者,一般建议患者化疗结束后进行抽血。 国盛医学分子保鲜系列产品血液样本的保存及运输作为液体活检中一个重要的环节,如何收集保存全血样品中游离cf-DNA和cf-RNA的呢?游国盛医学研发的游离DNA采血管和游离RNA采血管可以满足液体活检中样本保存和运输的需求。 游离DNA采血管 国盛医学游离DNA采血管含有独特的抗凝剂和保鲜试剂,不含干扰游离DNA提取和抑制PCR成分,能稳定有核细胞,防止释放细胞基因组DNA而污染目标游离DNA;抑制核酸酶降解游离DNA,可在常温下稳定运输保存7天以上。 游离RNA采血管 国盛医学游离RNA保存管能稳定血细胞并防止血液凝固,防止血液有核细胞中基因组DNA和RNA的释放;能够有效抑制血浆中的核酸酶,防止游离RNA在体外降解;适合常温运输,储存样本5天及以上。

多器官保存液相关的仪器

  • (一)功能应用体内模型存在许多局限性:较高的实验成本、有限的吞吐量、伦理问题和遗传背景的差异。更重要的是,与人类相比,它们在药物效应和/或疾病表型方面表现出巨大的生理差异,这解释了临床试验经常失败的原因。Kirkstall Ltd.专利技术的Quasi Vivo® 器官芯片微生理系统又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。(二)性能特点Quasi Vivo® 作为一种先进的器官芯片系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势:1.功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式允许独立、可控的空气、气体或液体层流流向顶端和基底外侧满足多器官/多细胞共培养,细胞间的信号传递等实验要求。加速类器官细胞分化和成熟,提高细胞活力,适合长期培养2.成像友好配备了光学窗口在顶部或底部表面,便于理想的实时高分辨率成像3.易于获取样本直接收集样本和获取组织或液体样本4.模拟生物力学和浓度梯度严格控制多个变量,可以模拟生理特征,如血液循环,组织间液流动态等,为细胞提供生物力学信号;可以实现免疫细胞共培养以及血管化等复杂模型构建;用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等5.便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性占地面积小,节省空间,可兼容标准实验室的孵化器(三)产品应用案例及发表文献1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.在本研究中,作者建立了一个在Kirkstall Quasi Vivo® 器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。2) Ramachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wö lfl S, Simon-Keller K, Marx A, Ø ie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.在本研究中,作者使用upcyte® 人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo® 器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。 3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)肿瘤微环境(TME)作为癌细胞行为调节剂的重要性已被公认,并导致了3D体外癌症模型的发展。癌症的3D实验室体外模型旨在概括肿瘤微环境的生化和生物物理特征,并旨在以生理相关的方式使研究癌症和新的治疗方式成为可能。本文作者研究了乳腺癌细胞在2D、3D和3D微流体条件下,并对比了不同培养条件下的乳腺癌细胞的凋亡、增殖和缺氧相关基因的细胞活力和表达水平。在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo® 器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。4)Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275.医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo® “芯片上的器官”流动培养系统,用于测试聚合物样品。5)Susanne Reinhold, Christian Herr, Yiwen Yao , Mehdi Pourrostami, Felix Ritzmann. Modeling of lung-liver interaction during infection in a human microfluidic organ-on-a-chip, bioRxiv preprint posted June 5, 2023.肺炎或COVID-19等呼吸道感染在世界范围内造成高死亡率和发病率。器官芯片技术在过去几年中发展起来,以建立基于人类的疾病模型,研究基本的疾病机制,并为加速药物开发提供工具。本研究的目的是建立一个肺-肝微流控系统来研究感染过程中两个器官模块的相互作用。作者利用原代人支气管(HBECs)或肺泡上皮细胞和人肝癌Huh-7细胞,通过Kirkstall Quasi Vivo® 器官芯片建立了双器官(肺/肝)微流控系统,开展共培养/刺激试验。将不可分型流感嗜血杆菌(NTHi)和铜绿假单胞菌(PAO1)应用于肺模块。通过dot-blot分析筛选分泌的介质并进行定量。通过mRNA测序,分析肺上皮细菌刺激对肝细胞转录组的影响。 (四)产品用户概况全球使用Kirkstall Quasi Vivo® 器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建: (五)品牌制造商简介Kirkstall Ltd.成立于 2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo® 。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
  • LGJ-10多歧管普通实验型真空冷冻干燥机广泛用在医学、制药、生物研究、化工和食品等领域。经冷冻干燥处理的物品易于长期保存,加水后能恢复到冻干前状态并保持原有生化特性。LGJ-10冷冻干燥机,适用于实验室使用或少量生产,可满足大多数实验室常规冻干的要求。 LGJ-10多歧管普通实验型真空冷冻干燥机技术参数特点:1.一体式结构设计,体积小、无外置法兰、使用方便、无泄漏。2.所有与产品接触的材料均使用惰性材料,满足GLP的要求。3.冷阱和操作台面采用不锈钢材质,防腐蚀,易清洁。4.全不锈钢充气(放水)阀门本公司自行设计、生产,安全、防腐、无泄漏。5.冷阱开口大,无内盘管,带样品预冻功能,无需低温冰箱。6.专业化的气体导流技术,冷阱捕冰均匀,捕冰能力强。7.国际知名品牌压缩机,高效节能、使用寿命长、噪音低。8.知名品牌真空泵,抽速大,实现更高的极限真空度。9.真空泵保护功能,可设定真空泵启动冷阱温度,保护真空泵使用寿命。10.专业设计FD-LAB冻干机控制系统+SH-HPSC-I模块化控制器,具有较高的可靠性和稳定性。11.智能化数据记录系统,实时记录并显示冷阱温度曲线、样品温度曲线、真空度曲线,导出数据可通过电脑浏览打印及多种操作。12.智能AI电除霜SH-10KCQ,采用安全电压,结合多维模糊控制技术,显著提高化霜效率。