标定及动态检测

仪器信息网标定及动态检测专题为您提供2024年最新标定及动态检测价格报价、厂家品牌的相关信息, 包括标定及动态检测参数、型号等,不管是国产,还是进口品牌的标定及动态检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合标定及动态检测相关的耗材配件、试剂标物,还有标定及动态检测相关的最新资讯、资料,以及标定及动态检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

标定及动态检测相关的仪器

  • 概述此款检测标定光源采用独特的激光峰值功率衰减技术,可使输出激光功率精确衰减,并且实现全功率段连续调节;激光脉宽,重复频率等参数实时调节。输出光斑采用匀化光学系统实现平顶光输出,光斑均匀性优于10%。此型号标定光源1064nm 和1550nm两种波段可选。主要用途:APD,PIN探测器特性标定,四象限探测器均匀性标定。技术参数激光波长1064nm或1550nm激光脉宽10~20ns输出光斑大小80mm光斑均匀性优于15%重复频率单次触发~1kHz最小输出峰值功率密度≤1X10-7w/cm2功率密度动态范围>60dB
    留言咨询
  • 产品描述:DC4210-N 动态校准仪是华电智控根据现有气体在线监测行业的需求自主研发的一款高精度气体校准仪,设备通过质量流量计控制输出不同比例的流量,实现配置不同的气体浓度,主要应用于VOCs在线监测设备、环境空气监测设备的标定与气体质量控制。产品特点:?高精度进口质量流量计控制配比,可靠性高,重复性好,零漂小;?7寸触摸屏显示,菜单式结构,操作简单方便;?稀释范围广,可实现1:1000的样气稀释比例;?支持多种气体同时稀释,响应速度快,满足现场标定需要;?全过程软件自动控制,实时监控气体流量和气体浓度值;?具有自动清洗功能,根据程序设定自动执行管路清洗;?具有开机自检功能,设备异常时发出报警提示;?所有气路采用惰性化材料,维护量少,维护费用低。技术参数:?环境温度:5℃~50℃?精度保证温度:15~35℃?相对湿度:<85%RH?电源:AC220V±22V,50Hz?外形尺寸:标准4U结构?重量:6Kg?响应时间:10s?稀释比例:1:1000(可扩展)?精度:±1.0%S.P.( ≥30%F.S.)?±0.3% F.S. ( ?线性精度:±0.5% F.S. ?重复性:±0.2% F.S.
    留言咨询
  • 工作原理: TH-2008H型仪器标定动态气体发生器用于对各种环境空气分析仪进行校准。内置2台质量流量控制器(标配),与零气发生器和多种标准气配合使用,采用零气稀释标准气体的方法,通过预设编程或用户随机操作完成对分析仪的校准。另配有臭氧发生器和检测单元来产生O3气体,O3浓度经18段标定,可发生定点浓度和任意浓度的标准臭氧气体校准臭氧分析仪。可产生定量NO2标气,用气相滴定法校准NOX分析仪中NO2→NO转换炉效率,所有校准预设后,一键完成SO2,NO,NO2,O3,CO等各种需要定量输出的标准气体。 主要特点 采用7吋全触摸彩屏。 中文菜单式操作界面,操作简便。 具有近百个程序段和序列段设置,可灵活预设仪器标定的各种参数。 具有温度压力自动补偿功能。 可接受远程校零校标各种指令,远程诊断内部工作参数。 可查询程序段和序列段的设置。 具有多参数报警功能。 具有RS232、RS485、USB与以太网数据传输功能。
    留言咨询

