蛋白质不确定度分析

仪器信息网蛋白质不确定度分析专题为您整合蛋白质不确定度分析相关的最新文章,在蛋白质不确定度分析专题,您不仅可以免费浏览蛋白质不确定度分析的资讯, 同时您还可以浏览蛋白质不确定度分析的相关资料、解决方案,参与社区蛋白质不确定度分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

蛋白质不确定度分析相关的耗材

  • 高灵敏度蛋白质250 Ladder
    采用 2100 生物分析仪系统进行高灵敏度蛋白质电泳。高灵敏度 Protein 250 分析具有宽动态范围,可在低至与银染色相当的水平下获得灵敏度。该分析无需 SDS-PAGE 平板凝胶处理、染色或成像步骤,提高了分析效率。系统可为 pg 级样品提供一套快速、自动、客观且灵活的解决方案,用于蛋白质和肽谱表征、质量控制和杂质检测。兼容的样品类型包括蛋白质裂解物、纯化蛋白质和多肽、抗体以及蛋白质的稳定性检测。 可进行标准化测试并配备预包装试剂盒的即用型系统,适用于高达 250 kD 的样品分析。标记样品后,可在 30 分钟内完成 10 个样品的自动化电泳,快速获得结果。低至银染色级也可获得高灵敏度与准确度,芯片上的标记蛋白质约为 1 pg/µL。在四个数量级的宽线性动态范围内以最佳状态运行。可实现低至 0.05% 或更低水平的高精度杂质检测。
  • 高灵敏度蛋白质250试剂盒
    采用 2100 生物分析仪系统进行高灵敏度蛋白质电泳。高灵敏度 Protein 250 分析具有宽动态范围,可在低至与银染色相当的水平下获得灵敏度。该分析无需 SDS-PAGE 平板凝胶处理、染色或成像步骤,提高了分析效率。系统可为 pg 级样品提供一套快速、自动、客观且灵活的解决方案,用于蛋白质和肽谱表征、质量控制和杂质检测。兼容的样品类型包括蛋白质裂解物、纯化蛋白质和多肽、抗体以及蛋白质的稳定性检测。 可进行标准化测试并配备预包装试剂盒的即用型系统,适用于高达 250 kD 的样品分析。标记样品后,可在 30 分钟内完成 10 个样品的自动化电泳,快速获得结果。低至银染色级也可获得高灵敏度与准确度,芯片上的标记蛋白质约为 1 pg/µL。在四个数量级的宽线性动态范围内以最佳状态运行。可实现低至 0.05% 或更低水平的高精度杂质检测。
  • 重组多肽/蛋白质分析柱
    PLRP-S 色谱柱 耐用的弹性填料提供重现性结果,寿命更长 热稳定和化学稳定性高 遵循USP L21 标准 用于生命科学、化学、临床研究、能源、环境、食品和农业、材料科学和制药行业 宽孔径范围(100?-4000?),适合于分离小分子到大分子复合物和多核苷酸PLRP-S 系列色谱柱包括各种孔径和填料尺寸,它们都具有相同的化学特性和基本吸附特性。这些填料本质上是疏水的,因此不需要键合相、烷基配体来进行反相分离。因此,能得到无硅醇基、无重金属离子的高重现性填料。该色谱柱拥有多种产品系列,适用于纳流/微量分离,包括自下而上和自上而下的蛋白质组学、分析型分离以及制备级纯化。此外,Process 色谱柱可以用大量散装填料进行装填。订货信息:

