激光超声无损检测

仪器信息网激光超声无损检测专题为您提供2024年最新激光超声无损检测价格报价、厂家品牌的相关信息, 包括激光超声无损检测参数、型号等,不管是国产,还是进口品牌的激光超声无损检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光超声无损检测相关的耗材配件、试剂标物,还有激光超声无损检测相关的最新资讯、资料,以及激光超声无损检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光超声无损检测相关的仪器

  • 激光超声检测 激光超声无损检测 光声无损检测 我们的激光超声检测,激光超声无损检测,光声无损检测在工业领域的非破坏性材料测试应用。 我们开发并制造了全球首-款基于激光器的光学麦克风,实现了空气中或水中的超声波测量。其应用领域包括非破坏性材料测试、工业环境中的过程控制、医疗诊断及消费领域等。 我们的无振膜激光能够用于广泛的工业应用。至关重要的是,我们的无振膜激光传感器相比目前先进的声学传感器具有十倍的频率响应范围。 光学麦克风的工作原理为,利用激光器发射出波长1550nm的电信级红外激光光束,穿过法布里-珀罗标准具(Fabry-Pérot etalon)(实质为间距2mm的两个平行光学反射镜),固态麦克风(无活动部件)记录声压导致的介质中折射率的微小变化。这些微小变化改变了红外激光光束的波长和传输,光学麦克风将这些细微变化转化为声音的测量电信号。
    留言咨询
  • OGT-laser1激光法顶空残氧测量仪 安瓿瓶无损顶空检测仪OGT-laser1激光法顶空残氧测量仪采用台式设计,配置高精度发生器,可以无损测定密封包装袋、瓶、罐等中空包装容器中O2含量。 一、基本信息品名激光法顶空残氧测量仪型号OGT-laser1品牌泉科瑞达产地山东.济南二、OGT-laser1激光法顶空残氧测量仪 安瓿瓶无损顶空检测仪试验原理将供试样品放入检测工位(不同规格需要现换定位模板),可调谐激光器生了760波长激光束,激光发生器与控测器间固定光程,利用对氧气分子吸收值实现采集的原理,记录下测试过程的周期曲线,依据吸收值判定氧气分子分压及残氧量。是一种无损检测方法。三、OGT-laser1激光法顶空残氧测量仪 安瓿瓶无损顶空检测仪产品应用西林瓶粉针、水针等;充氮保护产品。四、产品特征可自动检测周期内数据,并形成曲线具备打印功能历史记录查询对照无损检测,对供试品无破坏氧波度衰减五、技术参数指标参数检测精度0.5VOL测试原理激光法电源220VAC, 50Hz 外形尺寸420mm (L) ×3306mm(W) ×360mm(H)约净重15kg 六、配置标准配置:主机,定位模板(块),软件备注:不含计算机。
    留言咨询
  • LEAsys非接触式超声波无损检测系统 奥地利Xarion公司非接触式超声波无损检测系统集成扫描仪解决方案将创新的 LEA 技术与高分辨率 xy 扫描仪和实时数据分析软件相结合。它无需水或耦合凝胶即可实现非接触式高分辨率扫描,是复合材料、金属和粘接接头无损检测的完美工具。超声波信号由 XARION 基于激光的激发技术生成。XARION专有的光学麦克风可检测样品传输或反射的声学信号。可以进行穿透式测量以及单面(一发一收)测量,从而以非接触方式检测内部缺陷、分层或孔隙率。对于时间敏感的应用,XARION 还提供了一个八通道麦克风阵列系统。 非接触式超声波无损检测扫描系统的硬件功能:具有 100、400 或 10,000 Hz 脉冲重复率或热声激发的激发激光探测器:Eta450 Ultra 光学麦克风,2 MHz 带宽步长(min):10 μm扫描范围:530 x 500 毫米或 530 x 1000 毫米数据采集:14 位分辨率,50 MHz采样率 非接触式超声波无损检测扫描系统的软件功能:用于控制和数据分析的 GUI显示 A-、B- 和 C- 扫描(实时)步长(min):10 μmFFT,光谱分析(F-扫描)以 BMP 格式轻松导出生成的图像以 CSV 格式导出原始数据相关应用及文献:(1)Laser-Excited Acoustics for Contact-Free Inspection of Aeropace Composites. 