标定及动态检测相关的方案

  • 便携式水质多参数检测仪需要自己标定曲线吗
    曲线管理该仪器为计量类仪器,使用人员可在必要时按照本章的方法,对仪器进行校准和标定。仪器校准和标定的过程是用标准溶液确定一个正确、合理的曲线值,然后替代原有曲线值的过程。从而确保仪器测量结果的准确度和真实性。仪器在出厂时,对部分曲线及曲线值已经进行了设置(参考值),用户可直接使用。当测定结果出现偏差时,就必须对原曲线值重新进行标定。通常出现以下几种情况时,建议重新对仪器进行校准和标定:当仪器的检测结果出现偏差时;更换仪器操作人员时;实验过程中的条件发生改变时;用标准溶液对仪器检验有误差超过标准规定时。以下过程是对仪器校准和标定的具体方法,操作时请严格按照流程进行4.1标准溶液的配制 仪器的校准和标定必须要使用标准溶液。标准溶液可选用国家标准物质中心发行的质控样品。如果条件有限, 用户也可按下述方法自行配制或从厂家购买。《HJ/T 399-2007 水质 化学需氧量的测定 快速消解分光光度法》、《HJ 535-2009 水质 氨氮的测定 纳氏试剂分光光度法》、《HJ 11893-1989 水质 总磷的测定 钼酸铵分光光度法》中方法进行配制。[注意] 配制的标准溶液准确度和不确定度,主要取决于配制过程中各个环节的误差。4.1.1COD 标准溶液配制 将邻苯二甲酸氢钾在105~110 ℃下干燥至恒重后,称取0.4251g邻苯二甲酸氢钾溶于纯水中,转移此溶液于500 mL容量瓶中,用纯水稀释至标线,摇匀。此溶液在2~8 ℃下贮存,可稳定保存一个月。该该溶液的理论COD 值为1000mg/L。4.1.2氨氮标准溶液配制 准确称取经100℃烘干过的氯化铵(NH4Cl)0.3819 g 溶于水中,移入1000mL容量瓶中用无氨水稀释至标线摇匀。此溶液浓度为100 mg/L。4.1.3总磷标准溶液配制 准确称取在110℃下烘干2小时后在干燥器中放冷却的磷酸二氢钾(KH2PO4) 0.2197 ±0.001g,用少许蒸馏水溶解后,加入5mL硫酸,然后将该溶液定溶在1000mL容量瓶中并混匀。此标准溶液含50.0mg/L的磷。该溶液可在玻璃瓶中可贮存至少六个月。4.2曲线值标定 4.2.1 预制项目(比色管)曲线值校准 以COD高量程为例1)标准溶液预处理:标准溶液预处理过程详见各试剂说明书;2)将预处理完成后的预制管标准溶液置于比色架上;3)选择COD(高量程),进入检测界面
  • 梅特勒托利多:ET38 还原糖检测中菲林试剂的标定
    本方法采用梅特勒托利多“易滴”系列电位滴定仪,对还原糖检测中菲林试剂进行标定,碘分子用Na2S2O3 滴定剂滴定,采用铂环电极实时监测电位变化,一直滴到电位突跃。
  • ET38 还原糖检测中菲林试剂的标定
    本方法采用梅特勒托利多“易滴”系列电位滴定仪,对还原糖检测中菲林试剂进行标定,碘分子用Na2S2O3 滴定剂滴定,采用铂环电极实时监测电位变化,一直滴到电位突跃。