蛋白质不确定度分析相关的仪器

  • 仪器简介:作为全球最大的实验室过滤及超滤产品供应商,Millipore 可为您提供 l. 0.5mL至1000L处理量的实验室除菌过滤装置,可用于血 清、组织培养基及其他溶液的除菌过滤。高通量,低吸附的除菌滤膜,使蛋白质损失最少。可选择即用式过滤器或可更换膜的过滤装置。 2. 0.5mL至3000mL处理量的实验室超滤装置,用于蛋白质,核酸的分离、纯化、浓缩和脱盐,专利 的结构设计和新型的超滤膜,使超滤速度更快,产物回收率更高。单片超滤膜和膜包可清洗并反复使用。 3. 高通量纯化系统,特别适合大规模样品纯化实验室的应用,可快速有效地同时处理多达96个样品,大大减轻了实验室的负担。 主要产品包括: * Amicon 系列超滤离心装置: 浓缩,脱盐一部到位, * DNA Extraction Kit: 从琼脂糖凝胶中回收DNA,只需10分钟即可回收100bp-10,000kb DNA * Micropure -EZ:从DNA中去除常用的42种限制性内切酶,可与Amicon超滤离心装置连用,一步离心即可完成去酶,浓缩及脱盐。 * Immobilon 系列转印膜: Ny+ 用于Southern和Northern Blotting PVDF 用于Western Blotting * ZipTip 微量固相萃取吸嘴:只需数秒即可纯化fmol至pmol的蛋白质样品,提高质谱分析的灵敏度 * Montage Plasmid kit:用于质粒DNA纯化 2 Montage BAC kit:用于BAC DNA纯化 2 Montage SEQ kit:用于测序反应后PCR纯化 * Montage In-Gel Digest Kit: 同时处理96个1-D或2-D胶中的蛋白质样品 * Millex GP33: 超大面积,超高流速的针头式除菌过滤器。 技术参数:1.96孔PCR 纯化板---纯化96个样品只需10分钟 2.无须离心,只需真空抽干 3.不需要使用任何有机试剂及任何盐溶液,也无须洗涤步骤 4.纯化后的PCR样品回收率90%(500bp以上) 5.纯化后的DNA纯度极佳--Primer的去除率98% 主要特点:1.Albumin Deplete Kit--有效去除人血清中65%以上的白蛋 2.预装好亲和层析小柱,只需15分钟离心,洗脱操作 3.非特异性蛋白吸附极低 4.提高低峰度蛋白质在电泳,层析及质谱分析中的解析度 5.此Kit同样可适合于其他多种哺乳动物
    留言咨询
  • 最新款 Qubit Flex 八通道核酸/蛋白定量荧光计 已上市!Qubit 4 荧光计采用专门研制的荧光检测技术和Invitrogen™ Molecular Probes™ 染料。这些染料荧光只有与特异性的靶分子结合时,才能发射荧光信号,即使有游离核苷酸或降解核酸存在,这些染料仍能发挥作用。Qubit 4 荧光定量即便在低浓度下亦具有目前最高的DNA 和RNA 定量特异性和灵敏度。? 选择性 — Qubit 荧光定量采用Qubit 分析试剂盒,其包括专利的染料,只有与DNA、RNA或蛋白质结合时方可发出荧光。由于Qubit 技术只报告靶分子( 而不是杂质) 的浓度,因此这种特异性可以使您获得十分精确的结果? 灵敏性 — 最低仅需1 uL 样品,能精确可靠地定量浓度仅为10pg/L 的DNA 和12.5μg/mL 的蛋白质样本? 简单直观 — 反应灵敏的5.7 英寸彩色触摸屏,直观的导航按钮? 迅速 — 全新的双核处理器,5 秒内快速计算样品浓度,最多存储1000 个结果? 个性化 — 个性化设置常规应用,可通过MyQubit 软件和网络工具创建个性化assay,六国操作语言可供选择上市12 年来,Qubit 荧光计一直以其极高的准确度和灵敏性,受到全球上万个实验室的青睐。迄今为止,已经有17,500 篇有关Qubit 的文献引述。最新推出的Qubit 4 荧光计秉承上一代仪器的高准确性,不仅仅可精确测量样品DNA,RNA 和蛋白质含量,还拥有全新的功能,包括:? 适用全新RNA IQ assay — 快速可靠地检测RNA 完整性和质量? 数据导出 — 除U 盘和USB 连接电脑导出数据,还拥有WiFi 功能? 内置试剂计算器 — 快速计算配置工作溶液所需的染料和缓冲液Qubit 操作简单直观ubit RNA IQ Assay快速、准确地检测RNA 完整性和质量RNA 样品的质量评估对于下游的实验的成功尤为重要。全新上市的InvitrogenTM Qubit RNA IQ(Integrity & Quality )试剂盒和Qubit 4 荧光计配套使用,只需两步就可以准确区分完整和降解RNA,快速评估RNA 质量或降解程度。无需特殊的处理步骤,繁杂的样本制备或漫长的等待过程——最少仅需1 uL,浓度为0.5-1.5 ug/uL 的待测样品,即可在4 秒内获得RNA IQ 结果。Qubit RNA IQ 试剂盒采用两种独特的荧光染料——一种与大RNA,完整和/ 或结构RNA 结合,另一种选择性地结合较小、降解的RNA(图5),两种染料结合使用,可快速地评估RNA样品的完整性和质量。