LGJ-10多歧管普通实验型真空冷冻干燥机技术参数:冻干面积:0.12㎡物料盘尺寸:Ф200mm物料盘数量:4个物料盘间距:70mm茄型瓶规格及数量:100/250/500/1000ml,各2个冷阱温度:≤-56℃(空载),可选≤-80℃(空载)冷阱深度:140mm冷阱直径:Ф215mm捕水能力:3-4kg/24h抽气速率:2L/S极限真空度:≤5pa(空载)装机功率:970w主机重量:41kg主机外形尺寸:615×450×370mm-80℃主机外形尺寸:850×680×405mm干燥室尺寸:Ф260×465mm冷却方式:风冷除霜模式:电化霜盘装物料:1.2L(料厚10mm) LGJ-10多歧管普通实验型真空冷冻干燥机选配功能:冷阱温度-80℃真空泵防返油装置油雾过滤系统50ml茄型瓶广口瓶装置(600ml/1200ml)进口品牌真空泵非标定制 LGJ-10多歧管普通实验型真空冷冻干燥机特点和应用: 适用于散装(液态、糊状、固态)常规物质的冷冻干燥,并可在干燥室外部接装烧瓶,对旋冻在瓶内壁的物料进行干燥,这时烧瓶作为容器接在干燥箱外的歧管上,烧瓶中的物料靠室温加热,通过多歧管开关装置,可按需要随时取下或装上烧瓶,不需要停机。 LGJ-10多歧管普通实验型真空冷冻干燥机包装清单:冻干机主机×1真空泵×1普通干燥架×1多歧管普通型干燥室×1样品盘Φ200毫米×4预冻架×1茄型瓶×8橡胶阀×8使用说明书×1产品保修卡×1产品合格证×1其它配件
    留言咨询
  • 产品介绍器官芯片(Organ-On-Chip)分析被誉为更快、更精确的药物开发和精确医学的要素。它提供了对疾病的更好的了解,以及改进了新疗法的开发。器官芯片通过研究人体细胞和组织来提供精确的、与生理相关的临床前数据,而不需要昂贵和耗时的动物研究。 器官芯片(Organ-On-Chip)研究使科学家能够专注于药物靶点、毒性机制和药物相互作用,将药物推向临床试验,避免代价高昂的失败。生理相关性一直是原代细胞和干细胞在体外检测中应用的驱动力。PhysioMimix 能够快速轻松地创建3D组织模拟物与自动化控制微流体,用于长期细胞培养,产生信息丰富的分析。选择正确的细胞是实验成功的因素。维持细胞表型对于研究复杂的生物过程,器官内或器官间相互作用,自分泌/旁分泌因子,以及对病原体和外来生物的反应有举足轻重的影响。 PhysioMimix 器官芯片(Organ-On-Chip)兼容种类繁多的原代细胞、干细胞和细胞系,为您独特的研究需求提供更大的灵活性。无论您是否需要更大限度地挖掘现有培养体系的潜力,或是承担了复杂的多器官研究, PhysioMimix的硬件,耗材和分析模板组合套件,使得器官芯片可轻松入门。产品特点 台式一体机:结构紧凑且与实验室现有设备兼容; 方便使用:用户可在1分钟内设置完成开始运行; 开孔设计:支持您2D到3D的细胞培养过渡,如屏障芯片腔室可以很容易地放入商业化的transwell; 实时监控:取出样品进行分析; 程序可保存:以更少的用户输入进行长期自动化实验; 组织&细胞:与一系列预先形成的组织和细胞类型兼容,具有灵活性; 多器官:通过微流体连接两个器官以研究串扰; 降低每颗芯片的成本:一板12孔甚至48孔的设计,更多的实验孔意味着实验的成本得以降低; 数据置信度提高:板内设置多个对照孔或者副孔,使得到的数据置信度提升; 更早地洞见数据:相较其他设备具有更高的通量和更强的处理能力,使整个过程可以更早地洞见数据。应用领域 类器官培养:肝、肠、肺、肾、脑等单器官或多器官 疾病模型:NASH、乙肝 (HBV) 、肿瘤学、肺炎(COVID-19) 等 安全性毒理学:药物性肝损伤(DILI)、免疫介导的毒性、遗传毒性等 ADME /药理学:药物吸收、药物代谢、药物生物利用度等PhysioMimix微流控类器官系统模块组成 耗材种类客户体验PhysioMimix系列用于微流控和器官芯片(Organ-On-Chip)细胞培养,可兼容多种基于细胞表型的分析实验。CN Bio的器官芯片(Organ-On-Chip)平台目前正被美国监管机构食品和药物管理局(FDA)以及制药和生物技术实验室使用。重要文献 疾病模型[Infectious disease] Ortega-PrietoAM et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun. 2018 Feb 9:pp-pp.[Diabetes and NASH] Kostrzewski Tet al. Three-dimensional perfused human in vitro model of nonalcoholic fatty liver disease. World J Gastroenterol 2017 23(2): 204-215.[Oncology] Wheeler SE et al. Spontaneous dormancy of metastatic breast cancer cells in an all-human liver microphysiologic system. Br J Cancer 2014 111(12): 2342-2350. 多器官系统[2-Organs] Chen WL et al. Integrated Gut/Liver Microphysiological Systems Elucidates Inflammatory Inter- Tissue Crosstalk. Biotechnology and Bioengineering, 2017 114 (11): 2648-2659.[2-Organs] Dalrymple A et al. The characterization of a human two Organ-on-a-Chip (lung-liver) system which has the potential to measure systemic responses in vitro. Poster presented at Society of Toxicology 57th Annual meeting 2018 Mar 11-15: San Antonio, Texas.[4/7/10-Organs] Edington et al. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep, 2018. IN PRESS. 药物研发[Drug Safety] Long TJ et al. Modeling Therapeutic Antibody-Small Molecule Drug-Drug Interactions Using a Three-Dimensional Perfusable Human Liver Coculture Platform. Drug Metab Dispos 2016 44(12): 1940-1948.[Drug Metabolism] Vivares A et al. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica 2015 45(1): 29-44.[Drug Metabolism] Tsamandouras N et al. Quantitative Assessment of Population Variability in Hepatic.Drug Metabolism Using a Perfused Three-Dimensional Human Liver Microphysiological System. J Pharmacol Exp Ther 2017 360(1): 95-105.
    留言咨询