主要内容:XARION 与诺斯罗普格鲁曼公司一起在“材料评估”上发表了一篇文章,介绍了 LEA NDT,激光激发声学用于航空复合材料的非接触式检测;LEA 是一种新颖、快速的超声扫描技术,其特性使其成为各种航空航天复合材料无损检测的经济实惠的无耦合剂替代品。 (2)Material characterization via contact-free detection of surface waves using an optical microphone.主要内容:点焊钢板、铝板和砂岩样品的单面非接触式测量;结果证明了 XARION 技术在各种表面和材料上的能力。 (3)Thickness measurement via local ultrasonic resonance spectroscopy.主要内容:使用 XARION 光学麦克风记录对激光诱导超声的局部机械响应,以测量碳纤维增强聚合物板的厚度;由于光学麦克风独特的频率带宽,这种布置的精度大大超过了传统方法的精度。 (4)Ultrasound inspection of spot-welded joints.主要内容:XARION 与 PORSCHE Leipzig GmbH 联合出版,在 2018 年 DAGA 会议上发表;钢中的点焊表征,使用 XARION 的光学麦克风进行单面 NDT 设置。 *有关文章的更多信息,请联系昊量光电!关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询,我们将竭诚为您服务。
    留言咨询

激光超声无损检测相关的方案

激光超声无损检测相关的论坛

  • 激光测振仪在钢轨无损检测中的应用

    激光测振仪在钢轨无损检测中的应用

    钢轨在生产、铺设及行车过程中会产生各种损伤,这些损伤不但影响行车的平稳和舒适,而且会危及行车安全。钢轨的损伤包括疲劳、磨耗、锈蚀、弯曲变形和裂纹等。通常,我们可以利用机器视觉方法检测钢轨表面的损伤。但对于钢轨内部损伤,常规的图像法无法检测。钢轨内部早期损伤难以发现,随着工作时间推移会突然出现裂纹,容易造成严重的行车事故。钢轨内部缺陷已成为铁路运输安全的主要损伤类型。目前,铁路系统检测钢轨内部缺陷采用的是超声波法,该方法中利用高频的超声波作为信号源,基于此方法的钢轨探伤车无法实时在线监测钢轨内部缺陷。但在钢轨中激励低频、高能的超声波时,超声波会在钢轨边界不断发生反射、折射以及纵横波的转换,从而会产生一种新的超声波信号---超声导波。超声导波适合检测横截面一致、长距离的波导介质材料,如管道、钢轨等。钢轨具有声导管性质,超声导波在其内部传播距离很远。一般利用超声导波换能器接受导波,但换能器的黏贴位置、粘贴胶质和轨道温度等因素会影响这种非接触式测量方法的效果,降低测量准确率。然而利用激光测振仪这种非接触测量工具,既可以实现实时在线监测钢轨,发现钢轨早期的内部缺陷,同时也能提高检测精度。这种方法利用激光测振仪测量钢轨振动速度曲线,经信号处理后利用脉冲回波法,检测超声导波在钢轨内部缺陷处产生的回波信号来实现在线监测钢轨。[img=,599,333]https://ng1.17img.cn/bbsfiles/images/2019/04/201904101153380291_7519_3859729_3.jpg!w599x333.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有超高的光学灵敏度和信号强度,这对于在生锈和灰暗又无法进行表面处理的结构上获得无噪声和无信号丢失的测试数据至关重要。应用参考:邢博,余祖俊,许西宁,朱力强.基于激光多普勒频移的钢轨缺陷监测.中国光学,2018,11(06):991-1000.文章来源:嘉兆科技http://www.tnm-corad.com.cn/news/Show-5639.html