使用时,您只需将样本加入RNA IQ 工作液,然后在Qubit 4 荧光计上完成检测。检测结果会提供RNA 样品完整性和质量的总数值或RNA IQ#,以及样本中大小RNA 的百分比值(图6)。与其他RNA 质量分数类似,RNAIQ# 评分范围为1 到10,数值越大,说明RNA 的质量越高,完整性越好。 与电泳法相比,RNA IQ 检测法有何优势?Qubit RNA IQ 为检测RNA 样本是否降解提供一种快速简单的方法。与基于微流体芯片法比较,RNA IQ 法需要的设备便宜,操作简单,更重要的是检测所需的时间大大缩短。通常来说,完成12 个样品的检测,RNA IQ 法约需要10 分钟,而使用微流体法,约需要75 分钟。如果您只是需要简单评估RNA 样品是否降解,可以使用RNA IQ 法快速完成检测,但如果您需要获取具体的RNA 片段大小及分布信息,我们依然推荐您使用基于凝胶或微流体的电泳方法。RNA IQ 检测结果反映样本中大RNA 和/ 或结构RNA 和小RNA的百分比,其数值与电泳法结果正相关(图7)。然而,需要注意的是IQ# 值反映的是样本中大小RNA 的比值,由于计算原理不同,IQ# 值与其他质量评估方法得到的结果之间存在一些差异(图8)。对特定样本或下游应用,我们推荐您最开始同时使用RNA IQ 试剂盒和传统电泳法来确定测量值的相关性。官方渠道购买 — 品质保证,售后无忧从现在起,通过赛默飞世尔科技官方渠道购买全新Qubit 4 荧光计,即享三年免费退换。
    留言咨询
  • 欧奇奥 IPAC1 蛋白质聚集体成像计数分析仪粒度分析粒子计数(颗粒数/毫升)特殊细胞蛋白聚集体分析(最小体积100微升)生物技术专用特殊光学台欧奇奥 IPAC1 蛋白质聚集体成像计数分析仪 蛋白质是怎样构成的?蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。二级结构:蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。三级结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。欧奇奥 IPAC1 蛋白质聚集体成像计数分析仪 蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。但是,如果蛋白质间发生非特异性结合,不仅蛋白质失去应有活性,而且易形成包涵体,导致蛋白基因工程成本增加。聚集体的结构包括淀粉样蛋白纤维结构和包涵体结构。生物医学工程中为什么必须研究和观测蛋白质聚集体?蛋白质聚集已经成为药物与生物学领域中的研究热点,其中蛋白质以非天然构象存在,还常伴随着β-折叠量的增加。老年痴呆症和II型糖尿病都与蛋白质聚集有关。研究蛋白质聚集体有助于理解体内分子病的形成。在蛋白质和药物的后基因组时代,寻找蛋白质晶体的优化条件一直是晶体生长工作者的目标。而成核前溶液中蛋白质形成的聚集体的状态(包括聚集体的大小,形貌,甚至于构象等)的变化会直接影响到成核的情况。因此,对于无序聚集体状态的变化研究,有助于分析有序聚集体的出现条件并提供蛋白质晶体生长的合适条件。清华大学生命科学学院生物膜与膜生物工程国家重点实验室购置“多角度激光光散射凝胶色谱系统”,用于生物样品溶液形态分析、蛋白质及其聚集体分子量和分布测定,蛋白质均一性、稳定性分析及其结晶状态和条件的筛选,研究蛋白质聚集体对膜污染过程的影响。蛋白聚集严重影响以蛋白为基础研发的药物。在药物制剂中,蛋白聚集在生物活性和免疫原性方面影响药效。蛋白聚集发生在生产过程的各个阶段包括细胞培养、纯化、生产、储存、运输等方面。制药工业希望在生物工艺中找到新的方法,可用于检测、追踪、定量分析影响蛋白聚集的因素。近年来以冻干稳定形式存在的蛋白聚集体作为标准品,可以准确地定量检测蛋白聚集,加上新颖的只需在酶标仪里即可实验的ProteoStat protein aggregation assay,可对蛋白检测方法进行优化。科学家目前并不确定为何不正确的蛋白质形式和聚集成团现象是神经变性疾病的重要标志,神经变性疾病包括肌萎缩侧索硬化(ALS)、阿尔兹海默氏症和疯牛病等。刊登在11月1日的国际杂志Molecular Cell上的研究报告中,来自耶鲁大学的研究者通过在细菌中研究疾病的发病过程来揭示不正确形式的蛋白质的聚集体的形成过程。蛋白质是由DNA编码控制并且在核糖体的装配下在细胞中形成,然而,有时候蛋白质并不会被正确地装配,这些错误折叠的蛋白质就趋向于聚集。错误折叠的蛋白质的聚集现象就在阿尔兹海默症患者大脑中表现尤为明显。来自耶鲁的研究团队揭示了抗生素链霉素可以诱发大肠杆菌蛋白质的聚集。使用大规模的蛋白质组学及遗传学筛选技术,研究者分析了蛋白质的聚集现象以及筛选了可以使得大肠杆菌对抗生素产生耐药性的细菌蛋白质,最终研究者发现细菌中一种特殊的蛋白质如何保护细菌免于过氧化氢的压力,以及这种蛋白质如何减弱由于链霉素所刺激引发的蛋白质的聚集。
    留言咨询

