相变仪原理

仪器信息网相变仪原理专题为您提供2024年最新相变仪原理价格报价、厂家品牌的相关信息, 包括相变仪原理参数、型号等,不管是国产,还是进口品牌的相变仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合相变仪原理相关的耗材配件、试剂标物,还有相变仪原理相关的最新资讯、资料,以及相变仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

相变仪原理相关的仪器

  • 微胶囊相变材料原位物理相态分析仪在能源效率和环境可持续性日益受到重视的今天,微胶囊相变材料(Microencapsulated Phase Change Materials, MPCMs)正成为智能温控系统的关键技术。这些材料能够在吸收或释放热量时改变其相态,从而维持恒定的温度,为建筑节能、电子设备冷却和个人热管理提供了创新的解决方案。在材料科学和化学工程领域,对微胶囊相变材料的物理相态进行精确分析是至关重要的。随着技术的进步,低场核磁共振(LF-NMR)技术已成为研究和分析这类材料的有力工具。本文将探讨低场核磁共振微胶囊相变材料原位物理相态分析仪的工作原理、技术优势以及其不同的应用。微胶囊相变材料原位物理相态分析仪微胶囊相变材料原位物理相态分析仪工作原理低场核磁共振微胶囊相变材料原位物理相态分析仪利用核磁共振原理,通过测量样品中的氢原子核在低强度磁场中的共振频率,来分析材料的物理状态。这种非破坏性检测方法可以实时监测材料的相变过程,提供关于材料结构和动力学特性的详细信息。微胶囊相变材料原位物理相态分析仪技术优势与传统的分析方法相比,低场核磁共振技术具有以下优势:&bull 非破坏性检测:无需破坏样品即可进行分析,适合贵重或不可再生材料的研究。&bull 高灵敏度:能够检测到微小的物理变化,为材料的微观结构研究提供精确数据。&bull 实时监测:可以连续跟踪材料的相变过程,提供动态信息。&bull 操作简便:用户界面友好,易于操作和数据分析。微胶囊相变材料原位物理相态分析仪基本参数&bull 产品型号:VTMR20-010V、VTMR20-010V-I&bull 磁体类型:永磁体&bull 磁场强度:0.5±0.05T&bull 样品控温范围:室温到130℃(标配)&bull 高配变温模块:-100℃到200℃(选配)&bull 成像功能(选配)微胶囊相变材料原位物理相态分析仪产品应用定量检测&bull 软硬段比例&bull 玻璃态转变温度&bull 活化能&bull 水分相态过程控制&bull 相变过程性能研究&bull 颗粒-聚合物相容性&bull 颗粒表面改性程度&bull 材料吸附性能评价&bull 聚合物竞争性吸附&bull 亲疏水性表征&bull 分散性能成像观测&bull 相变均一性研究应用案例
    留言咨询
  • L78 RITA 热膨胀变形/相变测试仪是特别适用于TTT、CHT和CCT曲线的测定。特殊感应炉体使加热和冷却速度超过2500 °C/s。该系统符合美国ASTM A1033标准 。概述: 操作的基本原理:钢材在加热和冷却过程中尺寸发生变化,热膨胀由温度变化和相变两个因素产生。测试过程中,灵敏的高速淬火膨胀仪设备用于检测和测量热循环中尺寸随时间和温度函数的变化。所产生的数据被转换为热循环中特定时间和温度下离散的应变值。应变作为时间或温度,或两者的函数,由此可以确定一个或多个相变的开始和结束。L78 RITA L78 RITA 热膨胀变形/相变测试仪的主要优势:该仪器可在真空条件下,惰性、氧化、还原气氛中进行测量,温度范围从150 ℃(低温)到1000 ℃,或室温到1600℃。独特的加热和冷却装置能够快速的控制加热和冷却,速度可达2500℃ /秒。通过可选的基座可以分析非金属样品。这种特殊的淬火/热膨胀相变仪是专为连续冷却/加热的CHT、CCT图以及等温线TTT-图的绘制设计。 所有关键参数,如加热和冷却速度、气体控制和安全功能由软件控制。32位Linseis TA- WIN软件可独立在Microsoft© 操作系统上运行。所有的程序(生成CHT / CCT / TTT图)和特殊应用是通过其自带的软件包实现。当然,可以导出ASCII码格式以及输出图形。 在加热过程中,钢材晶体发生铁素体,珠光体,贝氏体,马氏体或这些成分的组合变为奥氏体的相变。在冷却过程中,从奥氏体转变为铁素体,珠光体,贝氏体,马氏体或它们的组合。该L78 RITA淬火/热膨胀相变仪是专门设计用来测量这些苛刻的迅速膨胀。高速数据采集和控制单元,独特的气淬装置和高精度的温度测量装置该仪器的突出特点。型号L78 Rita/Q 淬冷L78 Rita/D 形变炉体电磁炉电磁炉温度范围 -150°C —— 1600°C-150°C —— 1600°CRT —— 1000°CRT —— 1000°CRT —— 1600°CRT —— 1600°C样品支架 熔融石英, Al2O3熔融石英, Al2O3样品尺寸实心/空心样品 实心样品直径约4 mm 约 5 mm长度约10 mm 约10 mm 加热速率≤2500 K/s ≤ 400 K/s 冷却速率≤ 2500 K/s ≤ 400 K/s 数据采集速率≤1000 次/秒≤1000次/秒形变力 -25 kN形变速率-0.01 - 125 mm/s数据采集间隔-60 ms气氛 惰性、氧化性、还原性、真空惰性、氧化性、还原性、真空 电源要求230VAC, 16A, 50..60Hz230VAC, 16A, 50..60Hz选项低温冷却 (≤150°C) 低温冷却 (≤150°C) *价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询。我们定会将竭尽全力为您制定完善的解决方案。
    留言咨询
  • 普发特相变分析仪 400-860-5168转6000
    普发特PERFECT PTM-1700全自动相变特性测试仪是一款对材料相变特性进行测量与分析的精密光电仪器,可通过自动测量得到材料相变过程中的热滞回线、相变温度、热滞宽度、相变幅度等特性参数,并可以根据温变曲线直观定性观察比较材料的相变潜热和热力学分析。先进的模块化设计理念、精密的光探针技术、高端的进口芯片、便捷的自动测试分析软件、以及时尚的外观,使该仪器成为材料相变和结晶分析研究的不二选择。中国科学院广州能源研究所、深圳大学、西安化学所、宁波甬安光科等单位为典型用户。
    留言咨询