多器官保存液相关的试剂

多器官保存液相关的方案

多器官保存液相关的论坛

  • 器官冻存选液氮罐MVE还是赛默飞

    在选择MVE液氮罐还是赛默飞液氮罐来存储动物器官时,我们需要从多个角度进行考量,包括但不限于品牌的可靠性、产品的性能、价格以及售后服务等。然而,由于直接对比两个品牌在同一应用场景下的具体表现可能涉及复杂的技术细节和实际使用反馈,这里我将基于已知信息提供一些一般性的分析和建议。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/07/202407181450502353_9929_3312634_3.jpg!w690x517.jpg[/img]MVE液氮罐优点:市场领导者:根据市场调研和用户评价,[url=http://www.mvecryo.com/]MVE液氮罐[/url]在市场上占有较高的份额,这表明其产品在市场上得到了广泛的认可和应用。用户反馈:MVE一直非常重视用户的反馈意见,并不断改进创新,以制造出更符合用户需求的产品。缺点:由于MVE液氮罐在市场上具有较高的知名度和认可度,其价格可能相对较高,特别是对于高端型号和定制产品。赛默飞优点:高性能:赛默飞的液氮罐通常也具备优良的保温性能和稳定的运行表现,适合用于存储动物器官等需要低温保存的生物样本。技术支持:赛默飞拥有强大的技术支持团队和完善的售后服务体系,能够为用户提供及时的技术支持和解决方案。缺点:与MVE相比,赛默飞在某些特定领域或应用场景下的市场份额可能稍逊一筹,但这并不意味着其产品质量不佳。综合建议在选择MVE液氮罐还是赛默飞液氮罐来存储动物器官时,您可以考虑以下几点:实际需求:首先明确您的具体需求,包括存储量、存储时间、运输需求等,以便选择最适合您需求的型号和规格。预算考虑:根据您的预算范围选择性价比最高的产品。需要注意的是,进口和定制产品可能价格较高,但通常也具备更优越的性能和更长的使用寿命。品牌信誉:了解两个品牌的信誉度和用户评价,选择那些在市场上具有良好口碑和广泛认可度的品牌。从销量上来看mve略高与赛默飞产品,从用户的反馈,MVE液氮罐使用上更受欢迎。