蛋白质不确定度分析相关的方案

蛋白质不确定度分析相关的论坛

  • 【第二届网络原创作品大赛】奶制品中蛋白质测定不确定度分析

    奶制品中蛋白质测定不确定度分析依据JJF1059-1999《测量不确定度评定与表示》、CNAL/AG06《测量不确定度政策实施指南》和CNAL/AR11《测量不确定度政策》分析按照GB/T5009.5-2003的要求,测定牛奶中蛋白质含量。对食品中水分的测定的测量不确定度进行分析,找出影响不确定度的因素,对不确定度进行评估,如实反应测量的置信度和准确性。1. 测量方法 操作流程:用移液管取样品10.0ml经过消化处理后,用100ml容量瓶定容至刻度混匀,用10.0ml移液管取处理液蒸馏,用硼酸吸收,再以盐酸标准液滴定至终点。 2. 建立数学模型 式中:X———试样中蛋白质的含量,单位为(g/100ml) V 1 ———试样消耗盐酸标准滴定溶液体积,单位为(ml) V 2 ———试剂空白消耗盐酸标准滴定溶液体积,单位为(ml) C———盐酸标准滴定溶液浓度,单位为(mol/L) 0.0140———与1.00ml盐酸标准滴定溶液相当于氮的质量,单位为(g) M———试样的质量,单位为(g) F———氮换算为蛋白质的系数,乳制品为6.38。 3. 不确定度来源分析 1)蛋白质含量,重复性测量的标准不确定度,单次测量结果的重复性标准偏差Ur1 2)玻璃量具:10.0ml A级单标移液管及100ml容量瓶引起的标准不确定度Ur2 3)滴定终点消耗盐酸标准滴定溶液体积所引起的标准不确定度Ur3 4)空白试验消耗盐酸标准滴定溶液体积所引起的标准不确定度Ur4 5)标准滴定溶液浓度所引起的标准不确定度Ur5 4. 不确定度分量计算4.1 Ur1 的计算为获得重复性测量的不确定度,取一个样品进行独立重复测量10次。测量结果见表1。表1 重复性测量的不确定度测量结果 (%)︱ - ︱(%)( - )213.031×10-21×10-822.993×10-29×10-833.053×10-29×10-843.020053.042×10-24×10-863.031×10-21×10-873.011×10-21×10-882.966×10-236×10-893.097×10-249×10-8102.984×10-216×10-8 3.02% (A类不确定度)4.2 Ur2 的计算 a). 10.0ml移液管的最大允许误差为±0.02ml,按矩形分布。 , b). 100ml容量瓶定容引起的不确定度100ml容量瓶允差值为±0.1ml,按矩形分布。 , ∴ 4.3 Ur3 的计算 50ml滴定管的允差值为±0.05ml,按矩形分布。 , 4.4 Ur4 的计算 50ml滴定管的允差值为±0.05ml,按矩形分布。 ,   4.5 Ur5 的计算 盐酸标准溶液的标定引起的不确定度分析。  4.5.1测定方法: 准确称量270~300℃干燥至恒重的基准碳酸钠(99.95%~100.05%)约0.2g左右,电子分析天平(精度为0.1mg),置于三角瓶中,加入50ml水使之溶解,加指示剂,用盐酸标准溶液滴定至终点同时作试剂空白实验。 