相变仪原理相关的方案

相变仪原理相关的论坛

  • 【原创】三相变压器使用及事项介绍

    三相变压器,是指由3个相同容量单相变压器共同构成。主要被应用于铁路、学校、工矿企业、邮电、纺织、医院、宾馆等部门的电子计算机、精密仪器、实验装置、电梯、进口设备及生产流水线的交流稳压电源。同时还适用于波动幅度大的低压配电、电源电压低等。三相变压器的工作原理与单相变压器工作原理一样,都是通过电磁感应。在变压器接法与联结组,单相变压器在联成三相组接法时,不能采用YNy0接法的三相组。三相壳式变压器也不能采用YNy0接法;不同联结组的变压器并联运行时,一般的规定是联结组别标号必须相同。三相变压器的使用非常广泛。

  • 相变储能材料热物性的三种主流测试方法

    相变储能材料热物性的三种主流测试方法

    [color=#993399]摘要:本文介绍了国内外相变储能材料热物性的三种主流测试方法,对比分析了差示扫描量热法(DSC)、参比温度曲线法(T-History)和动态热流计法(DHFM)三种主流相变材料热物性测试方法的特点,简述了各方法在相变材料热分析测试时的注意事项,为相变储能材料研究、生产和使用中选择合适的热物性测试方法提供了参考。[/color][color=#993399]关键词:相变材料,储能,差示扫描量热法,参比温度法,动态热流计法[/color][hr/] [b][color=#993399]1. 引言[/color][/b]相变储能材料是利用相变过程中吸收或释放的热量来进行潜热储能的物质,其研究和开发经历了漫长的过程。与显热储能材料相比,相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点,因而可以应用于很多领域,如太阳能利用、废热回收、智能空调建筑物、调温调湿、工程保温材料、医疗保健、纺织行业(保温衣服)、日常生活、航天与卫星等精密仪器的恒温等方面。相变储能材料的热物性是衡量其工作性能的标准,也是其应用系统设计及性能评估的依据。相变储能材料的热物性包括相变温度、相变潜热、热导率、比热、循环热稳定性、膨胀系数、储热系数等,而相变温度、潜热及热导率是衡量相变储能材料性能最关键的几个参数,因此对相变储能材料的热物性测试一般都围绕这几个参数进行。相变储能材料热物性测试方法众多,但常用的主要有三种方法,本文将介绍这三种测试方法及其应用。[b][color=#993399]2. 差示扫描量热法(DSC Method)[/color][/b]差示扫描量热法是在程序控制温度下测量输入到物质(试样)和参比物的功率差与温度的关系的一种技术,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度、熔融温度、结晶温度、比热容及热焓等。根据测量方法的不同又分为两种类型:功率补偿型和热流型,两种类型的测试仪器结构如图2-1所示。[align=center] [img=差示扫描量热法测试结构示意图,690,536]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252152_02_3384_3.png[/img][/align][align=center][color=#cc33cc][b]图2-1 差示扫描量热法测量原理图[/b][/color][/align]功率补偿型DSC:通过功率补偿使试样和参比物始终保持相同的温度,测量为满足此条件样品和参比物两端所需的能量差。热流型DSC:在给定样品和参比物相同的功率下,测量样品和参比物两端的温差,根据热流方程将温差换算成热量差作为信号输出。差示扫描量热仪是比较成熟的设备,其使用温度范围广,分辨能力和灵敏度高,数据采集和处理集中,能够通过电脑直接得到DSC曲线。差示扫描量热仪测试过程中的主要影响因素有:(1)实验条件:包括升温速率的大小对试样内部温度分布均匀性的影响,检测室气体成分和压力对试样蓄放热的影响,天平的测量精度对试样选取量的影响等。(2)试样特性:样品量必须与突然释放大量能量的潜力相一致,故应尽可能使用小数量的材料,通常为1~50mg,样品在几何形状、粒度大小和纯度等方面应具有代表性。(3)参考物质:参考物质在试验温度范围内不能发生任何热转变。典型的参考物质包括煅烧氧化铝、玻璃珠、硅油或空容器。(4)其他因素:如仪器的校正等。差示扫描量热仪测试过程中的注意事项有:(1)试样的选取:由于DSC测试需要的样品量很少,在几毫克到几十毫克,因此,试样的选取关乎实际应用中大块材料的热物性,应尽量选取粒度和纯度具有代表性的试样。为减小天平测质量时产生的相对误差,应尽量多的取样。(2)温度变化速率的控制:升温速率不宜过高,过高的升温速率会导致试样内部温度分布不均匀,易产生过热现象。[b][color=#993399]3. 参比温度法(T-History Method)[/color][/b]参比温度法是一种能够测定多组相变材料凝固点、比热、潜热、热导率和热扩散系数的方法,其基本原理是将相变材料样品和参考物质分别放在相同规格的试管内,并同时置于某一设定温度的恒温容器内进行加热,直至所有材料的温度都达到这一设定温度。然后将它们突然暴露在某一较低设定温度环境中进行冷却,则得到样品和参考材料的温降曲线,通过两者的降温曲线建立热力学方程得到材料的热物性。在各种热物性测试方法中,普遍现象的是测试装置越简单所对应的测试数学模型就越复杂,需要考虑的边界条件和假设就越多。参比温度法中所进行的假定为:(1)相变过程近似为准稳态过程。(2)在固液相分界面上液相相变材料通过对流传给固相相变材料的热量忽略不计。(3)近似为一维径向传热试管的径长比要远小于1。参比温度法测试仪器结构如图3-1所示。[align=center] [img=02.参比温度法测试仪器结构示意图,690,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252153_01_3384_3.png[/img][/align][align=center][b][color=#cc33cc]图3-1 参比温度法测试仪器结构示意图[/color][/b][/align]参比温度法是一种近十几年来发展起来的热分析技术,测试仪器要远比差示扫描量热仪简单,操作更简便,无需差示扫描量热仪那样的复杂培训和操作。一般采用用普通玻璃或石英试管装样品,使用方便且相变过程易被观察到,并能同时进行多样品的同时测量,样品个数取决于恒温容器的大小和数据采集系统的通道数。