标定及动态检测相关的论坛

  • 如何选购离子色谱系列之一—— 动态量程电导检测器

    如何选购离子色谱系列之一—— 动态量程电导检测器

    动态量程电导检测器的命名,是相对于传统的固定量程电导检测器而言,特别是以模拟电路为基础的检测器。动态量程电导检测器是一种新型数字信号电导检测器,其主要特征在于不预先设定量程,而是在分析过程中根据电导信号的变化自动选择和切换合适的量程,样品分析期间量程不是固定的,当检测小信号(低浓度样品)时,自动切换高灵敏度量程,当检测大信号(高浓度样品)时,自动切换低灵敏度量程,不同量程检测到的电导信号通过软件无缝接合,形成一张完整的高低信号共存的谱图。[align=center][color=#00b0f0][b][/b][/color][/align][hr/][align=center][color=#00b0f0][b]动态量程电导检测器解决的问题[/b][/color][/align][align=center][color=#00b0f0]一次进样可同时分析样品中的高低浓度离子(在色谱柱允许的前提下,浓度过高色谱柱将饱合)[/color][/align][hr/] 众所周知,很多仪器(不限于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url])都有量程,每一个量程限制了一个最大的检测范围,分析之前预先设定好量程,在样品分析过程中量程保持不变,直到样品分析结束。如果样品超出此量程范围则无法定量,需要切换量程后重新进样。这样在分析陌生样品时,我们无法准确判断样品浓度会在哪个量程范围,即无法确定设定哪个量程是合适的。以往的解决办法有两个,一是稀释样品后选择灵敏度较高的量程试测;二是样品不稀释或小倍数稀释用低灵敏度量程试测。根据试测的情况来确定稀释倍数和量程,如此过程试测是不可省略的,且当样品中离子浓度差别比较大时,不能一次进样同时分析,在正常的样品分析过程以外,增加了工作量。动态量程电导检测器以全新的方式解决了以上问题。[hr/][align=center][b][color=#00b0f0]传统固定量程电导检测器存在的问题[/color][/b][/align][hr/]什么是固定量程电导检测器? 由于检测器检测到的电导信号在一定的范围内呈线性,超过这个范围将不呈线性,所以要将大信号衰减到可以检测的范围内,量程就是用来控制信号衰减倍数的工具,电导检测器的每一个量程实际就是规定了信号的放大倍数,比如:1档、2档、3档.......10档等,1档最灵敏,10档最不灵敏而检测信号范围最宽。 通常量程有一定的规律,比方说同一个离子用不同的量程检测,1档检测的峰高是10,那么2档检测的信号是1档的几分之一(每个厂家的规定不一样),比较多见的是2档是1档信号的1/2,即2档峰高是5,依此类推3档是2.5、4档是1.25、5档是0.625、6档是0.3125、7档是0.1563、8档是0.0781、9档是0.0391、10档是0.01953。1档信号是10档的512倍,换言之10档的检测限是1档的512倍。当我们用1档检测低浓度离子时,样品中的高浓度离子有可能会超出这一档的最大值而出现平头峰。如图1所示。[align=center][img=[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]出现平头峰,1000,531]http://dwbsemail.gotoip4.com/upload/201808/1533769205408865.png[/img][/align][align=center]图1.固定量程电导检测器出现平头峰[/align]对于用于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]分析的传统固定量程电导检测器而言,量程在进样前预先设定好,如果进样后灵敏度不合适再重新切换量程或稀释样品进样分析一次,有时一个样品需要进样几次才能得出准确结果,其特征如下:●控制面板:有明显的量程选择功能,如档位选择(1-10档任选1档),或30μS、100μS、1000μS等范围选择●信号单位:mV(毫伏)●量程设定:进样前预先设定(不同厂家产品供设定的量程数量不同,如10档,8档,2档,共同的特征是需要进样前预先设定)●电导检测范围:小信号的量程与检测大信号的量程是分开的,不能同时检测,所以即使检测范围最宽的一个量程可以达到35000μS也是没有意义的,因为低浓度的离子还是要切换高灵敏度量程再次进样(不能在一个量程下同时分析高浓度离子与低浓度离子)●线性范围:相对较小。通常在100mg/L以内。●灵敏度:灵敏度差。通常安装50-100微升定量环●标准曲线:每一个量程都需要建立标准曲线。如10档则需要建立10组标准曲线,只有这样做,在切换量程时才能准确定量,进样工作量巨大。●样品稀释:需要稀释样品。由于每一量程做标准曲线的工作量较大,所以通常选择某一常用的量程固定下来,做一组标准曲线,当样品中某离子浓度超出量程时(平头峰或变形峰),采取稀释样品使样品浓度降至量程范围内。●输出信号:模拟信号,需要外置信号采集器;●抗干扰能力:弱●平头峰:超出量程时出现平头峰。比较常见的情况是,信号超过1300mV时就会出现平头峰,信号超过800mV时峰开始变形。