对其分离影响

仪器信息网对其分离影响专题为您整合对其分离影响相关的最新文章,在对其分离影响专题,您不仅可以免费浏览对其分离影响的资讯, 同时您还可以浏览对其分离影响的相关资料、解决方案,参与社区对其分离影响话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

对其分离影响相关的耗材

  • 装填技术与柱硬件对性能的影响
    装填技术与柱硬件对性能的影响实验室规模的HPLC分离纯化对色谱工作者提出了诸多挑战,其中一个最大的挑战是制备色谱柱本身。由于柱与柱之间在性能和使用寿命上的不一致性,常常导致样品损失、重复纯化操作以及从小体积柱到大体积柱的放大能力差。沃特世科学家意识到这个问题的存在,历经三年,研究了装填工艺过程中的所有因素以及柱设计本身。在此基础上,沃特世公司于2003年推出了专利*技术OBD TM (Optimum Bed Density,最佳柱床密度)应用于沃特世制备柱产品。(*UK专利号 # GB2408469)。问题的根本原因就是在于,制备柱的柱床装填必须足够致密,才能在使用过程中能够承受流动相压力而仍保持稳定的柱床状态。传统的匀浆装填方法,用于分析柱规格时能够产生必需的柱床密度;但是当用于制备柱并使用较小粒径填充制备柱时,随着柱内径与长度的增加,就越来越难以达到柱长期使用仍能保持稳定耐受时所必需的柱床密度。柱床密度的优化,取决于色谱填料的特定性质与所采用的柱设计。传统分析柱匀浆填充工艺下的平均柱床密度vs柱规格
  • 旋风分离器
    KC铝制旋风式预分离器是一种轻质呼吸性粉尘采样器,通过将它插入到装有合适滤料的三节式料夹的中间环上,投入使用。按照粒径,旋风式预分离器对粉尘进行分离。呼吸性粉尘收集到滤纸上,较大的微粒沉淀在内壁上或落 入磨砂罐中被丢弃。SKC铝制旋风式预分离器 SKC铝制旋风式预分离器提供了4um尺寸所选用了的呼吸百分比。SKC铝制旋风分离器由导电铝制成,以消除与尼龙分离器(非导电)有关的静电问题,并使用旋风式预分离器对粉尘进行更加有效的采样操作。满足ACGIH/ISO/CEN呼吸曲线在2.5L/min的流速时,为4-um 50%的分界点在2.8L/min的流速时,为3.5-um 50%的分界点可进行交换使用消除不利的静电影响 小型、轻质 2.6*1.5英寸(6.6*3.8cm)提供有25或37mm规定NIOSH7500游离二氧化硅分析方法; NOSH 0600可呼吸性粉尘分析方法。使用开式三节式滤料收集器,能够使更多的均匀粒子ACGIH、NIOSH、ISO和欧洲标准委员会(CEN)规定了4um中间分界点的呼吸收集率曲线。一个最主要的浮质研究组织对SKC的铝制旋风式预分离器进行了校验,并仔细地评估了偏差超过整个ACGIH/ISO/CEN呼吸曲线的结果。结果显示,以2.5L/min的流速使用旋风式预分离器,能够提供与呼吸的常规曲线的最优的匹配。NIOSH0600中规定了SKC铝制旋风式分离器,而NIOSH7500中没有做出规定。滤匣固定座 小巧的滤料固定夹附在工人的衣领上,并适用于带有或不带有旋风式预分离器的两节式或三节式的37mm滤料收集器、带有通风帽25mm滤料收集器或带有GS-I旋风式预分离器的DPM滤料收集器
  • 游离DNA保存管选不对,为什么会影响检测结果?
    在液体活检等需要使用游离 DNA 进行检测的临床应用中,样本的采集、抗凝剂的使用和保存不当都会影响检测的质量。特别是所采集的样本在长距离、长时间的运输过程中,更增加了样本的不确定性,易造成假阳性或假阴性的结果。因此,如果保存采集样本的游离 DNA保存管如果选择不当的话,会直接影响检测结果,这究竟是怎么一回事呢? 首先,游离DNA 的稳定性相对较低,容易受到外界环境因素的影响。如果使用不合适的保存管,可能会导致游离 DNA 的降解、聚集或污染,从而影响检测结果的准确性。例如,某些保存管可能无法有效抑制核酸酶的活性,导致游离 DNA 被降解;另外游离DNA 保存管材料的吸附性能也可能影响相关检测结果。其次,游离DNA 保存管的选择还会影响样本在运输和储存过程中的稳定性和完整性。如果保存管的密封性能不佳,可能会导致样本在运输过程中受到污染,影响检测结果的准确性。此外,保存管的材质和设计也会影响样本在储存过程中的稳定性和活性,进而影响检测结果的精度。最后,游离DNA 保存管的选择还会影响实验室操作的便利性和效率。一个设计合理、操作方便的保存管,可以降低实验过程中可能出现的操作失误,从而提高检测结果的精度。相反,如果保存管的使用过于复杂,可能会增加操作的难度,影响检测结果的准确性。综上所述,游离DNA保存管的选择对检测结果的精度具有重要影响。因此,在实际应用中,我们需要根据具体需求选择合适的游离 DNA 保存管,以保证检测结果的准确性和可靠性。国盛医学所研发的游离DNA保存管内含的保存液采用独特抗凝剂和保鲜剂,不仅具有常温下保鲜血浆中游离DNA(cfDNA,ctDNA),稳定有核细胞防止释放细胞基因组DNA而稀释目标游离DNA,还能抑制核酸酶降解游离DNA保障样品质量。常温保存时效可从普通采血管的6小时延长至7天,满足样本长距离运输、长时间保存的需求。此外,该款保存管还有PET和玻璃两种不同的材质,客户可以根据不同的需求选择(玻璃材质气密性强,产品的保质期可以达到18个月甚至24个月的负压;PET是塑料材质,运输过程不会破裂,安全性高)。