4.5.2建立数学模型 式中:C—盐酸标准滴定溶液的浓度(mol/L) m—基准无水碳酸钠的质量(g) V1—盐酸标准滴定溶液用量(ml) V2—试剂空白实验中盐酸标准滴定溶液用量(ml) 0.05300—与1.00ml盐酸标准溶液[C(HCl)=1.000mol/L]相当的以克表示的无水碳酸钠的质量(g)。4.5.3 测量不确定度来源分析 从检测过程和数学模型分析,标定盐酸标准溶液的不确定度主要来源,由四个方面所引起:(1)测量的重复性(A类不确定度) (2)基准无水碳酸钠的纯度 (3)测量使用的电子分析天平及量具 (4)其他相关常数。4.5.4 测量不确定度分析4.5.4.1测量的重复性(A类不确定度)为获得标准溶液重复测量的不确定度分量,对同一标准溶液进行10次独立的标定。测定数据见表2。    表2 盐酸标准滴定溶液的标定结果 ︱ - ︱( - )210.05271×10-31×10-620.05271×10-31×10-630.05251×10-31×10-640.05233×10-39×10-650.05282×10-34×10-660.05215×10-325×10-670.05242×10-32×10-680.05260090.05315×10-325×10-6100.05293×10-39×10-6 0.0526 (A类不确定度)4.5.4.2 B类不确定度的评定 1). 基准碳酸钠的纯度 基准碳酸钠的纯度为1.0000±0.0005,视为矩形分布。 2).天平称量所引入的标准不确定度 干燥器与天平称量仓内均放置同质硅胶,视为相同湿度,称量时无吸潮。天平的准确度为σ=0.1mg,采用矩型分布计算标准不确定度。 , 3). 标定体积的不确定度 a)滴定管的校准:滴定使用50ml酸式滴定管(A级),允差值为±0.05ml,按矩形分布。 , b)环境温度:实验环境在空调条件下,室温近似20℃。温度在20℃左右,标准溶液的温度补正值非常小,对实验结果影响可忽略不计。c)滴定终点的判断:终点时的误差±0.05ml(1滴的体积),两点分布,现由终点分布判断引入的标准不确定度为0.05ml, 所以 4.5.4.3 其它常数 基准无水碳酸钠摩尔质量引起的标准不确定度很小,可以忽略。4.5.5 标定盐酸的合成标准不确定度 5. 合成不确定度 =5.69×10-2所以:U(C)= 5.69×10-2×3.02%=0.172%从上述的分析过程可知,测量结果的不确定度主要来源两个方面:全部随机效应导致的重复性不确定度和盐酸标准溶液的标定引起的不确定度。6.扩展不确定度的分析 取K=2,U=2×U(C)= 0.344%≈0.3%7.不确定度报告按照国家标准GB/T5009.5-2003规定的检测程序进行,最后测量出本次食品中蛋白质含量为:3.0(±0.3)%。[img]http://bbs.instrument.com.cn//images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=194233]奶制品中蛋白质测定不确定度分析.doc[/url][color=#DC143C][size=4][font=黑体]应疯子哥的要求,把公式及图片贴上来,在7楼-10楼有版主ROGERSW的完整佳作。[/font][/size][/color]