参比温度法测试过程中的主要影响因素有:(1)参比温度法中样品的用量为5~50g,为使样品在恒温容器内升温时受热均匀,需将样品粉碎,这破坏材料本身的结构,不能准确反映材料自身的热物性,因此会产生一定误差。(2)加热试管时,由于试管内材料分布不均等原因会导致试样内部温度不均匀,对实验结果的准确性会有影响。升温和降温过程的快慢影响试样的蓄放热,对实验结果产生一定的影响。参比温度法测试过程中的注意事项有:(1)测试条件:要求比奥数<0.1时,适用集总热容法建立热力学方程,故在测试之前应该对测试条件是否满足要求进行估算。(2)温度的选择:为了获得良好的降温曲线,加热温度要高于相变温度,冷却温度要低于相变温度。[b][color=#993399]4. 动态热流计法(DHFM Method)[/color][/b]动态热流计法是一种采用热流计测试装置来对试样热流进行动态测量的瞬态测试方法,首先测量装置中的两块加热板处于一个相同的、低于或高于样品相变温度的稳定温度,然后控制两块加热板步进升温或降温到一系列相同温度点并恒定,并实时测定每个步进温度变化过程中热流密度变化,根据热流密度变化测得每个温度点下的的热焓。动态热流计法是最近几年发展起来的新方法,此方法特别适合用于测量各种固态相变复合材料和制品、结合相变材料的混合材料以及相变材料颗粒在整个相变过程中的热物性测试评价。动态热流计法测试仪器结构如图4-1所示。[align=center] [img=03.动态热流计法测试仪器结构示意图,690,229]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252154_01_3384_3.png[/img][/align][align=center][b][color=#cc33cc]图4-1 动态热流计法测试仪器结构示意图[/color][/b][/align]动态热流计法同样是种多参数热物性瞬态测试方法,通过热流的瞬态变化过程可以测量相变材料的显热和潜热,由一块相变材料样品可以测量固相和液相比热、相变温度和相变焓,由此可以确定相变材料的蓄热能力。另外通过试验过程的控制,可以在稳态条件下测量相变材料相变区间前后的热导率动态热流计法测试过程中的主要影响因素有:(1)伴随着过冷现象,测试结果会是不太寻常的热涵-温度曲线。固液和固固相变的初始温度常取决于加热和冷却速率、相变材料纯度以及相变材料是不是非晶态。(2)相变材料及其复合材料大多表面粗糙,这会给测量带来很大的接触热阻,可以采用弹性薄片来减小接触热阻,这些弹性薄片热焓会带入测量,需进行校准修正以保证测量精度。(3)对于热导率较高的相变材料样品,样品边缘热损会给测量带来一定影响,要设法保证测量区域内尽可能为一维热流。动态热流计法测试过程中的注意事项有:(1)测试温度区间的设定:相变材料一般并未有精确的熔化温度或凝固温度点,因此必须大至的相变温度区间来对测试温度范围以及温度变化步长进行设定,既要保证测量精度,又要兼顾测试效率。(2)测试条件:在测试过程中要求测量装置在一系列温度点达到稳态,即在稳态条件下样品的整体温度均匀且相同,没有热流进出样品,在测试中要确保稳态条件形成后才能进入下一个温度点的测试过程。(3)热流计的选择:要选择合适的热流计使得整个测试过程中的热流都必须可测,热流传感器既要保证测量精度,又有具有较大的测量范围,避免出现热流值超出热流计量程的现象。(4)校准:动态热流计法测试中要保证热流计经过校准和测量精度,而且需要采用规定的校准程序来确定相应的修正因子。[b][color=#993399]5. 测量方法比较[/color][/b]通过对以上三种测量方法的原理分析、测试仪器的比较以及其各自的特点和适用范围选择,总结三种测试方法在相变材料热物性测量中的优缺点对比如表5-1所示。[align=center][b][color=#cc33cc]表 5 1 三种相变材料测试方法优缺点比较[/color][/b][/align][align=center][b][color=#993399][img=热分析三种主流测试方法对比,690,447]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252154_02_3384_3.png[/img][/color][/b][/align][b][color=#993399]6. 结论[/color][/b]通过对相变材料热物性当前三种主流测试方法的分析,探讨了各个测试方法的适用性和优缺点。针对相变储能材料热物性考核评价,对如何选择合理的测试方法所需关注的内容进行了总结。(1)三种测试方法各有优点和不足。DSC方法技术成熟度高,测量精度高,测量结果准确,但所用试样量偏少,导致样品热物性无法完全反映实际应用的大块材料的热物性。参比温度法的实验装置和操作过程都比较简单,试验过程易于观察,样品用量也较大,但样品结构不完整,受热可能不均匀。动态热流计法技术成熟度高,可直接对大块相变材料热物性进行测量,但测试周期较长。因此在实际应用中可以结合三种方法的使用,对比试验结果,以得到合理的测试结论。(2)对于粒度均匀,结构和组成单一,少量试样能够代表总体样品性质的材料宜选用测量精度高的DSC方法测量。对于松散材料,DSC测试取样无法具有代表性时,可以选用参比温度法测量其热物性。对于有完整性和代表性要求以及需要了解热导率性能的相变材料,可以选用动态热流计法。(3)这三种测试方法经过了不断的工程应用和实践,已经成为目前国际上的主流测试方法,通过这三种测试方法完全覆盖了从微量级样品到大尺寸产品级的相变储能材料热物性测试评价。这三种测试方法分别是相变储能材料不同生产阶段内的标准性测试方法,在具体应用中可根据实际情况进行合理的选择。[b][color=#993399]7. 参考文献[/color][/b] (1) ASTM E793 - 06(2012) Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry (2)Yinping, Zhang, and Jiang Yi. "A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials." Measurement Science and Technology 10.3 (1999): 201. (3)ASTM C1784-14 Standard Test Method for Using a Heat Flow Meter Apparatus for Measuring Thermal Storage Properties of Phase Change Materials and Products