对其分离影响相关的仪器

  • 谐波分离器 400-628-5299
    A.OBHS系列谐波分离器 命名规则: OBHS直径-HR波长示意图: OBHS谐波分离器选型表:型号名称1064nm处532nm处尺寸OBHS25.4-HR1064谐波分离器(1064高反,532高透)R>99.5%R<15%25.4x6.35OBHS25.4-HR532谐波分离器(532高反,1064高透)R<15%R>99.5%25.4x6.35B. 谐波分离器(进口)示意图及曲线图:YHS高谐波分离器(SIGMA)选型表:型号反射波长(nm)透过波长(nm)D(mm)T(mm)YHS-25.4C05-355355 (R&ge 99.5%)532/1064 (T &ge 85%)ø 25.45YHS-30C05-355355 (R&ge 99.5%)532/1064 (T &ge 85%)ø 30.05YHS-50C08-355355 (R&ge 99.5%)532/1064 (T &ge 85%)ø 50.08YHS-50.8C08-355355 (R&ge 99.5%)532/1064 (T &ge 85%)ø 50.88YHS-25.4C05-532532 (R&ge 99.5%)1064 (T &ge 95%)ø 25.45YHS-30C05-532532 (R&ge 99.5%)1064 (T &ge 95%)ø 30.05YHS-50C08-532532 (R&ge 99.5%)1064 (T &ge 95%)ø 50.08YHS-50.8C08-532532 (R&ge 99.5%)1064 (T &ge 95%)ø 50.88YHS-25.4C05-10641064 (R&ge 99.5%)532 (T &ge 95%)ø 25.45YHS-30C05-10641064 (R&ge 99.5%)532 (T &ge 95%)ø 30.05YHS-50C08-10641064 (R&ge 99.5%)532 (T &ge 95%)ø 50.08YHS-50.8C08-10641064 (R&ge 99.5%)532 (T &ge 95%)ø 50.88
    留言咨询
  • 多功能全自动细胞克隆分析及分离系统CellCelector Flex 将高内涵成像系统,高精度全自动细胞挑取机械臂和强大的成像处理分析软件相结合,可对单细胞、细胞团、球体、类器官、单细胞克隆以及贴壁细胞进行全自动检测、筛选、挑取和分离。挑取技术:已经获得专利的挑取技术支持极快的细胞扫描和挑取,从而快速分离细胞。温和地进行细胞转移,保证高度的细胞完整性和生长速率。对于一些应用,如单细胞克隆,可以实现高达 100% 的挑取/转移效率。CellCelector Flex关键特征多功能 &bull 适用于贴壁细胞、悬浮细胞或半固体培养基中的细胞 &bull 单细胞、细胞团、球体或菌落 &bull 原代细胞或细胞系 &bull 活细胞或固定细胞灵活 &bull 明场、相差和荧光成像 &bull 自动、半自动或手动细胞筛选,以供挑取分离 &bull 兼容标准或定制源容器和目标容器,如微孔板、培养皿、载玻片、过滤器、芯片、PCR板或管&bull 可升级的定制解决方案,可整合至大平台可靠 &bull 对特定细胞亚群超过95%的挑取准确性 &bull 对移动的检查对象进行自动重新定位 &bull 如果挑取失败,可重新挑取 &bull 软件自动检测是否成功挑取温和挑取 &bull 不影响细胞特性 &bull 可分离准备用于分子表征或下游培养的纯完整细胞 &bull 挑取后的细胞完整性和存活率高(包括单细胞克隆应用中高达95%及以上的存活率)快速 &bull 实验操作时间短 &bull 每次挑取仅20至30秒上游|下游兼容 &bull 无需复杂的样本制备,无需昂贵的耗材 &bull 与多个上游富集技术(免疫磁珠富集、基于尺寸的分离等)兼容 &bull 抽吸和点样体积小(降至约1 