  • 【分享】JB/T10559-2006起重机械无损检测 钢焊缝超声检测

    [em0903]我在网上找了半天,给需要的朋友吧 JB/T10559-2006 起重机械无损检测 钢焊缝超声检测 单行本完整清晰扫描版 起重机械方面的专门标准[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=128942]JB/T10559-2006起重机械无损检测 钢焊缝超声检测[/url]

激光超声无损检测相关的耗材

  • 工业X射线管-无损检测
    产品简介万睿视影像制造的工业X射线球管可在无损检测(NDT)、射线检查、行李扫描、厚度测量等众多领域进行成像应用。万睿视影像的无损检测产品系列涵盖广泛的金属陶瓷X射线管,可提供各种靶面、焦点和功率的选择。在要求极高的数字成像应用方面,我们可提供高功率工业级的小焦点X射线管,可以获得高分辨率的影像。产品规格产品名称最大KV值焦点靶角电流固有过滤EDS-18061601.6mmW x 1.5mmL204.6A2.0mm BeHPC-160FB1605.5mm2025mA2.0mm BeHPC-225-FB2253.9mm2013mA1.0mm CuHPX-160-111600.4mm x 1.0mm1111.25mA0.8mm BEHPX-160-201601.0mm x 1.0mm206.5mA0.8mm BEHPX-225-112250.4mm x 1.0mm118mA1.0mm CuHPX-225-202251.0mm x 1.0mm204.4mA0.8mm BEHPX-2262257.5mm17.7mA0.8mm BeHPX-320-11 3200.4mm x 1.0mm115.6mA4.0mm BeHPX-450-114500.4mm x 1.0mm113.3mA5.0mm BeMCS-1402255.5mm2013.0mA2.0mm BeMCS-80801.5mm204.4A2.0mm BeNDI-160-201601.0mm x 1.0mm204mA 0.8mm BENDI-160-211601.0mm x 3.0mm2010mA0.8mm BENDI-160-221601.0mm x 5.5mm2013mA0.8mm BENDI-1611607.5mm3019mA0.8mm BENDI-225-202251.0mm x 1.0mm202.8mA0.8mm BENDI-225-21225 1.0mm x 3.0mm207mA0.8mm BENDI-225-222251.0mm x 5.5mm2013mA0.8mm BENDI-225-FB2257.5mm20 13mA1.0mm CuNDI-2262257.5mm3013mA0.8mm BENDI-320-233201.9mm x 3.6mm205mA4.0mm BeNDI-320-263203.0mm x 5.5mm2013mA4.0mm BeNDI-320-26FB3203.0mm x 5.5mm2013.1mA2.0mm Be +0.4mm FeNDI-3213208.0mm3010mA4.0mm BeNDI-350-233501.9mm x 3.6mm205mA4.0mm BeNDI-350-263501.5mm x 4.0mm205mA4.0mm BeNDI-451Be4502.5mm x 5.5mm3010mA5.0mm BeNDI-4524502.5mm x 5.5mm3010mA2.3mm Fe +1.0mm CuPI-2002003.0mm203.8A0.8mm Be关于万睿视影像科颐维电子是美国万睿视影像(Varex Imaging)中国区授权经销商。