  • 欧洲纺织品技术委员会颁布相变材料纺织品热性能测试标准

    [img=,600,164]http://ng1.17img.cn/bbsfiles/images/2018/01/201801120826429490_5424_3384_3.gif!w600x164.jpg[/img] 相变材料是物质发生相变时利用相变潜热来吸收和放出能量的化学材料,其作用原理是当外界温度升高时,相变物质吸收并储存热量,自身则由固态向液态转化,固态完全转化为液态后储热结束;当外界温度降低时,由液态转化为固态,释放相变物质所储存的热量,从而实现温度自动调节的功能,提供舒适的温度环境。 相变材料主要应用于航空航天、冰箱和空调、建筑建材等领域的热量存储方面。随着技术的发展和纺织品功能的提高,相变材料也逐渐出现在纺织产业中,主要用于缓冲外界温度变化,提高使用者对外部环境温度的适应性。 为了准确测试评价含有相变材料纺织品的热性能,以及规范相应的测试方法,2016年3月9日,欧洲标准化委员会(CEN)纺织品技术委员会(TC 248)发布了《相变材料纺织品的储热和放热能力测试》(EN 16806-1:2016)。此标准主要用以测试含有相变材料(PCM)的纺织纤维、纱线和面料等纺织材料的储热性能,同时该标准还可以检测纯PCM材料或者PCM微胶囊材料的储热性能。此标准目前也是国际上首个有关相变材料纺织品热性能测试方法的标准测试方法。 该标准的第二部分EN 16806-2适用于含相变材料的纺织材料的导热性能,第三部分EN 16806-3则适用于使用者和含有相变材料纺织品之间的传热性能,目前该标准的后两部分正在制定中。 《相变材料纺织品的储热和放热能力测试》(EN 16806-1:2016)的核心内容是规定了采用差示扫描量热法进行测量,差示扫描量热法则完全参考了以下两个ISO标准:[quote] ISO 11357-1:塑料 — 差示扫描量热仪(DSC)— 第1部分:基本原理 ISO 11357-3:塑料 — 差示扫描量热仪(DSC)— 第3部分:熔融和结晶过程中的温度和热焓测定[/quote] 在EN 16806-1:2016中,大量篇幅介绍了针对相变材料纺织品所进行的样品准备。在DSC测量中,则很莫名其妙的规定了升降温速率为5℃/min。已经有文献报道对相变材料热性能测试时,DSC的升降温速率应越小越好,常规的升降温速率为0.05℃/min。较大的升降温速率会对测量结果产品非常大的误差,[img=,640,20]http://ng1.17img.cn/bbsfiles/images/2018/01/201801120828045440_7198_3384_3.gif!w640x20.jpg[/img]