nL) &bull 单细胞PCR、NGS、RNA-Seq、细胞克隆、滴度分析、放大工艺等记录 &bull 符合GLP和GMP标准的完整工作流程记录 &bull 通过在每次挑取事件前后拍摄的实时、高质量图像进行质量控制 &bull 每一个被检测/捕获的对象都可以通过其唯一的ID进行识别,并可以在整个过程中从源板到终板进行完整的追踪,方便导出所有捕获的图像和数据 CellCelector Flex 关键应用单细胞分离&bull 稀有单细胞分离&bull 循环肿瘤细胞CTCs分析和分离&bull 胎儿细胞cbNIPT&bull 精子细胞分离&bull 原生质体/植物细胞&bull 单细胞异质性分析&bull CRISPR单细胞克隆细胞系开发&bull 用于细胞系开发的单细胞克隆 &bull mini Pool建立及筛选 &bull 从半固体培养基中进行菌落挑取及转移抗体发现&bull 单B细胞筛选 &bull 基于纳米孔的杂交瘤筛选 &bull 来自半固体培养基的杂交瘤克隆的筛选和挑取 &bull 杂交瘤亚克隆 &bull 基于微球的检测干细胞&bull iPS单细胞克隆 &bull 干细胞克隆挑取 &bull 造血干细胞克隆挑取 &bull 球体分离 CellCelector Flex 挑头我们根据CellCelector Flex 在不同领域的应用提供多种挑头。针对特定的细胞类型和挑取捕获模块对所有毛细管和挑头进行了优化,以保证温和、精准地挑取挑取细胞、细胞团以及克隆,整个过程无污染。CellCelector Flex 纳米孔板CellCelector Flex 纳米孔板含有十万到数百万个纳米孔,将细胞悬液接种后,数万个纳米孔有效地将细胞隔离开来,并确保共培养环境以促进单克隆生长。有效替代有限稀释法,FACS。&bull 高通量:每孔可获得400-600个单细胞(相当于有限稀释法25块96孔板!)&bull 高效节约:避免重复稀释,单次试验即可获得单克隆性、活力且高产的克隆&bull 100%单克隆性:自动图像鉴别单细胞并跟踪其生长到克隆,避免交叉污染&bull 单细胞活率超95%,无需昂贵外源生长因子CellCelector 机柜当处理活细胞时,无菌条件和经过调节的生理相关环境是关键因素。FlowBox 孵育箱可提供以下独特组合: &bull 经过HEPA过滤的垂直层流 &bull 对温度、湿度和CO2水平的精确控制 &bull 即使在检修门打开时,也能智能控制风速和排气量 &bull 高能紫外线灯,用于表面灭菌 &bull 源板和终板的最优细胞存活率 &bull 用户友好型控制面板 &bull 在不失去受控条件的情况下,充分方便地接触放置在里面的仪器和实验装置
    留言咨询
  • LMS金属分离器适用行业LMS 系列金属分离器可用于检测食品、药品、乳制品、农产品、化工、塑料等行业原料里面的金属异物,如铁、铜、不锈钢、铝、等。功能特点采用,性能稳定,能分离出原料中含磁性和非磁性的金属(如铁、铜、铝、不锈钢等)。02检测精度高,小如0.2MM的金属粒子或者金属丝也可检出03全304不锈钢结构,满足食品、药品行业的卫生要求全封闭通道,符合食品、药品行业防尘要求良好的检测精度,可自动分离剔除金属符合满足IFS 及HACCP 认证要求保护生产设备,提高原料利用率LMS金属分离器介绍1.适用于食品、制药、塑料、包装等行业,用于检测粉末,颗粒,片才等产品中的金属杂质2.,采用电磁感应原理,自动检测并分离原料中的铁、铜、铝、不锈钢等金属杂质3.的检测剔除系统,即使金属内嵌于产品中也能快速检测剔除4.高检测性能,最小可以检测出φ0.2mm的金属5.微电脑控制,LED灯指示6.紧凑的结构设计,操作简单,方便安装,可与其他设备配套使用,也可独立使用7.特殊的结构设计,有效避免震动,噪声和产品效应等外部因素影响8.多种检测口径可选,满足不同客户的精度和产品需求9.304外壳机构,满足食品、药品行业的卫生要求
    留言咨询