万睿视影像(前瓦里安影像部件事业部)深耕影像行业五十余载,基于多年累积的技术经验和行业专识,致力于为医疗、科技、工业、安防、货物安检行业的全球客户提供世界顶级的影像部件。我们为世界装备了获取射线影像的最佳工具,保护我们的港口和家园。作为影像部件领域的领导者,帮助客户提升竞争力,加速产品入市,进而成为世界级的系统供应商是我们的不懈追求。
  • 激光氨气检测器模块
    Axetris 激光气体检测器模块 适用于OEM模块集成的激光气体检测器; 激光气体检测器模块可用于检测NH3, CH4, H2O, CO2, HCl, HF,O2等气体。产品模块化的设计便于OEM客户进行系统集成,可适用于各种工况条件下的气体检测及监测的应用。典型的应用包括:过程控制,排放控制,环境监测,空调系统的安全监测等。基于最先进的可调谐二极管激光光谱技术(TDLS), 激光气体检测器模块几乎不存在其它背景气体交叉干扰的现象,并且其革新性专利测量原理,也消除了参比气室的需求。技术优点:光学性的,非接触式的,精准激光测量高选择性快速响应独立式设计,极易集成连续式的气体检测免标定低成本高温气体测量选项,加热温度可达190°C主要应用:过程控制:SCR,垃圾焚烧,燃烧控制…排放监测:电厂,发动机制造…环境监测: 垃圾填埋场,温室气体,畜牧养殖场…安全监测:泄漏检测,制冷剂,有毒气体…气候条件控制&监测:畜牧养殖场,封闭的区域&房间
  • 2476nm DFB激光器,HF气体检测激光管
    2476nmDFB激光管-HF气体检测激光器

激光超声无损检测相关的资料

激光超声无损检测相关的资讯

  • 超声无损检测技术新进展及其应用
    随着社会的发展,超声无损检测技术已经发展了近百年历史。在多种无损检测技术当中,该检测技术具有明显的优势作用,如检测精度以及深度较大、检测成本较低并且在检测过程中不会对设备造成二次伤害。因此,超声无损检测技术在工业领域被广泛应用。为推动超声无损检测技术发展和行业交流,促进新方法、新技术的推广与应用,在即将召开的第二届无损检测技术进展与应用网络会议,特别设置超声检测技术专场,特别邀请了多位业内专家老师围绕超声无损检测技术、设备、应用等展开分享。部分报告预告如下:大连交通大学副教授 赵新玉《超声自动检测和智能监测》(报名听会)赵新玉,大连交通大学副教授。中国机械工程学会焊接学会/协会理事,超声检测专委会委员。从事超声无损检测教学科研工作20余年,主持完成国家重点研发计划子课题、国家自然基金等纵横向课题20余项,发表科技论文60余篇,获批专利和软著20余项,曾获中国中车和中国兵器集团科技进步三等奖各1项,宁波市科技进步一等奖1项,辽宁省教学成果二等奖1项。报告摘要:针对传统超声频率低,难以检测复杂曲面,难以制造过程中实现质量检测等行业痛点。本报告将介绍高精度超声显微成像检测技术,光声联合检测曲面检测技术,和制造过程超声原位监测技术。中北大学副教授 李海洋《表面缺陷的激光超声检测技术研究》(报名听会)李海洋,中北大学副教授,担任中国声学学会检测声学分会委员、中国仪器仪表学会精密机械分会委员。主要从事非线性声学、激光超声等新型检测声学技术开发,在声学理论、算法开发和声信号处理方向共主持国家和省部级项目4项、发表文章28篇、发明专利2项、学术专著1本。研究成果获得了中国职业安全健康协会科学技术奖三等奖、中国特种设备检验协会科学技术奖二等奖、中国特种设备检测研究院青年科技二等奖以及山西省“三晋英才”青年优秀人才省部级人才称号。报告摘要:表面微缺陷往往是大型裂纹产生的开始,若不能被及时检测会对工业生产造成极大威胁。