相变仪原理相关的耗材

  • 化工原理实验仿真软件CES (以北化装置为原型)
    流程简述: 化工原理是化工、生物、食品、制药等专业必修课。化工原理实验是大部分学校必做的实验。因此化工原理实验被列为重点实验内容之一。东方仿真使用自主开发平台,利用动态数学模型实时模拟真实实验现象和过程,通过3D仿真实验装置交互式操作,产生和真实实验一致的实验现象和结果。每位学生都能亲自动手做实验,观察实验现象,记录实验数据,验证公式、原理定理。另外,该系统还配备开放的标准实验思考题生成器。该系统分为教师站和学生站。通过网络,教师站上的监控和管理程序方便地对学生站运行的实验仿真软件进行实时的监控和管理。本仿真软件以北京化工大学实验装置为主,兼顾华东理工大学的实验装置。包括了所有典型的化工原理实验装置。培训工艺:1.1 、离心泵特性曲线测定1.2 、流量计的认识和校核1.3 、流体阻力系数测定1.4 、传热(水-蒸汽)实验1.5 、传热(空气-蒸汽)实验1.6 、精馏(乙醇-水)实验1.7 、精馏(乙醇-丙醇)实验1.8 、吸收(氨-水)实验一1.9 、吸收(氨-水)实验二1.10 、丙酮吸收实验1.11 、干燥实验1.12 、板框过滤实验建议配置:学员站:CPU:奔腾E2140或更强的CPU(或AMD Athlon X2 4000)内存:1G以上显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows XP SP2/SP3教师站:CPU:奔腾E5200或更强的CPU(或AMD Athlon X2 5000)内存:1G以上(推荐2G以上)显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows Server 2003 SP2网络要求:网络必须稳定通畅(统一式激活)
  • 食品工程原理实验仿真软件FES
    流程简述: “食品工程原理仿真实验”,就是利用动态数学模型实时模拟真实实验现象和过程,通过对仿真3D实验装置进行互动操作,产生和真实实验一致的结果。从而达到每个学生都能够一对一地亲自动手做实验,观察实验现象,验证公式、原理定理的目的。可以通过网络,使教师站上运行的监控程序与管理程序能方便地对下位机的学员站上运行实验仿真软件进行监控与管理,同时配有标准的实验思考题生成器,开放接口。培训工艺:1.1、流体粘度测定实验1.2、柏努利方程实验 1.3、雷诺实验 1.4、流体阻力实验 1.5、离心泵性能实验 1.6、过滤实验 1.7、传热实验 1.8、洞道干燥实验 1.9、流化床干燥实验 1.10、精馏实验 1.11、气体扩散系数测定实验1.12、液体扩散系数测定实验运行环境要求建议配置:学员站:CPU:奔腾E2140或更强的CPU(或AMD Athlon X2 4000)内存:1G以上显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows XP SP2/SP3教师站:CPU:奔腾E5200或更强的CPU(或AMD Athlon X2 5000)内存:1G以上(推荐2G以上)显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows Server 2003 SP2网络要求:网络必须稳定通畅(统一式激活)
  • it4ip 径迹蚀刻膜 (聚碳酸酯膜)的原理和特点
    大连力迪流体控制技术有限公司代理比利时it4ip 径迹蚀刻膜 核孔膜,近30年进口工业品经验,常备大量现货库存,支持选型,在中国设有:上海,北京,广州,南京,成都,沈阳,长春办事处,可为您提供维修服务。售后服务工程师,可及时到现场给客户提供安装调试指导服务。一、it4ip 公司介绍比利时it4ip 成立于2006年,起源于1980年代在UCLouvain(比利时)发展起来的一家以技术为基础的私营公司,专注于开发、生产和提供径迹蚀刻过滤膜,it4ip利用径迹蚀刻技术(track-etching tenology)制造具有多种不同应用的微米和纳米多孔径迹蚀刻膜,用于石棉纤维检测、血液过滤、癌细胞筛选或微米和纳米体的合成等。It4ip 径迹蚀刻膜的特点是具有精确的过滤阈值,从10nm 到几十微米不等,具有很小的厚度和特别的表明特性。It4ip的生产和转换能力为每年150000平方米,可根据客户的要求,以卷、片、盘或其他形式提供各种产品以及OEM解决方案。 二、it4ip 径迹蚀刻膜的原理It4ip径迹蚀刻膜的原理是用高能粒子辐照聚合物薄膜,形成潜在径迹,然后通过特定的化学处理将这些径迹转化为规则的孔隙。该技术在洁净室中实施,适用于以几百米长的轧辊形式连续生产。 It4ip径迹蚀刻膜的制造包括两个步骤:即聚合物薄膜的离子光束辐照和辐照后聚合物薄膜的化学蚀刻。化学蚀刻通常在浓度和温度控制良好的碱性水溶液中进行。其主要特征是径迹蚀刻速率(Vt)和体蚀刻速率(Vg)。为了获得具有圆柱形孔的均质膜过滤器,需要高比率的Vt/Vg。径迹密度或所需孔密度由离子束的强度和薄膜的速度所决定。孔径由化学蚀刻条件决定,因此径迹蚀刻膜可以进行孔径和空密度的选择。先进的径迹蚀刻技术可应用于聚酰亚胺(PI)、聚酯(PET)和聚碳酸酯(PC)。其中聚酰亚胺的径迹蚀刻是it4ip 独有的技术。三、it4ip 径迹蚀刻膜的产品介绍It4ip轨道蚀刻过滤膜是采用优质原材料和轨道蚀刻技术制造,材料有聚碳酸酯(PC)、聚酯(PET)或聚酰亚胺(PI)薄膜。It4ip轨道蚀刻过滤膜具有均匀和精确的孔径,窄的截止孔,宽的空隙率,厚度从6μm到50μm不等。作为筛选过滤膜,其光滑平坦的表面使其适合于对残留颗粒进行精确分析的应用。It4ip具有大的制造能力, 可生产50厘米宽的卷轴(宽达50厘米,长400米),也可根据客户的要求,将窄的卷轴(宽达10毫米)转换为各种格式,例如薄片、正方形、圆盘或任何其他尺寸的样品。it4ip 径迹蚀刻膜的产品特点:孔径从0.01μm到30μm,宽的孔隙率,孔隙率达50%6-50μm的厚度,采用高质量的原材料,聚酰亚胺PI,聚碳酸酯PC 和聚酯PET孔排列及孔长度的多种选择,直的或者多角度的白色、黑色、透明等多种颜色和表面涂层大规模生产和转化能力,多形状,宽幅的,窄幅的,片状、正方的,盘状等低萃取性、低蛋白结合、可忽略吸附和吸收、生物相容性、优异的耐化学性和热稳定性It4ip 提供的径迹蚀刻膜产品包括ipPORE™ 径迹蚀刻过滤膜,ipBLACK™ 径迹蚀刻过滤膜,ipCELLCULTURE™ 径迹蚀刻过滤膜,材料有有聚碳酸酯(PC)和聚酯(PET)两种,孔径和厚度可选,其中ipCELLCULTURE™ 径迹蚀刻过滤膜经过专有的表面处理方法进行处理,以促进多种细胞系的生长和分化,具有优异的细胞粘附性,用于细胞培养及信号传导等研究。 it4ip轨道蚀刻膜主要产品:ipPORETM 轨道蚀刻膜过滤器、ipBLACKTM 轨道蚀刻膜过滤器、ipCELL CULTURETM轨道蚀刻膜过滤器、it4ip核孔膜、it4ip轨道蚀刻膜过滤器、it4ip径迹蚀刻膜过滤器、it4ip聚碳酸酯膜过滤器、it4ip PET膜过滤器、it4ip聚酰亚胺膜过滤器等