  • 【原创大赛】这是组织保存液吗?

    组织保存液是医院中经常用到的一种试剂,用于器官的保存。其主要成分是10%的甲醛溶液(即35-37%的甲醛稀释10倍),加上一些磷酸缓冲液。由于甲醛自身会缩合,浓甲醛溶液中一般都添加了8-12%的甲醇,以防聚合。一朋友做这个生意,一日拿来一瓶东西,问这是他们的组织保存液吗?一打开瓶子,一股很浓的酒精味,并有漂浮的白色沉淀。组织保存液,不可能变成这种东西,但医院说在整瓶的组织保存液箱子中发现的这个东西,用仪器分析一下就一清二楚了。下面描述一下整个分析过程:浑浊液体,有很重的酒精味,底下有白色的悬浊液沉淀。所盛容器是组织保存液专用桶,初步判断,是用尽的空桶倒入了废弃的酒精等所致。将浑浊液体离心,对清液用GC-MS定性定量,其中酒精含量高达52%以上,其余大部分是水,未检测到甲醛。对清液用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]分析,含微量的氯离子及少量的磷酸根离子。固体沉淀分离干燥后含量约为0.06%,火烧保存原状,应为无机盐。用水能溶解,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]测定推测含有硫酸钠和硝酸钠。综合上述分析,样品不可能是组织保存液,高达52%以上的酒精含量,只能是外来的,最大可能是倒入了废弃的酒精,磷酸盐是组织保存液的有效成分之一,检测到少量是正常的。样品中有沉淀的无机盐,说明还混入了其他东西。至少有二种废液倒入了组织保存液的空桶。这说明,有人将空桶当成了废液中,属于不规范操作,而且没有标记,使得后来使用出问题,发生怀疑。这也算是医院一个不大不小的操作事故。这种类似的使用问题,还有很多,尤其病例切片和器官的保存。[align=center][b] [/b][/align]

  • 【求购】液基细胞保存液

    【求购】液基细胞保存液

    产品简介:保存液快速对脱落上皮细胞、腺细胞、白细胞等进行很好的保存和固定,保持标本采集时的原始细胞形态,防止细胞在保存过程中发生变形、自溶等。并通过制片使细胞均匀涂布在载玻片上制成薄层细胞涂片。染色后细胞结构在显徵镜下清晰易辨,同时把血液、粘液和炎症细胞减少到最底程度,从而易发现和确认异常细胞。更有利于从细胞的形态变化判定细胞的病变程度,使判定结果更加准确可靠,提高异常细胞的检出率,大大提高宫颈癌筛查方法的特异性和诊断的准确率。·产品性能特点::红细胞处理能力强:无需另加裂解液,既可将全部红细胞彻底清除,同时完美保存有诊断价值的各种有核细胞形态,从而对于临床上重度宫颈糜烂病人(或大量血细胞标本)能轻松一次性处理干净·消化分解黏液能力强:充分消化粘黏液,去除标本中普遍存在的黏液等干扰成份,释放具有诊断价值的细胞,保留有价值的诊断背景,有效提高检出率,检测结果准确。·细胞形态:核结构完整,其中核膜、核仁、核染色质颗粒及分布清晰可见,胞浆的嗜染性正常,有利于鉴别细胞的类别及来源。 细胞萃取:采用梯度离心分离萃取及红细胞处理专利技术和黏液消化技术多合一去除液基细胞学标本中的血液、黏液等干扰成份,富集提取细胞及诊断成份。 ·兼容性强:保存的细胞同时可做免疫细胞化学、HPV-DNA和衣原体等病原微生物的分子生物学检测,无需多次采样的烦恼。·应用广泛:细胞保存液临床运用非常广泛,除了运用宫颈细胞学检查外,还有胸腹积液、尿液、滑膜液、支气管冲洗液、脑脊液、针吸穿刺细胞及痰液标本细胞检测。·保存时间长:细胞在保存液中保存30天形态不变,真正保持细胞原始形态,更接近本身的组织学结构,更有利于恶性病变与良性反应性改变的鉴别诊断。·保存液细胞包裹技术,可以使细胞均匀悬浮,保证操作者在涂片标本时的随机性,任意取样涂片都具有代表性。http://ng1.17img.cn/bbsfiles/images/2011/06/201106231241_301155_2324710_3.jpg