选用激光超声技术成功实现表面微缺陷的定量检测,研究内容涉及声学理论分析、有限元仿真计算以及实验平台搭建等。西安交通大学副教授 裴翠祥《新型柔性电磁超声、导波传感器开发及应用研究》(报名听会)裴翠祥,毕业于日本东京大学核能专业,工学博士,主要从事机械结构的无损检测与完整性评价等方面研究工作,具体包括新型电磁超声传感器及系统、超声导波检测技术、新型激光超声和激光红外热成像检测技术等的开发和应用研究。先后主持国家自然科学基金项目2项、国家重点研发计划子课题、两机专项项目子课题和企业合作项目等近20项,作为核心骨干参与国家自然科学基金委重大科研仪器项目、科技部ITER专项等多项,担任Sensors、Frontiers in Materials、Magnetochemistry等国际知名学术期刊客座编辑,先后发表论文84篇,其中第一/通讯作者SCI期刊论文36篇,申请及授权发明专利和软件著作权20余项。报告摘要:新一代核能等重大装备结构及工作环境日趋复杂和严酷,常规接触式超声检测方法已无法满足其检测需求。电磁超声及导波由于具有非接触、长距离快速检测的优点,有望克服上述难题。但相对于传统接触式压电超声,现有电磁超声由于灵敏度较低、探头体积大、结构刚性等限制,在大量工程现场狭窄空间环境和曲面结构上仍存在不可达、不可检或检测性能不足等问题,是制约其进一步发展和应用的技术瓶颈。因此,进一步提高其检测灵敏度和分辨率,并同时开发具有轻薄、柔性的新机制和新构型电磁超声及导波传感器,建立新型高可达性、高适应性检测方法,是突破重大装备狭窄空间环境、复杂结构有效检测的关键。中国飞机强度研究所副主任 樊俊铃《航空复合材料积木式验证自动化超声检测技术研究》(报名听会)樊俊铃,博士,高级工程师,现任中国飞机强度研究所16室副主任,中国航空研究院一级专家。承担、参与国家科工局、工信部、装发、自然科学基金、航空基金等各类预研课题10余项,主管、参与完成多个型号的结构强度验证工作,承担我国多型军民机结构试验的无损检测与评估任务,在损伤检测和结构强度领域具有较强的技术能力。长期从事业务领域的相关研究工作,发表论文50余篇,申请专利4项,登记软件著作权3项,荣获集团公司航空报国奖个人三等功等多项奖励。报告摘要:以国产大型客机研制为切入点,结合飞机结构完整性大纲、结构强度规范、民用飞机适航标准和无损检测手册等标准规范,分析了航空复合材料结构完整性验证和航空器持续适航对无损检测的相关要求,梳理了复合材料积木式验证体系不同层级的损伤检测需求、特点和侧重点。以碳纤维增强树脂基复合材料损伤检测为例,重点介绍了阵列超声声场仿真与高效换能器设计、复杂型面自适应扫查路径规划及损伤高精度成像等自动化超声检测关键技术,给出了涉及复合材料标准冲击试验件和机身曲面壁板的积木式强度验证自动化阵列超声检测典型应用案例,并对当前存在的瓶颈问题和未来发展趋势进行了总结和展望。北京工业大学讲师 高杰《基于MFC的锂离子电池荷电状态导波检测技术研究》(报名听会)高杰,讲师,硕士生导师。2022年毕业于北京工业大学机械工程专业,获工学博士学位,并留校任教。近年来一直从事声学波动特性理论分析及锂离子电池状态检测方面的研究。迄今为止,共发表学术论文17篇,以第一作者或通讯作者发表论文13篇,其中SCI论文9篇。作为项目负责人,主持国家重点研发计划项目课题子任务、教育部工程研究中心开放课题、北京市博士后基金及企事业委托项目共计5项。在研期间,入选北京市科协2023-2025年度青年人才托举工程,获2022年度中国石油和化工自动化行业科学技术二等奖、2021年Altair Battery Safety Young Researcher Award(优秀青年学者)、北京力学会青年力学工作者优秀学术论文奖及北方七省市区力学学会优秀青年论文等等荣誉奖项。