相变仪原理相关的资料

相变仪原理相关的资讯

  • 无损测试材料相变温度的利器——相变温度分析仪
    p   武汉嘉仪通科技有限公司作为一家以薄膜物性检测为战略定位的高科技企业,一直专注于薄膜材料物理性能分析与检测仪器的自主研发,拥有一系列自主研发的热学相关分析仪器。其中,相变温度分析仪是嘉仪通热学分析仪器中非常有代表性的产品之一。 br/ & nbsp & nbsp 相变温度分析仪(PCA)是根据材料相变前后光学性质(反射光功率)有较大差异的特性,在程序控温下,使用一束恒定功率的激光照射样品表面,记录反射光功率变化,形成反射光功率与温度变化曲线,从而确定相变温度的一款仪器。可以实现对相变材料进行相变温度的实时测定、新型材料(相变材料、相变储能材料)的稳定性测试及性能优化以及进行新型相变机理(晶化温度的尺寸效应、材料的结晶动力学过程等)的研究等功能。 br/ strong span style=" color: rgb(0, 176, 240) " 为什么选择研发相变温度分析仪? /span /strong br/ /p p   相变材料(PCM-Phase Change Material)是指温度不变的情况下而改变物质状态并能提供潜热的物质。相变材料实际上可作为能量存储器,这种特性在节能、温度控制等领域有着极大的意义。这种非常重要的材料,可广泛应用在航天、服装、制冷设备、军事、通讯、电力、建筑材料等方面。但是在这种材料的科研过程中,理想的相变材料非常难找到,只能选择具有合适相变温度和有较大相变潜力的相变材料,而无损测试材料的相变温度却又是很难办到的。 /p p   嘉仪通正是发现了无损检测材料相变温度的重要性,想要帮助科研人员解决相变温度测试难题,进一步助力相变材料的应用发展,因此我们加大投入力度,从理论研究到工程化测试,不断攻坚克难,采用更加先进的测试方法和更加精密的控制系统,最终历时近6年时间,终于成功研发出了这款可以无损检测材料相变温度的精密仪器。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e832f85f-2f28-4ec9-8c44-f495fd028266.jpg" title=" 相变温度分析仪PCA-1200.png" alt=" 相变温度分析仪PCA-1200.png" width=" 400" height=" 275" border=" 0" vspace=" 0" style=" width: 400px height: 275px " / /p p style=" text-align: center " strong 相变温度分析仪 PCA-1200 /strong /p p strong span style=" color: rgb(0, 176, 240) " 嘉仪通相变温度分析仪具有哪些功能特性? /span /strong /p p style=" text-align: center " strong 全新技术设计 /strong /p p img src=" https://img1.17img.cn/17img/images/201809/uepic/f4dc9b2c-620c-4f33-9da4-2d0dcecca464.jpg" title=" 全新技术设计.png" alt=" 全新技术设计.png" width=" 350" height=" 330" border=" 0" vspace=" 0" style=" float: left width: 350px height: 330px " / br/ span style=" color: rgb(0, 176, 80) " strong br/ 无需基线,曲线趋势分析 /strong /span /p p br/ br/ span style=" color: rgb(0, 176, 80) " strong 无需标样,绝对测算方法 /strong strong /strong /span /p p br/ br/ span style=" color: rgb(0, 176, 80) " strong 无损检测,无需破坏膜层材料结构 /strong strong /strong /span /p p style=" text-align: center " br/ br/ strong 功能特色 /strong /p p · 采用高性能长寿命红外加热管进行加热,核心加热区采用抛物反射面设计,确保对样品进行有效全方位加热。 /p p · 采用PID调节与模糊控制相结合的温控系统,可实现系统的高速跟随控制,可实现最快50℃/s升温速度。 /p p · 以直线滚珠轴承作为组件支撑及运动导向关联件,确保送样的平稳可靠,行程限垫可有效确保导轨的行程范围。 /p p · 压迫式弹针接触端可确保温度传感器的有效接通,同时其弹力可确保设备处于锁紧状态时方可进行加热操作等事宜,避免误操作。 /p p · 组合隔温挡圈能有效形成前后隔离,确保温场均匀。 /p p style=" text-align: center " strong 应用范围 /strong /p p style=" text-align: center " TiN薄膜,GeTe薄膜,ZrO sub 2 /sub 薄膜,掺Ti的ZnSb薄膜,SiC薄膜,显示屏玻璃,形变记忆合金薄膜,NiAl复合薄膜,VO sub 2 /sub 薄膜,PZT铁电材料,MgO/Ni-Mn-Ga薄膜,GST相变存储薄膜,金属Co薄膜,Al sub 2 /sub O3薄膜,等 /p p style=" text-align: center " strong 测试案例 /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 红外材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/b7da2f45-1e2a-4575-ad21-52c91c75b63a.jpg" title=" 四川大学提供的红外材料样品VO2.jpg" alt=" 四川大学提供的红外材料样品VO2.jpg" / /strong /p p style=" text-align: center " strong 图1:VO2不同升温速率12℃/min、15℃/min /strong /p p style=" text-align: center " strong (四川大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 复合材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/fa3ce443-ac01-434e-8bb7-f2fc8e00b90b.jpg" title=" 西南科技大学提供的复合材料样品铝镍合金复合薄膜.jpg" alt=" 西南科技大学提供的复合材料样品铝镍合金复合薄膜.jpg" / /strong /p p style=" text-align: center " strong 图2:铝镍合金复合薄膜 /strong /p p style=" text-align: center " strong (西南科技大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 相变存储材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/f175574c-c528-4a7c-a745-aaf92126f24e.jpg" title=" 中科院微系统所提供的相变存储材料样品.jpg" alt=" 中科院微系统所提供的相变存储材料样品.jpg" / /strong /p p style=" text-align: center " strong 图3:相变存储材料图 /strong /p p style=" text-align: center " strong (中科院微系统所提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 热电薄膜材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/a822a53d-5c63-41c6-a2ea-3237ee56ece0.jpg" title=" 深圳大学提供的热电薄膜材料样品掺Ti的ZnSb.jpg" alt=" 深圳大学提供的热电薄膜材料样品掺Ti的ZnSb.jpg" / /strong /p p style=" text-align: center " strong 图4:热电转换薄膜材料(掺Ti的ZnSb) /strong /p p style=" text-align: center " strong (深圳大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 氧化锆薄膜 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/63e8d2e4-4c04-4112-aa76-10f92a542629.jpg" title=" 清华大学提供的氧化锆薄膜样品.png" alt=" 清华大学提供的氧化锆薄膜样品.png" / /strong /p p style=" text-align: center " strong 图5:ZrO2薄膜 /strong /p p style=" text-align: center " strong (清华大学提供样品) br/ /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e6c00cea-ef7b-4cca-a103-57181b6b0131.jpg" title=" 氧化锆薄膜与XRD对比图.jpg" alt=" 氧化锆薄膜与XRD对比图.jpg" / /p p style=" text-align: center " strong 氧化锆薄膜与XRD对比图 /strong br/ /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 高温陶瓷材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/ffba8968-5aa8-4340-927b-bad7ff25421f.jpg" title=" 海南大学提供的高温陶瓷材料样品TiN薄膜硅基底.jpg" alt=" 海南大学提供的高温陶瓷材料样品TiN薄膜硅基底.jpg" / /strong /p p style=" text-align: center " strong 图6:高温陶瓷材料(TiN薄膜硅基底) /strong /p p style=" text-align: center " strong (海南大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 硬质合金薄膜材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/9b945867-70c2-4548-adcc-cb5a2dbc1488.jpg" title=" 武汉大学提供的硬质合金薄膜材料样品切削刀具.png" alt=" 武汉大学提供的硬质合金薄膜材料样品切削刀具.png" / /strong /p p style=" text-align: center " strong 图7:切削刀具相变监测曲线 /strong /p p style=" text-align: center " strong (武汉大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong SiC薄膜 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/05df342d-1488-40b8-bf7c-8cf2f1dbd1d5.jpg" title=" 中国电子科技集团第五十五研究所提供的SiC薄膜样品.png" alt=" 中国电子科技集团第五十五研究所提供的SiC薄膜样品.png" / /strong /p p style=" text-align: center " strong 图8:SiC薄膜热膨胀系数监测曲线 /strong /p p style=" text-align: center " strong (中国电子科技集团第五十五研究所提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 显示屏玻璃 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/01d1e69a-88b7-4aae-9edc-c1864a7dce34.jpg" title=" 武汉天马提供的显示屏玻璃样品.png" alt=" 武汉天马提供的显示屏玻璃样品.png" / /strong /p p style=" text-align: center " strong 图9:显示屏玻璃热膨胀系数监测曲线 /strong /p p style=" text-align: center " strong (武汉天马提供样品) /strong /p p style=" text-align: right " strong (供稿:武汉嘉仪通) /strong /p
  • 宁波材料所在4D打印自传感光响应相变软体执行器方面取得进展