对其分离影响相关的试剂

对其分离影响相关的方案

对其分离影响相关的论坛

  • 进样器参数设置对分离有何影响

    [align=center][b][size=18px]进样器参数设置对分离有何影响[/size][/b][/align] [size=16px]在日常使用气相色谱仪时,除去样品的前处理部分,貌似仪器使用的第一步就是设置仪器分析参数与方法,而设置的第一步几乎无一例外的是进样口的参数设置。可以说大家是天天遇到的,可是这进样口的参数很多,真的设置起来估计有很多人都会发晕,更不要说初学者了。所以,今天仪器色谱工程师就和大家聊聊关于进样的这些事。  气相色谱仪进样器参数的设置,与测定的样品对象和样器的类型都关。参数设置适宜,色谱峰分离效果好;设置不当,可能导致本来能够分开的组分实际上没有分开。因此,实验中常常优化进样参数。  根据经验,部分进样参数的设置,如进样量、洗针次数等是相同的,故我们以最为常用的手动进样器为例,探讨一下进样器参数设置对分离有何影响。  进样器的参数设置不当,可能会出现如下情况:  ①进样量  进样量的大小直接影响定量结果。若进样量过大,色谱峰峰形不对称,峰变宽,分离度变小,或保留值发生变化,峰高、峰面积与进样量不成线性关系,无法定量;若进样量太小,会因检测器灵敏度不够,不能检出。对于填充柱,进样量影响不是太大,但进样量不当也会造成出现混合峰;用FID时,进样量太大会使火焰熄灭。  ②进样速度  进样速度要快,若进样缓慢,样品汽化后被载气稀释,导致峰形变宽、峰不对称,既不利于分离也不利于定量;  ③进样针的清洗  进样针如没清洗干净,上一次进样的残留样品会干扰下一次的分析,即进样针的“记忆效应”,会影响分析结果。[/size]

  • 进样器的参数设置,对分离测定有何影响?

    气相色谱仪进样器参数的设置,与测定的样品对象和样器的类型都关。参数设置适宜,色谱峰分离效果好;设置不当,可能导致本来能够分开的组分实际上没有分开。因此,实验中常常优化进样参数。根据经验,部分进样参数的设置,如进样量、洗针次数等是相同的,故我们以最为常用的手动进样器为例,探讨一下进样器参数设置对分离有何影响。