如图1所示:[align=center][/align][hr/][align=center][color=#00b0f0]动态量程电导检测器介绍[/color][/align][hr/]全新的基于数字电路的动态量程电导检测器,彻底解决了传统固定量程电导检测器量程限制的问题,可一次进样同时分析样品中的高低浓度离子,其特征如下:●控制面板:无任何量程选择项●信号单位:μS(微西门子)●量程设定:无需设定量程●电导检测范围:0-15000μS全覆盖●线性范围:0.001-200mg/L(以氯离子计,10μL进样量);●灵敏度:灵敏度高;●标准曲线:一组或两组标准曲线(出于定量准确度要求,建议高低浓度分开做);●样品稀释:样品可以不稀释直接进样;●输出信号:数字信号,无外置信号采集器;●抗干扰能力:强●平头峰:在色谱柱容量范围内,不会出现平头峰;[hr/][align=center][color=#00b0f0][b]动态量程电导检测器与传统固定量程电导检测器对比[/b][/color][/align][hr/] 在同一台仪器上,将固定量程电导检测器与动态量程电导检测器串联,以同一样品进样,分别采集的谱图叠加在一起。如下图所示:[align=center][color=#00b0f0]两张谱图以NO[sub]3[/sub][sup]-[/sup]峰高为基准对齐[/color][/align][align=center][img=,690,506]https://ng1.17img.cn/bbsfiles/images/2018/08/201808311622215642_2498_1608336_3.png!w690x506.jpg[/img][/align][align=center]图2. 动态量程电导检测器与固定量程电导检测器谱图叠加对比[/align]由图得到如下信息:1.两图中低浓度的F[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]重合,说明两种检测器在检测小信号方面性能一致。2.红色的传统固定量程电导检测器信号,在图中红色虚线标注的区域信号呈非线性响应,峰形变形,最终在最高点出现平头峰,氯离子浓度超过了这个量程的最高点。3.蓝色的动态量程检测器信号,不受量程限制,没有出现平头峰,且信号线性响应,氯离子出峰完整。[align=center][color=#00b0f0][/color][/align][hr/][align=center][color=#00b0f0]动态量程电导检测器与固定量程电导检测器对比表[/color][/align][align=center][color=#00b0f0][/color][/align][hr/][table=1880][tr][td=1,1,397] [/td][td=1,1,716][b]传统固定量程电导检测器[/b][/td][td=1,1,767][b]全新动态量程电导检测器[/b][/td][/tr][tr][td][b]控制面板[/b][/td][td]有量程设定项,如1档到10档,或30μS、100μS、1000μS等范围选择[/td][td]无量程设定项[/td][/tr][tr][td][b]信号单位[/b][/td][td]mV(毫伏)[/td][td]μS(微西门子)[/td][/tr][tr][td=1,1,397][b]量程设定[/b][/td][td=1,1,716]预先设定固定的量程,进样分析过程保持不变[/td][td=1,1,767]无需设定量程,根据样品中离子浓度大小自动切换量程,进样分析过程中使用多个量程[/td][/tr][tr][td=1,1,397][b]电导检测范围[/b][/td][td=1,1,716]每个量程有不同的范围,高灵敏度量程检测范围小,低灵敏度量程检测范围宽,但灵敏度极低[/td][td=1,1,767]0-150000μS全覆盖[/td][/tr][tr][td=1,1,397][b]高低浓度同时检测[/b][/td][td=1,1,716]不可以[/td][td=1,1,767]可以[/td][/tr][tr][td=1,1,397][b]灵敏度[/b][/td][td=1,1,716][b]低[/b][/td][td=1,1,767][b]高[/b][/td][/tr][tr][td=1,1,397][b]标准曲线[/b][/td][td=1,1,716]每个量程分开标定(因为每个量程对信号的放大倍数不一样,所以切换量程后必须有对应的曲线)[/td][td=1,1,767]单曲线标定[/td][/tr][tr][td=1,1,397][b]样品稀释[/b][/td][td=1,1,716]需要稀释[/td][td=1,1,767]可以不稀释(有的样品出于保护色谱柱的考虑可以适当稀释,但在不稀释的情况下,也可以检测高浓度离子)[/td][/tr][tr][td=1,1,397][b]平头峰[/b][/td][td=1,1,716]当离子浓度超过量程检测范围时会出现平头峰[/td][td=1,1,767]不会出现平头峰[/td][/tr][tr][td=1,1,397][b]输出信号[/b][/td][td=1,1,716]模拟信号,外置信号采集器[/td][td=1,1,767]数字信号,无外置信号采集器[/td][/tr][/table]