  • 食品中蛋白质测量不确定度评定

    22.1蛋白质测定的原理测定样品中粗蛋白质含量,首先应该按照标准方法的规定,称取一定量样品按照规定的消化方法进行消化,使样品中的有机态氮在浓硫酸加热作用下转化为无机态的铵盐消化溶液。通过将消化溶液置于蒸馏装置中加碱蒸馏后使氨全部逸出,逸出的游离氨被硼酸澄澈直接吸收后以盐酸标准滴定溶液滴定至终点并定量计算。根据滴定手段的不同又不可分成两种方式:带有自动滴定装置的蛋白质测定仪对接收溶液自动滴定;人工对接收溶液进行滴定。22.2蛋白质测定中的测量不确定度对粗蛋白质测定过程进行测量不确定度的评估,首先必须对盐酸标准滴定溶液标定过程进行评估,计算并得出标定过程中的相对标准不确定度。其次,根据滴定方式的不同对样品测定过程中的测量不确定度进行评估,最终将上述两个过程的不确定度分量进行合成。22.3盐酸标准滴定溶液标定过程中测量不确定度的评估a.计算公式和数学模型假如标定0.5mo1/L盐酸标准滴定澄澈,根据计算公式,盐酸标准滴定溶液浓度c(HCl)为:式中:0.0530系1.00mL盐酸标准滴定溶液(浓度1mo1/L)相当型为: b.数学模型中各分量相对标准不确定度的评估1Na2CO3的摩尔质量M(Na2CO3)的不确定度uIUPAC于1997年发布的元素相对原子质量见表22——1。表22——1元素相对原子质量扩展不确定度标准不确定度Na22.989 7700.000 0020.000 001C12.0110.0010.000 5O15.999 40.000 .3[font=Times New Ro

  • 蛋白质质谱分析

    PS1利用基质辅助激光解吸电离-飞行时间(MALDI-TOF)技术来表征生物分子。样品溶于固定的底物中形成晶体,用激光脉冲使其离子化,离子被加速后通过飞行管时分离,所有离子均可被检测。系统包括三个组成部件:样品点样制备工作站(SymBiot 1)、生物质谱工作站(Voyager-DE PRO)和自动化分析软件(AutoMS-Fit)。SymBiot1 是一个自动样品处理系统,支持亚微升级微量点样,具有快速省时、重现性好的特点;Voyager-DE PRO是为蛋白质组研究专门设计的自动飞行时间质谱分析系统,配有AB公司之专利—延迟检测技术,具有高分辨率、质荷比宽等特点;AutoMS软件可以批处理方式或实时动态方式检索Protein Prospector蛋白数据库或您指定的蛋白数据库,查询参数可以任意设定,检索结果以Microsoft Access格式分类编号及储存。 PS 1技术平台建立伊始便受到了许多蛋白质课题研究组的关注。中国科学院上海生物化学研究所戚正武院士课题组从猪肝中提取某一活性蛋白组分,该组分理化性质不清楚,天然含量十分低,并无相关文献报道。用HPLC分离以后对活性组分的成分不能确定。上海基康生物技术有限公司运用PS 1系统对HPLC分离后的活性组分作了质谱分析,仅在一个工作日内就精确确定该组分由分子量极为相近的几种蛋白质构成,分子量精确度达到10 ppm。后经HPLC再次细分(洗脱梯度增加了2.5倍),证实了质谱的结论。此活性组分曾滤过1kD分子筛,基康的质谱数据纠正了研究人员过去对该活性组分分子量的误判,为研究人员明确实验方向、优化实验步骤提供了强有力的依据。 PS1除了可以进行生物大分子的精确分子量测定,还可用于蛋白的肽指纹图谱分析(peptide mass fingerprint,PMF),提供相关生物信息学服务,并且还可以利用源后衰变(Post Source Decay,PSD)技术来获得样品的MS/MS数据,以得到一级结构信息。PSD方法通常增加了激发激光的功率,使其超过产生一般肽指纹谱图所需功率的阈值,过剩的能量使前体离子在源内离子化之后发生裂解,产生一系列碎片离子,在反射器的作用下,最终可以得到一张连续的碎片离子图谱。经特定的软件分析后,即可在数据库中检索到肽段的氨基酸序列。利用PSD分析技术,还可以对磷酸化,糖基化等翻译后修饰进行定位分析,同样也可以鉴定产生翻译后修饰肽段的蛋白质。Neville et al.(1997)将这一方法成功的用于磷酸肽的序列分析。作为重要的蛋白质鉴定手段之一,PS1的精确度可以达到10 ppm,灵敏度为fmol,分子量检测范围可达到500 kDa,每天可自动分析40-100个样品,适用于大规模“蛋白质组学”研究。