对其分离影响相关的资料

对其分离影响相关的资讯

  • 溶剂系统对RP-HPLC分离性能的影响
    反相高效液相色谱(RP-HPLC)是液相色谱中最常用的模式,广泛应用于化工制药生物工程等领域。RP-HPLC中溶剂系统的选择和优化一直是液相色谱领域的热门研究课题,对于多组分目标物的分析与分离,有效选择并优化色谱溶剂系统仍存在很多问题,本研究考察了溶剂系统的强度,极性等参数对RP-HPLC分离性能的影响。示例色谱柱:UItimate® ODS-3 4.6mm×150mm,5μm;柱温:25℃;检测器:UV225nm;流速:1.0mL/min;进样量:10μL。流动相A :0.1%磷酸 B:ACN,A:B=3:7,色谱柱:Xtimate® 4.6mm×150mm,5μm。流动相A :0.1%磷酸 B:ACN,A:B=3:7,色谱柱 :UItimate® ODS-3 4.6mm×150mm,5μm。由图谱判断8.6min峰内夹杂小峰未分开,UItimate® ODS-3 4.6mm×150mm,5μm更适合分离。考虑不同溶剂洗脱强度不同,有机相中加入甲醇,流动相A :0.1%磷酸 B:ACN:甲醇=8:2,A:B=3:7。由图谱判断8.6min峰内夹杂小峰未分开,UItimate® ODS-3 4.6mm×150mm,5μm更适合分离。考虑不同溶剂洗脱强度不同,有机相中加入甲醇,流动相A :0.1%磷酸 B:ACN:甲醇=8:2,A:B=3:7。调整有机溶剂比例后可以得出10.7min和11.9min分离度增加到3.0。优化方法,流动相A :0.1%磷酸 B:ACN:甲醇=7:3,A:B=4:6。从图谱中可以看出将峰分开,分离度增大,适当的调整有机相种类及比例可以提高分离性能。
  • “蛋白样品冻干过程”干货分享!——深度解析相分离现象及影响因素
    冻干可以通过去除样品中的水分,限制分子的流动性,减慢药物成分的物理/化学反应来延长产品的保质期,然而固体状态的配方也不是一直稳定的,由于在干燥过程中,蛋白质暴露在许多应力作用下,在长期的储存过程中,仍然容易发生物理/化学反应。在冻干及储存过程中,我们常常会加入一些稳定剂来保护蛋白免受应力的影响,主要有两种稳定机理来解释:水替代假说和玻璃化假说;但是两种稳定机制都需要将蛋白质分子分散在稳定剂中,使得蛋白质和稳定剂都处于相同的单一无定形相,即不发生相分离。那么相分离是如何发生的?为什么会发生?相分离主要发生在冻干的预冻步骤,在一定程度上取决于冻干的工艺和配方成分。1、相分离的机理 图1:冻干分为三个步骤冻干主要分为三个步骤:预冻,主干燥及次级干燥。(如图1所示)在预冻过程中,溶液被降到一个很低的温度,晶核形成并且生长,样品中的溶质浓度不断浓缩,可以达到初始浓度的约50倍,如果在热力学和动力学上均利于反应发生的条件下,高浓度的溶质可以导致相分离。2、相分离热力学当溶液为成分A 和成分B的混合物,会发生下面的相互作用(如图2所示)。熵和焓之间的竞争决定了相分离的过程。相分离的热力学基于混合物的自由能(弗洛里-哈金斯理论),聚合物由于尺寸大小和连通性,不能充分利用可用体积,大分子量聚合物的熵变化较小,因此,混合物热力学更容易受到较大焓贡献的支配,当ΔGmix 0: 热力学上有利于相分离 (A-A和B-B相互作用优于A-B相互作用)。 图2:溶液A和B发生的相互作用如果相分离是热力学自发以及动力学上利于反应(足够的移动性和时间),蛋白和稳定剂会分离成两个不同的相,富含稳定剂的无定形相以及富含蛋白的无定形相,后者由于缺乏稳定剂的保护,蛋白更易于降解。(如图3所示)图3:蛋白和稳定剂会分离成两个不同的相3、相分离的检测方法无定形-无定形物质的相分离不容易检测,由于检测方法有限,证据不足,目前主要有如下检测方法:检测技术方法局限性调制DSC配方中有多个Tg’表示有多个无定形相通常,富含蛋白的相不能被DSC检测到,因为在Tg’温度下具有较小的ΔCP;要求高浓度的蛋白配方。拉曼成像技术非重叠成分峰的线谱分析范围:2-50微米;不能检出低于检测限的成分波动。固体核磁共振利用弛豫时间来探测2-5 nm, 20-50 nm分子大小物质的混溶性动态实验需要大量的样品。X射线衍射/散射在纳米尺度上探测结构特征对于两个组分,均包含重要的结构层次,无法区分相分离;成本高,动态实验。SEM肉眼观察物质的形态结果会存在模棱两可的现象;需要较大的容易辨认的相。电介质技术依赖于电场中的分子迁移率响应存在不确定性。4、工艺参数对相分离的影响过冷度-----成核温度❖热力学冻结温度和首次成核温度之间的差值为过冷度;(如图4所示)❖较高的成核温度会更易导致相分离;(由于溶质在远高于Tg’温度下进行浓缩) 图4:过冷度冷却速度❖控制达到给定过冷度的速度;❖缓慢的冻结速度会更容易导致相分离;退火❖主要用于填充剂结晶,控制冰晶形态或增加冰晶体的大小,缩短一次干燥时间;❖如果两相热力学更稳定,退火时间和迁移率的增加可能会提供相分离的机会;灌装体积❖较大的灌装体积会对相分离有较大的影响,因为在样品中具有较大的热梯度。