报告摘要:以锂离子电池多区域运行状态的无损检测与评价为需求,提出了一种基于压电纤维复合材料传感器的超声导波检测新技术。采用状态矩阵与勒让德级数联合法,同步联立Biot理论,构建多层多孔锂离子电池声传播特性理论模型。以厚1.9mm软包钴酸锂电池为例,数值分析了荷电状态对多模态频散曲线的影响规律。同时,建立了相同结构特性的锂离子电池频域仿真模型,提取了不同荷电状态下的超声导波频散曲线。此外,以体积小、柔性强的压电纤维复合材料MFC传感器为基础,实验探究了不同SOC对锂离子电池中声学行为的影响。从实验分析,仿真及理论计算等方面,诠释了所提测量分析方法的可行性。随后,以MFC传感器阵列的形式,对商业锂离子电池的多区域荷电状态进行超声检测研究。通过对比分析放电过程中不同区域内的声传播特性,揭示锂离子电池全域运行状态的变化规律,为锂离子电池组运行状态的实时监测提供新的技术方案。第二届无损检测技术进展与应用网络会议为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2023年9月26-27日召开第二届无损检测技术进展与应用网络会议。本届会议开设射线检测技术、超声检测技术、无损检测新技术与新方法(上)、无损检测新技术与新方法(下)四大专场,邀请二十余位无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学三、参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/ndt2023/)进行报名。扫描下方二维码,进入会议官网报名2、报名并审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人高老师(微信:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)周老师(微信:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 超声无损检/监测技术军事应用领域的发展动向与展望
    超声波是频率高于20 kHz的机械波,具有频率高、指向性好、能量集中,穿透性强等特点,应用领域广泛。近些年来,超声波传感技术发展迅速,在医疗健康领域(健康监测、疾病诊断)、工业领域(设备无损探伤、厚度测量、超声成像等)、交通运输领域(无人机、船舶等定位、追踪、导航和监控等)和军事应用领域(生化战剂的测量、航空检测等)得到普及应用。超声无损检/监测技术由于具有速度快、效率高、检测成本低等优势,且能够在极端条件下(高温高压、低温低压)实现无源感知、无线传播获取物理量,在军事应用领域显示出巨大潜力。本文在梳理超声无损检/监测技术的基础上,重点介绍几个发达国家在无损检/监测技术的布局及研究进展,结合军事应用前景,对无损检/监测技术的发展趋势进行探讨与展望。1 超声无损检/监测技术发展历程超声无损检测始于20世纪30年代。1935年,前苏联科学家SOKOLOV首次对超声检测材料中缺陷的技术申请了保护。1945年,美国Firestone公司研制出第一台脉冲回波式超声检测设备。20世纪60年代,超声检测设备在灵敏度、分辨力和放大器线性等主要性能上取得了突破性进展。20世纪70年代以后,电磁超声检测试验成功。1975年,美国康奈尔大学MAXFIELD和HULBER研究了应用于金属缺陷检测的电磁超声换能器(EMAT)。20世纪90年代,电磁超声进入实际商业应用。1989年,Innerspec公司发明了第一台电磁超声检测设备,并于1994年成为第一个电磁超声设备产业化厂家。1995年,美国约翰霍普金斯大学OURSLER和WAGNER采用剪切波,研制了窄带脉冲激光复合EMAT,应用于高温条件下的超声检测。2004年,日本福冈工业大学MURAYAMA等报道了可交替发射和接收高灵敏度的兰姆波和SH波、且不受焊接部分影响的EMAT,可对储罐和管道进行检测。