多器官保存液相关的资料

多器官保存液相关的资讯

  • 中科院新成果!首次实现干细胞-269℃液氦低温保存 相关设备已在百余家医院实现临床应用
    深冻 -16℃、被冰封 4 个月,木蛙仍能复活。在被冷冻之前,木蛙会在组织中积累血浆尿素,一旦开始冻结,尿素可以转化为葡萄糖充当低温保护剂。  南极线虫,作为已知唯一能在胞内大面积冷冻中存活的动物,它产生的冰活性蛋白可作为再结晶的抑制剂,借此在细胞冻结过程中有效地控制冰晶生长行为。  这两种动物的耐寒能力,给中科院低温工程学重点实验室副主任饶伟研究员带来了研究灵感。图 | 饶伟(来源:饶伟)  日前,她和团队在 Trends in Biotechnology 发表了题为 《用于先进冷冻保存的仿生材料和技术》(Bioinspired materials and technology for advanced cryopreservation )的论文[1]。  图 | 相关论文(来源:Trends in Biotechnology)  论文中,她就三维体相生物系统的仿生型低温保存材料与技术的发展做以总结,并展望了低温保存的未来发展趋势。低温保存曾让三万年前的种子“复活”根据 Arrhenius 方程(阿伦尼乌斯公式, 化学反应速率常数随温度变化关系的经验公式),温度越低,生化反应速率越慢。因此,样品保存的温度越低,保存的时间就越长,在 4℃ 时存活时间只有数小时的生物样本,在 -80℃ 下可以保存数月,在 -196℃ 下,随着反应速率近乎于 0,能保存数世纪。目前,低温保存技术是各类生物样本长期保存的唯一可行途径。  俄罗斯科学家曾经利用冰冻在西伯利亚科雷马河永冻层里三万年前的种子,成功培育出一棵植物,打破复苏最古老植物种子的记录。利用现代低温冷冻保存技术,低温技术在新兴的医学前沿领域,如人类精子、卵子及胚胎长期保存已成为现实。可以说,低温冷冻保持创造了一个又一个生命奇迹。低温冷冻保存技术,极大地推动了临床医学的发展。  对具有较高医疗价值的生物样品来说,低温保存有助于满足相关需求。然而,目前很难有效地对大尺度组织和器官进行冷冻保存。随着体积增大,细胞种类增多,结构复杂性增大,对生物系统从微观到宏观的多尺度精准控冰要求越来越高。因此,很有必要借鉴耐寒动物的抗冰策略,从物质与能量传递的角度全面解读和发展仿生型低温冷冻保存技术。(来源:Trends in Biotechnology)低温保存的技术路径有待全面考虑    此前的低温保存方法分为三类:静态冷藏、慢速冷冻(缓慢冷冻/快速解冻)和玻璃化冻存。  静态冷藏是临床器官保存的主要方法,通过将器官保持在 4°C 来降低其代谢速率。然而,保存时间一般限制在 24 小时之内,典型器官如心、肺低温冷耐受时间约为 4 小时,这会使得珍贵的供体器官由于运输、手术的时间超出耐受冷缺血时间而不得不被废弃。  许多细胞和简单组织通常借助缓慢冷冻/快速解冻的手段,通过程序降温保存在−196°C,但这个过程需要根据样本传热传质特征平衡降温与升温过程的冰晶损伤与溶液损伤,否则有可能造成不可逆冷冻损伤。  而玻璃化冻存目前主要用于敏感细胞,譬如卵母细胞和干细胞。由于固有的低传热速率以及高浓度低温保护剂的毒性,该方法对于大体积生物样品见效甚微。由于不受控制的新陈代谢或冰晶损伤,目前仍不能按需获得高质量的器官。  当生物样品被低温保存时,样品的生理、热学及力学性能是相互关联的。因此,有必要全面考虑低温保存的技术路径。(来源:Trends in Biotechnology)首次利用液氦,实现干细胞-269°C 低温保存到目前为止,即使是最先进的超低温保存方案,也不能在有冰形成的情况下保证器官完整性。  大自然中的耐寒动物,给饶伟团队提供了灵感。这类动物通过调节生物系统来对抗低温胁迫,对于从生化或生物传热学角度解决低温保存问题,这是很好的参考。  