案例分享成核温度和冷却速度对相分离的影响对已知的相分离聚合物体系 1:1 PVP29K:DEX10K(100 mg/ml) 进行研究,将冷却台放在拉曼显微镜下进行观察。(如图5所示) 图5:已知相分离聚合物体系在拉曼显微镜下的观察成核温度对相分离的影响 图6:成核温度对相分离的影响与每个单一组分相比,成核温度较高的一组(-5℃)对相分离具有较大的影响;其余的成核温度对相分离影响较小。(如图6所示)冷却速度对相分离的影响 图7:冷却速度对相分离的影响所有的冷却速度均会在一定程度上提高相分离的倾向,但是影响较小。(如图7所示)*结论在没有热历史的情况下,成核温度和冷却速率对相分离的影响较小。成核温度和灌装体积对相分离的影响 图8:成核温度和灌装体积对相分离的影响较大的灌装体积(1ml VS 0.2ml)和较高的成核温度(-5℃ VS -10 ℃)会导致相分离,可能是由于样品内部存在较大的温度梯度。(如图8所示)5、配方成分对相分离的影响在冻干过程中配方成分的兼容性是阻止相分离的关键,如研究表明聚合物体系的不混溶性随着聚合物分子量的增加而增加。对于蛋白而言,相分离的倾向性可能与稳定剂大小,静电相互作用(盐类),稳定剂类型(填充剂、表面活性剂),稳定剂浓度,蛋白质特性(等电点,大小),配方PH值等有关。案例分享——配方组分对相分离的影响❖实验进行了系统的研究,探索蛋白质:糖的比例以及蛋白质(分子量,电荷)和糖(分子量,单糖亚基和长度)的特性如何影响配方在冻干过程中的混溶性。(如图9,10,11所示)❖蛋白质和糖(200mg /mL)的混合物按以下比例(w:w):蛋白质:糖——0:1,1:9,1:4,1:2.3,1:1.5,1:1,1:5:1,2.3:1,4:1,9:1❖多个Tg’的存在表明存在相分离。 图9 图10 图11实验表明● 在所有的蛋白-糖体系均观察到了相分离现象(两个不同的Tg’),尽管不同的比例出现相分离的时间不同;● 不同蛋白-糖混合物Tg’的宽度不同,有可能多个Tg’会重叠在一起,形成一个较宽的Tg’, 导致无法检测到相分离现象;● 其中在牛血清蛋白和海藻糖混合物中,当二者比例为1:1.5和1:1 时,观察到存在相分离现象;(如图12所示) 图12● 对于蛋白-糖体系中,二者比例从1:2.3 到4:1 均观察到存在相分离现象;(如图13所示)图13结论● 对于几乎所有被研究的体系中,当配方中蛋白质和糖的比例为1:1和1.5:1时确定会发生相分离现象,这表明蛋白质和糖的比例和系统的相分离倾向之间可能存在相关性;● 在系统的相分离趋势和以下属性之间似乎没有明显的相关性: # 蛋白质电荷/等电点 # 蛋白质分子量 # 糖的分子量 # 单糖亚基;● 在几乎所有研究的配方中,当蛋白和糖的比例为1:1时会发生相分离;● 本研究结果表明,冻干蛋白配方中应加入过量的稳定剂。6、冻干蛋白配方中相分离的重要性● 相分离取决于具体的操作过程和组分;● 在预冻过程中,温度/时间和浓度是关键因素,会影响系统相分离的趋势;● 蛋白和稳定剂的物理化学特性会影响相分离;● 在冻干过程中保护不足会导致长期储藏过程中不稳定性的增加;● 当缺乏稳定剂时,蛋白在干燥过程中会发生改变(即形成反应型结构),这可能会导致储存过程中潜在的稳定性问题;● 需要了解相分离如何影响冻干制剂的保质期;● 相分离检测是稳定性欠佳的指标;● 未检测到的相分离会影响蛋白质稳定性和整体产品质量;● 需要更好的检测方法!当前的方法可以证明样品存在相分离,但不能证明样品不存在相分离。参考文献[1] Padilla,A.M.et.Al.(2011).”The Study of Phase Separation in a Model Polymer Phase Separating System Using Raman Microscopy and a Low-Temperature Stage: Effect of Cooling Rate and
  • Protein A材质对生物分离传化的影响 ,微球精准制造技术应运而生