  • FPD检测器需要多久标定一次

    FPD检测器的稳定性比FID差一些,那FPD检测器的标准曲线标定后多久重新标定?我问过岛津的技术人员,那边说一般几个月吧,我这边感觉标定后,几天就会漂了啊,标定的就不准了,需要重新标定,问下经常使用FPD检测器的大神们,你们一般是多久标定一次?谢谢。

标定及动态检测相关的耗材

  • 有机气体检测仪
    ToxiRAE Pro PID 个人有机气体检测仪 [PGM-1800] 主要特点: 产品类型: 扩散式PID 检测仪,带数据存储和辅助风扇 检测量程: 0-1000ppm/2000ppm 分辨率: 1ppm/0.1ppm 响应时间: T90 15 秒 尺寸: 118 mm x 60 mm x 30 mm 重量: 235g 电池内置: 可充电锂电池,3.7V,1800m ToxiRAE Pro PID 个人有机气体检测仪 [PGM-1800] 主要特点: 是世界上最小巧的个人VOC 检测仪,能够在不同温度和湿度条件下对各种VOC 进行快速、可靠、精确的检测,适用于存在有毒/可燃气体的危险工作环境,能为现场工作人员提供有效的个人安全防护。 ※ 体积小、重量轻、方便携带 ※ 检测精度高,响应时间短,检测范围宽 ※大屏幕液晶图形显示 ※中文菜单显示 ※ 可充电锂电池,使用时间长 ※ 内置数据存储 ※支持无线数据传输 ※强力声光和振动报警多种报警方式 ※防水防尘的坚固外壳,防护等级高 技术参数 产品类型: 扩散式PID 检测仪,带数据存储和辅助风扇检测量程: 0-1000ppm/2000ppm 分辨率: 1ppm/0.1ppm 响应时间: T90 15 秒 尺寸: 118 mm x 60 mm x 30 mm 重量: 235g 电池内置: 可充电锂电池,3.7V,1800mAh 充电时间: 小于4 小时 工作时间: 充满电大于12 小时 充电器带: USB 接口的单一充电器/不带USB 接口的五仪器充电器 报警方式: 声音报警95 dB@30cm、红色LED 报、振动报警 显示: 单色LCD 图形显示 背光: 手动,报警时自动 键盘: 2 键 直接读数: 测量值,电池,数据记录状态 采样方式: 扩散式,带辅助风扇 数据记录: 1 分钟间隔可存储3 个月 记录间隔1-3600 秒 标定: 两点标定,可设置标定值 防护等级: IP-54 标定设备: 支持AutoRAE Lite 2 自动标定平台 保护: 标定、报警等限值设置有密码保护 无线传输距离: 100 米 认证: -美国/加拿大:UL / CSA:Class I, Division 1 Groups A, B, C, D -欧洲:ATEX:II 1G Ex ia IIC T4 IECEx:ia IIC Ga T4 -中国:Ex ia IIC T4 电磁兼容: EMC Directive 2004/108/EC R&TTE Directive 1999/5/EC ATEX: 94/9/EC 工作温度: -20° - 55° C 湿度: 0 - 95% 相对湿度(非冷凝) 保修: 一年保修 标准配置: PGM-1800 主机,含传感器 锂电池、充电器、充电底座 标定适配器 操作说明书
  • 铅离子检测管
    铅检测管可自动完成采样和显色反应,与ZZW测试仪配套使用,可在数分钟内完成对水样中铅离子的定量测试。无须标定仪器,非专业人员也可轻松操作。 包装:30支/盒
  • 硝酸检测管
    硝酸检测管自动完成采样和显色反应,与ZZW测试仪配套使用,可在1分钟完成对水样中硝酸含量的定量测定,无须标样校准仪器,无须添加其它试剂,非专业技术人员即可轻松操作。可用于对硝酸污染现场水质的快速测定,也可用于实验室配置硝酸标样的浓度标定。 测定范围:0.04-0.9mol/L 包装:30支/盒 单价:196.00元/盒