该研究展示了耐寒动物的生存策略:冬眠动物通过减缓代谢速率以节约能量并减轻缺血损伤 冷冻避免型动物采用过冷来防止或减轻冰晶带来的损伤,而冷冻耐受动物则可以忍受部分体液结冰,通过在较高温度下触发胞外冰的形成来避免伤害更大的胞内冰形成,从而将冷冻损伤降至最低。  此外,该研究还讨论了受天然抗冻机制启发的材料和技术。为了实现与冰共存,具备高生物相容性的低温控冰保护剂必不可少。天然的低温保护剂,如海藻糖、脯氨酸以及它们的衍生物,在保存生物样本上具有巨大潜力。  进一步地,该工作首次阐述了耐寒动物的抗寒机制与先进的低温保护技术之间的关系。通过模仿自然界中耐冻或避冻生物的耐寒机制,有望建立新的低温保存方法。(来源:Trends in Biotechnology)  据悉,对于冰晶生长的精准调控,是减少细胞冷冻保存损伤的基础。简单来说,要想低温保存就得精准控制细胞内外结冰的时空分布。饶伟研究团队提出了普适性的分子靶向控冰新策略,目前可以实现在单细胞特定位点冰晶成核与冰晶生长的精准调控,从而实现细胞内外的选择性控冰[2]。  进一步的,在拓展研究中,饶伟首次利用液氦(−269 °C)进行了包括人胚胎干细胞在内的多种干细胞的低温保存,突破了现有干细胞低温保存温度极限(-196 °C)并绘制了液氦保存的热力学过程图。  在自然界中,一些大体积的动物不仅依赖于来自外部环境的热传导,并且通过化学能产生热量以提高新陈代谢率,这一过程有助于均匀、快速地重新升温,以避免再结晶。  对木蛙解冻的 1 小时磁共振成像显示,木蛙的所有区域几乎同时解冻。快速、均匀的解冻可保证较低的热机械应力,减少缺血-再灌注损伤。  受这种生物调控的解冻过程的启发,纳米颗粒低温保护剂被开发出来,作为外部物理场驱动的自加热种子,可以实现快速和均匀的复温加热,而不是完全依赖于从表面到组织深处的热传导。  这种纳米加热方法不仅能显著提高升温速率,减少所需的低温保护剂数量,还可以消除温度的不均匀性,以减少温度梯度产生的热应力所导致的开裂损伤。(来源:Trends in Biotechnology)  研究中,目前给冷冻实验提供复温能量的方法主要有两种:射频和激光。  射频纳米加热,指的是利用磁性纳米颗粒,将射频能量转化为热量,从而去加热生物样本。这种基于超顺磁、或铁磁机制的感应加热方法,可通过降低机械应力和再结晶来扩大低温冷冻体积。  而激光再加热则利用具有高吸收系数的纳米粒子将近红外光的能量转化为热。  在一项实验中,饶伟团队合成了具有高光热转换效率的柔性液态金属纳米颗粒,并使用激光照射加热玻璃化的人骨髓间充质干细胞和小鼠尾巴。  其中,干细胞的存活率高达 78%,而常规方法只有 25%,并且重新加热的小鼠尾巴的血管中包含一个完整的组织结构。  可以说,激光纳米加热可迅速加热相对较小体积的生物样本,比如胚胎和细胞悬浮液。而射频纳米加热有望实现大体积生物系统的复温,例如肾器官。每年拯救几百万性命,价值之高不亚于治愈癌症  细胞、组织和器官等生物样本,在医疗系统中具备巨大价值,可用于药物发现、不孕不育症、创伤、再生医学、移植等领域。  器官等生物样本的临床应用,还可创造巨大的公共卫生效益,并在全球范围内每年拯救几百万性命,这与治愈癌症不相上下。最近,美国国家科学基金会投资 2600 万美元,以用于开发细胞、组织、器官及活体等生物系统的先进低温保护技术。  仿生自适应低温保存技术,有望为微小生命活体的生物样本库保存提供标准化冷冻方案和标准,为保护生物多样性提供技术支撑。饶伟团队通过喂饲仿生保护剂及低温自适应驯化,成功将冷冻敏感型日本弓背蚁转化为冷冻耐受型,驯饲后的蚂蚁在冷冻条件下的存活率相比较对照组增加了两倍多,实现了目前最大尺度的非耐寒活体低温自适应保存与复活[3]。  饶伟团队发现的系列低温保护新材料以及新技术,可为器官长期低温保存提供理论和技术支持,如此或可改变目前 70% 以上心/肺器官,因为输运、手术时长超过器官冷缺血耐受时间而导致的供体器官废弃现象。(来源:Trends in Biotechnology)  饶伟表示,活体大脑中的记忆等功能能否通过解冻进一步复苏,仍需进行系统的研究。