    早前,江必旺博士分享了《浅谈令人“爱恨交加”的Protein A亲和层析介质》、《盘点Protein A亲和填料质控必看的重要参数》,本期带大家了解Protein A 亲和层析介质的制备过程中需要考虑的那些影响因素以及纳微科技带来的创新成果,也欢迎大家在评论区留言讨论。纯化后的Protein A配基可以通过其分子上的氨基或末端的巯基与微球上的功能基团偶联制备成Protein A 层析介质。Protein A层析介质的性能与其本身的配基性能,基球材料组成,基球孔径大小,孔容积及表面功能化等都有关系。为了高效率把目标生物分子从复杂样品里分离出来,并保持其生物活性,用于分离纯化的层析介质材料必须满足苛刻的要求如介质材料组成、形貌、粒径大小、粒径分布、孔径大小和分布、功能基团、及表面亲水性能等。 Protein A材质的影响 目前Protein A 亲和层析介质基球主要由两大类材料组成:第一类是以琼脂糖,葡聚糖为代表的多糖层析介质;第二类是以聚丙烯酸酯和聚丙烯酰胺为代表的合成高分子层析介质。其中天然多糖高分子改性介质由于具有亲水强,生物兼容性好,能减少对生物分子的非特异性吸附等特点,因此在分离过程中容易保持生物分子的生物活性。另外交联天然多糖介质在溶胀状态下其多糖分子链可以舒展开来形成网状孔道结构,因此多糖介质表面积大,容易做成高载量的介质。软胶是生物大分子分离纯化应用历史最悠久,最广泛的亲和层析介质。但天然多糖改性高分子介质因其基质柔软而被称为软胶,其主要缺陷是机械强度差、压缩比大、柱床不稳定、操作困难、流速慢、生产效率低等,另外软胶在干燥状态下脱水容易导致孔道结构塌陷从而失去分离性能,因此,软胶填充的层析柱床一般不能脱水。相反,合成多孔高分子层析介质微球具有机械强度高,化学稳定性好等特点,因此可以耐受更大的压力、更快的流速,从而提高分离效率,虽然其在市场应用的晚但其市场增速最快。另外合成高分子微球粒径大小,粒径均匀性更容易控制,使得合成高分子介质更容易装柱,柱效和分辨率也更高。同时聚合物介质孔道结构是通过无数高度交联的纳米粒子堆积而成。这些纳米粒子不溶胀,分子进不去,因此其表面积比琼脂糖基质的小,但孔径通透性更好,因此分子传质速度快,在高流速下载量可以保持的更好。但合成高分子层析介质的缺点是其疏水往往比软胶大,导致非特异性吸附大,容易使生物分子失去活性。因此聚合物微球表面需要进行亲水化改性以降低其非特异性吸附才能满足层析分离的需求。无论是以交联琼脂糖为基质的离子交换介质还是以表面亲水化改性的聚合物为基质的离子交换介质都有各自的优缺点,但它们的目标都是一致的,都是往高载量、高机械强度,高分辨率、高回收率方向发展。因此为了生产更理想的层析介质,交联琼脂糖层析介质要解决的问题是在保持它亲水性优势下如何提高其机械强度,而聚合物介质问题是在保持其机械强度优势条件下如何解决亲水化问题并降低非特异性吸附。 介质孔径大小及孔隙率对生物分离的影响 除了粒径大小和分布会影响层析介质分离性能外,孔径大小、比表面积及孔隙率也是生物分离纯化介质最重要参数之一。层析分离模式主要是分子与介质表面功能基团作用的结果,层析介质可及比表面积是影响其吸附载量的主要因素之一,可及比表面积是分子可到达的内孔表面积加上介质外表面积。由于内孔表面积占据整个比表面积的90%以上,而内孔表面积主要由孔径大小,孔隙率来决定。孔径越小比表面积越大,但如果孔径太小,目标生物分子进不去,这样的小孔及其表面积对分离是没有作用的。孔径太大,比表面积也会降低,因此对于不同分子量大小的生物分子,有个最优的孔径大小,其可及表面积最大,分离效果最好。比如说用于抗生素这类分子量小的生物分子,孔径一般选择小于30纳米以下,而对于抗体蛋白分离纯化的介质一般选择孔径在100纳米左右,而对于病毒这种大尺寸的生物,需要400纳米以上超大孔的介质。另外孔隙率越大,比表面积越大,载量也会越大,同时机械强度越差,因此选择孔隙率也需要平衡机械强度和载量的要求 Protein A 配基的影响 Protein A 亲和层析分离是基于Protein A 配基与抗体的特异性结合。天然Protein A 来源于金黄色葡萄球菌的一个株系,它含有5个可以和抗体IgG 分子Fc 段特异性结合的结构域。由于天然的Protein A 配基耐碱性差,为了提高Protein A 耐碱性,延长其使用寿命,因此现在市场上使用的Protein A都是经过天然Protein A序列改造过的重组蛋白。每家重组蛋白A的序列不同,亲和力不同,洗脱pH 条件不同,耐碱性能不同。Protein A 配基对抗体纯度,回收率等有重要影响。 粒径大小和粒径均匀性的影响 粒径大小和均匀性不仅影响柱效,分离效率,对Protein A 载量影响也很大。粒径越小,分子传递路径越短,Protein A 与抗体结合的效率越高,载量就越大,比如说以琼脂糖为基质的Protein A 介质,如果粒径是90微米,载量只有50毫克/毫升,如果粒径减小到50微米,载量可高达90毫克/毫升,因此粒径与载量成反比,但粒径越小,反压越大,因此选择粒径大小需要考虑压力和载量。另外粒径越均一,其洗脱越集中。粒径分布均匀,形貌规整的球形填料填充柱床的紧密程度一致性好,流动相在柱床中的流速均匀,流动相经过柱床的路径长短一致,从而有效降低涡流扩散系数,使色谱峰宽变窄,理论塔板数升高。纳微十多年坚持不懈的研究开发出世界领先的微球精准制造技术,该技术可以对微球的材料组成、粒径大小、粒径均匀性、孔径大小及表面性能达到前所未有的精准控制。