2010年,日本东北大学URAYAMA等报道了降低噪声和改进信号处理的EMAT/EC(涡流)双探针,能够在高温环境下实现对管壁变薄的监测。2016年,英国华威大学THRING等使用聚焦EMAT,利用新的提高分辨率的方法,产生了2 MHz的瑞利波,可检测毫米级深度的缺陷。超声检/监测技术是超声领域应用极为广泛的一门技术,在军事领域应用广泛,其不但可以保证质量和保障安全,而且还可以节约能源和资源,降低成本,提高成品率,获得显著经济效益。2 超声无损检/监测技术发展动向传统无损检测技术由于设备笨重、检测速度慢、可检测范围小及自动化程度低,在检测大规模设施中的潜在损伤中(尤其在复杂环境下)可行性差且花费巨大。因此,大规模设施生命周期内多缺陷的智能化检测问题对无损检测技术提出了新挑战,一方面推动无损检测技术向高速、多物理场及多技术融合等方向发展;另一方面,也促进了无损检测技术与结构健康监测技术的相互融合。2.1 无损检测与结构健康监测相融合的无源无线声表面波传感技术声表面波(SAW)传感器具有强大的抗辐照能力、较宽的温度工作范围、无源工作以及固有的固态单片结构等优点,且可结合雷达射频收发技术实现无线信号感知,保证其在恶劣空间环境中的多参数压线检测性能。此外,声表面波器件可大批量、低成本制造,可进行RFID(射频识别)编码,并且体积和重量都很小,可广泛应用于航空航天工业领域高温高压高辐射等环境。2020年,NASA资助美国佩加森公司研究开发了首个应用于无损检测和结构健康监测的大型声表面波无线多传感器阵列系统。该工作还对无线声表面波温度传感器系统的基本元素进行分析与研究,包括测试框架和传感器阵列、构建用于声表面波器件实施的新RFID编码理论、实现声表面波器件模拟和新实施案例,以及后处理技术的系统配置分析。在美国国家航空航天局的一系列计划中(包括小型航天器计划),充气式飞行器和降落伞是太空交通工具安全与经济运行所必需的两种系统,这些复杂的系统结构给设计、分析和测试新系统带来了挑战。新的无源无线传感器(无需更换电池)可精确测量降落伞和充气结构的应变,从而使工程师们能够更好地理解这些复杂系统的行为,开发出能满足任务需求的更精确的模拟工具和设计结构。该传感器不但具备足够的安全裕度,而且不会产生不必要的额外重量和成本。可单独识别的无线传感器被部署在柔性结构的多个位置上,并由集中式读取器读取,从而确保在系统部署期间动态测量应变。2020年,NASA资助充气式航天器和降落伞用无源无线应变传感器研究,该研究中SENSANNA公司开发了新型无源无线声表面波应变传感器对降落伞和充气结构进行实时应变测量。这些设备可以由约几十个到一百个可单独识别的设备组成,协同工作,并由数据聚合器同时读取数据,可以保证不会出现传感器间的干扰。根据传输功率限制和环境的不同,可以在几十米或更大范围内无线读取传感器标签。为了满足海军探测推进剂的颗粒裂纹,并通过密封火箭发动机壳体进行无线传输数据的需求,2018年美国国防部资助美国智能感知系统公司开发一种新的推进剂健康(PHEM)监测系统。该系统将超声换能器作为信号发生器与传感器进行创新集成,采用超低功耗元件和电子设计。这种超声波推进剂监测传感器与数据传输链路的独特集成,使PHEM可检测推进剂的颗粒裂纹,并通过密封火箭发动机外壳的金属壁完成传感器数据传输,其中,压电传感器和致动器、低功耗电子器件和超级电容器拥有超过10年的使用寿命。因此,PHEM系统能够为军用飞机上的推进剂驱动装置提供长期可靠的监控。该项目的第一阶段通过设计和制造实验室规模的原型,展示PHEM系统的可行性,并展示其探测密封金属壳内推进剂颗粒裂纹和传输数据的能力;项目的第二阶段,通过改进和优化PHEM系统,开发全功能的原型,并证明其符合海军要求。SAW传感器系统可测量温度、应变、氢气以及磁场的变化,小尺寸的优点使其可插入各种应用系统。