    气动执行器因其弯曲程度高、自由度大、环境适应性强等特点,在医疗保健、复杂地形勘探等领域有广泛的应用前景。但由于其压力系统离不开笨重且刚性的泵驱动气体设备,极大地限制了执行器的尺寸和移动性,以及在室外环境中的应用。液-气相变复合材料是一种在柔性弹性体中掺杂液-气相变材料而形成的智能材料。当温度达到材料沸点时,液滴蒸发产生压力,带动复合材料膨胀,因此每个微液滴都可以看作是一个气动单元。通过这种方式,将气源和气泵的功能集成到主要材料中,大大降低了系统的复杂性。然而,相变执行器的加热方式受到焦耳加热或环境加热的限制,需要外接电源或更高的环境温度,这阻碍了其更广泛的应用。此外,目前对执行器变形行为的监测通常由光学相机记录,然后对获得的图像进行后分析,缺乏实时性。因此,如何设计一个无系绳,且具有感知自身运动的柔性执行器仍是一个挑战。针对上述问题,中国科学院宁波材料技术与工程研究所增材制造材料技术团队程昱川研究员和孙爱华研究员基于石墨烯、低沸点溶液微滴和硅橡胶,制备了一种集成变形驱动和传感特性于一体的光响应液-气相变弹性体(PRPTE)(如图1)。PRPTE具有优异的机械性能,在100℃时,低沸点发生液-气相变产生的轴向力可以高达自身重量的400倍,且稳定性良好。以该材料为主动层材料,团队采用4D打印技术制备了一系列柔性执行器,实现弯曲、抓取和爬行等光控程序化运动(如图3)。尤其重要的是,基于电容变化PRPTE表现出自传感特性。石墨烯吸收近红外光产生热量,低沸点液体发生液-气相变,介电常数减小;石墨烯因硅橡胶膨胀而逐渐分散,弹性体介电常数减小;同时电极间距增大。在以上三个因素的共同作用下,PRPTE的电容会迅速减小,从而实现对其变形的实时感知。模仿生物体利用其自身信号反馈调节肌肉收缩和拉伸,从而进行复杂运动,团队制备了一种人工肌肉(如图2)。该人工肌肉可以通过反馈的电容值得知腿部弯曲角度,并根据需要的角度进行精确控制。该研究实现了柔性执行器的驱动/传感一体化功能集成,为设计和制造具有集成自感知能力的软机器人提供了新思路。该工作以“4D printing Light-Driven soft actuators based on Liquid-Vapor phase transition composites with inherent sensing capability”为题发表在Chemical Engineering Journal, 2023, 454, 140271 。本研究得到了浙江省自然科学基金(No.LZ22E030003)、国家重点研发计划(No.2021YFB3701500)、国家自然科学基金(No.11874366)和宁波市重大科技攻关(No.20211ZDYF020228)等项目的支持。图1 PRPTE执行器的驱动、传感原理和制造图2 PRPTE传感性能的表征图3 4D打印PRPTE/PDMS双层结构执行器
  • 幸福都是奋斗出来的:科研大事记之电场调控“三态”相变研究
    “幸福都是奋斗出来的。”把蓝图变为现实,将改革进行到底,无不呼唤不驰于空想、不骛于虚声的奋斗精神,无不需要一步一个脚印踏踏实实干好工作。天道酬勤,日新月异。 ——习总书记2018新年贺词回顾2017, “慧眼”卫星遨游太空,C919大型客机飞上蓝天,量子计算机研制成功,海水稻进行测产,艘国产航母下水,“海翼”号深海滑翔机完成深海观测,次海域可燃冰试采成功,洋山四期自动化码头正式开港,港珠澳大桥主体工程全线贯通,复兴号奔驰在祖国广袤的大地上……正是各行各业工作者的努力奋斗,才使得我国在各个领域都取得了辉煌的成就。本期将会为您重点介绍2017年我国材料学的一大重要发现——由清华大学于浦科研团队发现的电场调控下的“三态”相变。 2017年Nature在线刊登了一篇来自我国科学家的研究论文“Electric-field control of tri-state phase transformation with a selective dual-ion switch”,并在同期发表了题为“Condensed-matter physics: Functional materials at the flick of a switch”的新闻评述,对我国科学家的研究成果给予了高度评价。该研究次在单一材料中实现了基于双离子电场调控的三态结构相变,并揭示了三态相变过程中光、电和磁学特性调控的原理及应用前景。 图1 a、b为电场调控示意图,c为通对O2-离子和H+离子的选择性调控实现SrCoO3, SrCoO2.5和HSrCoO2.5之间的可逆相变。 电场调控是物理学和材料科学中常用的一种调控手段,但传统的电场调控大都只能调控一种离子的价态或者使材料可以在两种状态之间转换。于浦教授带领的团队经过巧妙的构思和设计,通过离子液体电场调控手段在氧化物SrCoO2.5中实现了对O2-离子和H+离子的选择性调控,使材料在SrCoO2.5、SrCoO3-δ以及HSrCoO2.5三相之间进行可逆结构相变,这是选择性双离子调控的次实现,也是电场调控的重要进步。图2 电场作用、选择性的双离子调控三相磁电耦合 由于材料的三态在可见光和红外光区具有不同的光学吸收特性,该研究展示了在可见光和红外线波段的三态电致色变效应,同时证实了三态相变是一种具有“非挥发”特性的相变,即撤掉电压后,其相变后的结构和性能会得到长久保持,从而大大减少维持相变所需的能源消耗。如果将这一成果应用在玻璃上,就可以通过对透光率的调节实现对室内亮度、温度的调节,从而达到高效节能的目的。新颖的光学特性使该材料在节能环保方面有着不可估量的潜力。另外,材料的三态还具有不同的电磁学特性,分别对应反铁磁缘体、铁磁金属和弱铁磁缘体。可调控的电磁学特性使得该材料在新的自旋电子学器件应用方面同样具有广阔的前景。图3 a. 三态电致色变效应,不同相在可见光波段的通过率不同;b. 不同相在红外线波段的通过率不同,可应用于玻璃来调节室内温度。需要指出的是,传统研究通常借助外加压力或材料生长过程中的化学掺杂等调控手段,实现新型物相及新颖物性的设计,但本研究通过电场控制实现离子的插入和析出及其所对应的物相转变,为材料物性调控提供了一类全新的手段。该项发现可以被广泛推广到其它一系列材料体系中,有望孕育出大量的新奇结构相变和丰富功能特性。在此,我们再次祝贺于浦教授取得可喜的科研成果,也非常荣幸Quantum Design的设备能够在实验中助老师一臂之力,同时感谢于浦教授继续选择PPMS,完成了清华大学10台PPMS综合物性测量系统的小小里程碑。正如习总书记所言,希望我们能与各位科研工作者一起并肩奋斗,在新的一年能够保持“逢山开路,遇水架桥”的坚定信念,为2018年中国科研事业的辉煌锦上添花! 文章内容:部分来源于清华大学官网参考文献:Electric-field control of tri-state phase transformation with a selective dual-ion switch(Nature,2017,DOI:10.1038/nature22389) 相关产品及链接 PPMS 综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htmMPMS3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htm完全无液氦综合物性测量系统 dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计 versalab 系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense 振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器 (ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm

相变仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制