纳微利用这一技术平台开发出新一代单分散多孔聚丙烯酸酯为基质的Protein A 亲和层析介质克服了传统Protein A 软胶的缺点。纳微Protein A 介质创新点主要有以下几点:首先,纳微Protein A 介质具有精准的粒径大小和高度的粒径均一性,使其具有流速均匀、洗脱集中、流动相用量少而且装柱容易、柱效高、柱床稳定、压力低、柱与柱重复性好等优点;图4 纳微单分散Protein A介质与传统软胶基质微观结构对比图5 传统多分散Protein A亲和软胶与UniMab液流路径对比示意图第二,纳微Protein A 基球经过优化筛选专门设计的大孔结构,其孔径远大于GE Protein A 产品。因此该介质具有蛋白传质速度快,使得介质在高流速下具有高载量。从实验测试数据可以看到,纳微UniMab与GE MabSelectSuRe在驻留时间大于4分钟时,载量都差不多,当驻留时间小于2分钟时UniMab的载量高于MabSelectSuRe载量50%以上, 而且速度越快UniMab载量优势越明显。抗体生产效率是由载量和流速共同决定,但流速越快载量越低,因此对于每个亲和层析来说有个最优的流速。实验证明对于批次亲和层析,驻留时间是2分钟时生产效率达到最高,对于连续层析驻留时间是1分钟时生产效率最高;图6 UniMab与MabSelectSuRe产品不同驻留时间动态载量对比图7 不同Protein A 层析介质驻留时间与抗体生产效率与关系对比从抗体流穿曲线对比图也可以看出具有大孔结构及高度粒径均匀性的单分散Protein A亲和层析介质与进口软胶相比具有更陡的穿透曲线,说明纳微单分散层析介质具有更畅通的孔道结构,分子在介质里扩散速度快。抗体流穿少,回收率高。图8 抗体流穿曲线对比图第三,纳微Protein A 基球是高度交联的聚丙烯酸酯组成,与市场上软胶或低交联度聚丙烯酸酯为基质的Protein A 介质相比具有溶胀系数小,压缩比例低,而且具有优异机械性能,可以承受更高流速条件产生的压力,并装更高的柱床,有利于增加抗体批处理量,提高抗体生产效率,减少设备投资。UniMab在2公斤压缩比例只有5%,而市场上Protein A 介质压缩比例往往超过15%。图9 UniMab与软胶与压力流速曲线对比第四,纳微用于Protein A 介质的基球是通过多步表面亲水化改性,因此表面亲水性能好,非特异性吸附低,在抗体分离过程中,HCP去除效果好。一般来说聚合物基质的Protein A 因为亲水性问题,HCP 去除效果往往比软胶差,但UniMab可以达到软胶Protein A 的同等水平。图10 纳微UniMab与对照填料的HCP去除效果第五,除了创新基球外,纳微又经过多年的努力通过优化组合不同片段的Protein A 设计出有自主知识产权的耐碱性Protein A 配基,并实现大规模生产。最后通过优化偶联工艺成功地生产出世界首个单分散Protein A 亲和介质产品,不仅实现该产品的国产化,而且克服了现有市场上Protein A 介质的主要缺陷。纳微单分散Protein A 介质不仅可以提高抗体的生产效率,降低抗体的生产成本,更是下一代连续层析理想的介质。亲和层析分离条件影响ProteinA亲和条件相对简单,无需繁琐参数优化。平衡阶段,盐浓度及pH是两个重要参数。由于ProteinA与抗体分子核心区域主要作用力依靠组氨酸疏水性介导,所以增加平衡盐浓度一般可增加3-5mg载量。pH则通常控制在6-7.5,若低于5.0以下,可能会降低动态结合载量,从而降低了回收率。上样后清洗是去除结合于填料的宿主蛋白(HCP)及核酸(DNA)等杂质的主要过程。清洗pH较为关键,在抗体分子未清洗掉的前提下,选择尽可能低的pH作为清洗条件,以去除更多的HCP等杂质。若常规pH条件无法奏效,可以加入高盐(1M氯化钠)或添加剂如精氨酸、吐温80、尿素及异丙醇等。pH是洗脱过程中最关键工艺参数,在确保回收率的前提下,尽可能选择更高的pH进行洗脱。较低pH会导致洗脱的抗体浓度过高,产生更多的聚集体。另外,洗脱buffer类型也会对洗脱浓度及杂质含量有影响,如相同pH的柠檬酸洗脱强度高于醋酸。表4 不同Buffer洗脱液效果比较缓冲液洗脱体积(ml)洗脱浓度(mg/ml)收率(%)HCP(ppm)洗脱液20mM HAc pH3.546.591.5129洗脱液20mM Gly pH3.563.880.3167洗脱液20mM Citric pH3.53.77.395.186另外,洗脱液加入精氨酸、氯化钠、聚乙二醇、尿素、组氨酸、咪唑等皆有助于减缓低pH的破坏作用,提高洗脱液纯度。下图是UniMab50纯化过程中在淋洗及洗脱步骤加入了1%聚乙二醇PEG3350,SEC纯度提示PEG可显著降低聚集体含量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制