标定及动态检测相关的资料

标定及动态检测相关的资讯

  • 华电智控发布动态校准仪动态稀释仪标定稀释仪新品
    产品描述:DC4210-N 动态校准仪是华电智控根据现有气体在线监测行业的需求自主研发的一款高精度气体校准仪,设备通过质量流量计控制输出不同比例的流量,实现配置不同的气体浓度,主要应用于VOCs在线监测设备、环境空气监测设备的标定与气体质量控制。产品特点:? 高精度进口质量流量计控制配比,可靠性高,重复性好,零漂小;? 7寸触摸屏显示,菜单式结构,操作简单方便;? 稀释范围广,可实现1:1000的样气稀释比例;? 支持多种气体同时稀释,响应速度快,满足现场标定需要;? 全过程软件自动控制,实时监控气体流量和气体浓度值;? 具有自动清洗功能,根据程序设定自动执行管路清洗;? 具有开机自检功能,设备异常时发出报警提示;? 所有气路采用惰性化材料,维护量少,维护费用低。技术参数:? 环境温度:5℃~50℃? 精度保证温度:15~35℃? 相对湿度:<85%RH? 电源:AC220V±22V,50Hz? 外形尺寸:标准4U结构? 重量:6Kg? 响应时间:10s? 稀释比例:1:1000(可扩展)? 精度:±1.0%S.P.( ≥30%F.S.)? ±0.3% F.S. ( 创新点:U相结构设计,体积小,重量轻 进口质量流量计,精度高,控制稳定 可进行多气体稀释 可与CEMS设备VOC设备同步联用,实现在线稀释、连续标定 动态校准仪动态稀释仪标定稀释仪
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 天津工生所建立无标定量MSE质谱数据分析流程
    超高效液相色谱-高分辨质谱(UPLC-HRMS)已经成为蛋白质组学、代谢组学以及药代动力学研究中的一项核心支撑技术,通过对不同生物样品的定量研究可以全面、精细地表征该生物体系的生理特性及预测功能。在用于蛋白质组学的质谱分析中,无标定量以其稳定性和安全性逐渐占据了主要地位。MSE方法是由Waters公司开发的应用在Q-TOF类型质谱仪器上的一种组学数据采集方法,作为一种数据独立获取(DIA)方式,它可以提高无标蛋白质定量的准确性和动态范围。但由于它特殊的输出格式形式,一些致力于分析数据依赖型(DDA)数据的常用开源软件不能对MSE 数据进行进一步的分析。   近日,中国科学院天津工业生物技术研究所水雯箐研究组成功建立了对基于MSE方法的无标定量蛋白质组学数据的新分析流程。在该研究中,结合开源软件Skyline和统计软件Diffprot建立起的工作流程,实现了对无标定量MSE质谱数据的定量分析。通过对磷酸化肽段和全细胞质蛋白质组定量数据的分析应用,验证了新开发流程的可靠性、稳定性、准确性和透明便捷的处理流程。另外,该研究创新性地发现改进后的新流程也可以应用于对小分子化合物的大规模定量分析,在蛋白质配体相互作用实验中,研究人员利用该新流程发现了针对药物靶点蛋白NDM1的新型小分子配体。   该研究获得国家自然科学基金和天津自然科学基金项目的支持,相关研究成果已经发表于Proteomics (2014,14:169&ndash 180),天津工生所和南开大学联合培养的研究生刘姗姗为第一作者。    无标定量MSE数据分析流程图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制