目前该团队正在做蚂蚁在经历冻存和复活后记忆能否保存的工作,初步结果非常乐观。  她和团队博士生窦蒙家在冻存前,对蚂蚁的嗅觉进行了特殊的奖励训练,使得训练后的蚂蚁对特定的气味保持倾向性。之后,对蚂蚁进行低温冻存和常温下复活之后,其发现复活后的蚂蚁仍然保持着对特定气味的记忆能力。  对于此次论文,她总结称,虽然分别讨论了不同的生物样本低温保存方法,但它们在实际情况下面临着同样的挑战,如多尺度精准控制冰核形成和冰晶生长,以及避免缺血-再灌注损伤的需要。“科研于我,犹如心底一抹深红”  饶伟说,做低温保存研究需要有一颗“强大的心脏”,尤其是挑战大尺度异质异构生物体保存时,因为绝大部分实验都是失败的,无法实现具备完整功能的生物体成功复活。而活体的低温保存,更是充满了不确定性,其中做蚂蚁冻存和复活的实验过程是很难忘的。  蚂蚁本身是非耐寒的生命体,受季节影响,蚂蚁的生活习性和行为模式变化也比较明显。由于北京的四季温差较大,饶伟团队在进行蚂蚁活体低温保存实验时,经常发现冻存之后的存活率随季节波动较大。  尤其是冬季,订购的蚂蚁往往在运输的途中由于不耐受低温就发生了大概率死亡。为了确保实验数据的一致性,蚂蚁的驯饲和低温适应实验只能安排在特定的季节来进行。所以,获取一组成功的实验往往周期特别长。  研究虽苦,但却是饶伟心之所爱。  饶伟读本硕时,学习暖通空调专业,更注重工程设计能力,很多同学毕业后去设计院做暖通设计师。她更喜欢每天都挑战不一样的事物,读博之前非常想换方向。当时得知中科院理化所刘静教授从事生物传热学方向,能把传热传质的基础知识与探索生命奥秘结合,感觉是一个特别奇妙的领域。  她表示:“读博时,我探索了利用碱基液态金属的热化学治疗机理。在美国的两站博后期间,又拓展到材料学和分子生物学等方向。科研的确是一场不设限的奇妙‘旅行’。而我目前所在团队,又能把实验室前沿技术快速转化并实现临床应用。此前,我们曾利用‘冷冻保存’的反作用‘冷冻破坏’去治疗肿瘤,开发的低温治疗装备已在全国100多家医院实现临床应用。一路从博士、到博士后、再到老师,在不同航道上划着生命行舟逆水而上。路上平平仄仄动荡往复,却也灿烂惊心摇曳生姿。科研于我,犹如心底一抹深红,意味着最重的分量。”
  • 多歧管型真空冷冻干燥机的应用领域有哪些?
    多歧管型冻干机是一种冻干设备,其主要特点是在于真空罩内设置有多个支路,使得多个样品可以同时进行冷冻和真空干燥。这种设计使得多歧管型冻干机在一定情境下比传统的单一冷冻管型冻干机更为高效。以下是多歧管型冻干机的一些主要应用领域:制药工业: 制药行业是多歧管型冻干机主要的应用领域之一。在制备药物时,多歧管型冻干机能够同时处理多个药物样品,提高生产效率,确保药品的质量和稳定性。 生物制品:在生物制品的制备过程中,如细胞、酶、蛋白质等的冻干,多歧管型冻干机能够更加高效地处理多个样品,保持其活性和稳定性。这对于生物制品的保存和运输至关重要。 食品工业:在食品工业中,多歧管型冻干机可用于同时处理多种食品,如水果、蔬菜、奶制品等。这有助于提高生产效率,延长食品的保质期,并保持其原有的营养成分和口感。 化学品制备:化学品制备中,特别是对于一些高纯度化学品的制备,多歧管型冻干机可以同时处理多个试剂,提高生产效率,减少制备时间,确保产品的纯度和稳定性。 实验室研究:在科学研究领域,多歧管型冻干机可以满足实验室对于同时处理多个样品的需求。这对于高通量实验和大规模样品处理具有重要意义。 医疗器械和诊断试剂:在医疗器械和诊断试剂的制备中,多歧管型冻干机能够同时处理多个样品,确保产品的质量和稳定性,适用于大规模生产和制备。 总体而言,多歧管型冻干机在需要同时处理多个样品的场景下具有显著的优势,适用于多个行业,为这些行业提供了高效、可靠的冻干解决方案。
  • 即插即用可定制 多器官芯片演绎人体原理