蛋白质不确定度分析相关的资料

蛋白质不确定度分析相关的资讯

  • 人工智能成功预测蛋白质相互作用 确定100多个新蛋白质复合物
    美国科学家主导的国际科研团队在最新一期《科学》杂志撰文指出,他们利用人工智能和进化分析,绘制出了真核生物的蛋白质之间相互作用的3D模型,首次确定了100多个可能的蛋白质复合物,并为700多个蛋白质复合物提供了结构模型,深入研究蛋白质相互作用有望催生新的药物。  研究负责人之一、美国西南大学人类发育与发展中心助理教授丛前(音译)称,研究结果代表了结构生物学新时代的重大进步。  丛前解释说,蛋白质通常成对或成组工作,形成复合物,以完成生物体存活所需的任务。虽然科学家已经对其中一些相互作用开展了深入研究,但许多仍是未解之谜。了解蛋白质之间所有的相互作用将揭示生物学的许多基本方面,并为新药研发提供参考。  但半个世纪以来,鉴于许多蛋白质结构的不确定性,科学家们很难了解这些相互作用。2020年和2021年,深度思维公司和华盛顿大学戴维贝克实验室独立发布了两种人工智能技术“阿尔法折叠”和RoseTTAFold,它们使用不同的策略预测蛋白质结构。  在最新研究中,丛前等人通过对许多酵母蛋白复合物建模,扩展了人工智能结构预测工具箱。为了找到可能相互作用的蛋白质,科学家们首先搜索相关真菌的基因组,寻找发生突变的基因,然后使用上述两种人工智能技术来确定这些蛋白质是否可以3D结构结合在一起。  他们确定了1505种可能的蛋白质复合物,其中699个结构已被表征,验证了其方法的实用性;另外700个复合物目前获得的数据有限,剩下106个从未被研究过。为更好地理解这些很少被描述或未知的复合物,团队研究了类似的蛋白质,并根据新发现的蛋白质与此前已知蛋白质的相互作用,确定了新发现蛋白质的作用。
  • 2015技术展望之蛋白质分析
    蛋白质是细胞功能的执行者,是一切生命的物质基础。然而人们对蛋白质和蛋白质组的了解还远远不够,蛋白质分析被认为是一项复杂而艰巨的任务。2015年是蛋白质领域的关键一年,有可能决定着蛋白质分析的未来走向。   1.人类蛋白互作图谱取得更大的成果。最近Cell杂志上发表了一项大规模的蛋白质研究,科学家们鉴定了一万四千个蛋白相互作用,获得了迄今为止最大规模的人类蛋白互作图谱。他们计划将在未来六年中逐步完成人类基因组的全部互作图谱。这种图谱可以帮助人们更全面的了解人类互作组,进一步理解疾病的发生和发展。对新发现的蛋白互作进行研究,能够揭示基因型和表型之间的真实关系。我们期待在2015年看到这类研究结出更多硕果。   2.人造环境为蛋白质分析提供便利。今年八月Roy Bar-Ziv及其同事在Science杂志上发表文章,展示了以微流体DNA隔室为基础的人造细胞。这些二维的人造细胞可以实现预编程的蛋白合成、代谢和通讯,是一种非常灵活的蛋白合成系统。研究显示,人造细胞能够更好的模拟蛋白表达的动态模式,维持蛋白信号的梯度。人们可以利用这一系统来评估蛋白质的活性和相互作用,这种方法将对蛋白质功能研究产生重要的影响。   3. 一个时代的终结&mdash &mdash 蛋白质结构计划PSI收官。PSI项目在运行了十五年后,正逐步走向自己的终点。PSI项目已经确定了六千三百多个蛋白结构,为蛋白质分析做出了重要的贡献。那些为PSI而建的高通量蛋白生产中心可能会继续维持下去,给其他结构生物学实验室使用。结构生物学家们也可能启动与数据处理有关的中、大型项目,作为PSI的延续。   不管怎样,对于蛋白质领域来说明年都是特别的一年,研究者们需要决定PSI之后的前进方向。我们希望未来能有更多类似人类互作组图谱的大型项目,增进我们对蛋白质结构和功能的理解。
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙 沃特世科技(上海)有限公司实验中心 氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC® HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。 氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC® 系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT® 质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。 沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。 参考文献 (1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875 (2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61 (3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloproteasecleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554 (4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933. (5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27 (6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217 (7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22. (8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506 (9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167 (10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820 (11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414 (12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40 (13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52. (14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogatingviral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132 (15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem. 2011, 3, 172-177 (16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制