    美国哥伦比亚大学工程系和医学中心的一组研究人员报告说,他们已经开发出一种多器官芯片形式的人体生理模型,该芯片由经过工程改造的人体心脏、骨骼、肝脏和皮肤组成,通过循环免疫细胞的血管流动,以重现相互依赖的器官功能。研究人员创造的这种即插即用的多器官芯片,大小与显微镜载玻片相当,可为患者定制。由于疾病进展和对治疗的反应因人而异,因此这种芯片最终将为每位患者提供个性化的治疗。这项研究刊载于4月27日出版的《自然生物医学工程》杂志上。灵感来自人体工程组织已成为疾病建模和在人体环境中测试药物疗效和安全性的关键组成部分。研究人员面临的一个主要挑战,是如何使用多种可进行生理交流的工程组织来模拟身体功能和全身性疾病,就像它们在体内所做的那样。然而,必须为每个工程组织提供自己的环境,以便特定的组织表型可维持数周至数月,符合生物学和生物医学研究的要求。使挑战变得更为复杂的是,必须将组织模块连接在一起以促进它们的生理交流,这是对涉及多个器官系统的建模所必需的。从人体的工作原理中汲取灵感,研究团队构建了一个人体组织芯片系统,在该系统中,他们通过循环血管流动将成熟的心脏、肝脏、骨骼和皮肤组织模块连接起来,让相互依赖的器官能够像在人类的身体里。研究人员之所以选择这些组织,是因为它们具有明显不同的胚胎起源、结构和功能特性,并且受到癌症治疗药物的影响。“在保持其个体表型的同时提供组织之间的交流一直是一项重大挑战,”该研究的主要作者、哥伦比亚大学干细胞和组织工程实验室副研究科学家凯西罗纳德森-博查得说,“因为我们专注于使用源自患者的组织模型,我们必须单独使每个组织成熟,以便它以模仿患者身上的反应方式发挥作用,我们不想在连接多个组织时牺牲这种先进的功能。在体内,每个器官都维持着自己的环境,同时通过携带循环细胞和生物活性因子的血管流动,与其他器官相互作用。因此,我们选择通过血管循环连接组织,同时保留维持其生物保真度所必需的每个单独的组织生态位,模仿我们的器官在体内连接的方式。”组织模块可维持一个月以上研究团队创建了组织模块,每个模块都在优化的环境中,并通过选择性渗透的内皮屏障将它们与常见的血管流分开。个体组织环境能够跨越内皮屏障并通过血管循环进行交流。研究人员还将产生巨噬细胞的单核细胞引入血管循环,因为它们在指导组织对损伤、疾病疗效的反应方面发挥着重要作用。所有组织均来自同一系人类诱导多能干细胞,从少量血液样本中获得,以证明个体化、患者特异性研究的能力。而且,为了证明该模型可用于长期研究,该团队将已经生长和成熟4到6周的组织在通过血管灌注连接后又维持了4周。研究人员还证明了该模型如何用于研究人类环境中的重要疾病,并检查抗癌药物的副作用。他们研究了多柔比星(一种广泛使用的抗癌药物)对心脏、肝脏、骨骼、皮肤和脉管系统的影响。他们表明,测试效果概括了使用相同药物进行癌症治疗的临床研究报告的效果。使用该模型研究抗癌药物该团队同时开发了一种新的多器官芯片计算模型,用于对药物的吸收、分布、代谢和分泌进行数学模拟。该模型正确地预测了阿霉素代谢成阿霉素醇并扩散到芯片中。在未来其他药物的药代动力学和药效学研究中,多器官芯片与计算方法的结合为临床前到临床外推提供了改进的基础,同时改进了药物开发流程。研究人员称,新技术能识别出一些心脏毒性的早期分子标志物,这是限制药物广泛使用的主要因素。最值得注意的是,多器官芯片准确地预测了心脏毒性和心肌病,这通常需要临床医生减少阿霉素的治疗剂量,甚至停止治疗。研究小组目前正在使用这种芯片的变体进行研究,所有这些都在个体化的患者特定环境中进行。如乳腺癌转移、前列腺癌转移、白血病、辐射对人体组织的影响、新冠病毒对多器官的影响、缺血对心脏和大脑的影响,以及药物的安全性和有效性。研究团队还在为学术和临床实验室开发一种用户友好的标准化芯片,以帮助充分利用其推进生物和医学研究的潜力。研究人员说:“我们对这种方法的潜力感到兴奋。它专为研究与损伤或疾病相关的全身性疾病而设计,将使我们能够保持工程人体组织的生物学特性及其交流。一次一个病人,从炎症到癌症。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制