2019~2021年,NASA持续资助美国佩加森公司研究一套完全可操作的4.3 GHz无源传感器系统,该系统满足航天航空无线电子内部通信要求,研究人员重点开发以下关键技术组件:声表面波无源温度和应变传感器件、新的传感器天线和芯片级传感器天线集成、提供自适应射场收发器的软件定义无线电(SDR)、SDR控制软件和提取关键传感器信息的后处理软件。初步的研究结果表明,所有关键技术组件都可在4.3 GHz和200 MHz带宽下构建和实施,这将是SAW传感器及其无线无源系统技术的飞跃。2.2 用于船舶、管道、容器、混凝土等裂痕的现场无损超声检测技术几十年来,为了减轻重量和降低船舶重心,5xxx系列铝合金一直用作海洋船舶的材料。铝合金的敏化过程会造成晶间腐蚀损伤和应力腐蚀裂痕。美国海军希望能够开发一种快速获取材料状态及其敏感性的方法。2018年,美国海军资助美国技术数据分析公司(TDA)开发一种紧凑的传感器套件和监控系统,以检测5xxx系列铝合金的敏化程度,从而解决批次间的差异问题。TDA公司利用监测系统预测铝合金在敏化过程中容易出现的晶间腐蚀损伤和应力腐蚀裂痕,减少相同材料之间的脆弱性差异,满足美国海军对实时快速获取材料的状态及其敏感性的需求。在这项研究中,TDA公司采用一种原始方法,利用两种非破坏性技术(基于涡流的电导率和超声衰减)分离出两个独立的成分,即高角度晶界的微观结构及边界上物质的敏化状态。根据这些参数,使用近期建立的模型来计算引起批次间差异的敏化度。通常使用手持式超声波仪器对钢制容器、储罐、墙壁和管道进行腐蚀无损监测(包括钢壁的厚度测量),但这种方法既费时又费力,急需一种适用于密封通道的快速检测技术。2018年美国空军资助国际电子机械公司研发密闭通道区域的腐蚀无损评估技术。国际电子机械公司提出了一种快速腐蚀检测器(RCI),该检测器使用电磁超声传感器,内置机器视觉摄像系统,可自动分类腐蚀类型,绘制腐蚀位置和壁厚图,同时不需要应用耦合剂,也可快速覆盖大面积壁面,并允许用户单手高速扫描壁面。用于乏燃料存储的焊接不锈钢干式储罐出现应力腐蚀裂纹时,极易造成严重的环境危害。2019年,美国能源部资助INNESPEC技术公司开发用于材料结构健康实时监测的EMAT连续监测系统。该研究设计了首个冷喷雾EMAT磁致伸缩传感器原型,用于现场监测干储罐的腐蚀和裂纹扩展,同时将破坏和人为干预降至最低。该项目第一阶段评估具有不同粉末压力推进剂配置的便携式低压冷喷涂仪器的性能,以及使用手动喷枪在平坦、圆形或具有复杂几何形状的部件上产生均匀贴片的可行性,并测试在所述情况下使用EMAT产生超声波的效果,最终确定手动磁致伸缩贴片是否适合应用于干储罐监测。冷喷涂还允许人们使用导波来检测之前技术无法检测的区域。该项目的成果将大大促进核安全,防止和减少放射性泄漏及其对环境和人类健康的危害。混凝土裂纹及损伤的检测技术也取得重要进展。2021年,欧盟INFRASTAR计划资助波兰NeoStrain Spzoo公司和德国联邦材料研究所,提出一种利用新型嵌入式超声波传感器进行多结构损伤检测的主动技术。2.3 用于极端条件下实现物理量测量的超声传感技术飞行器在飞行过程中往往面临着极端环境条件(高温、高旋、高压等),在恶劣环境下原位实时获取系统及环境参数,对飞行器的设计与防护具有重要意义。2020年美国国防部资助Physical Sciences公司研究了一种超声波传感器,研究利用超声脉冲回波技术的非侵入性和远程询问能力,测量高超音速飞行器外壳板温度。开发的重点在于陶瓷/碳纤维基壳体等最具挑战性的表面材料方面,该方法可扩展到其他所有类型的材料,包括金属和烧蚀材料。该项目所开发的传感器能够处理来自不同深度多个界面的信号。项目第一阶段将演示高超声速、超音速冲压发动机应用相关材料及温度的原理证明,第二阶段将致力于实际高超声速试验台和飞行平台的系统加固和自动化。美国空军和航空航天工业迫切需要能够在涡轮发动机环境中提供实时监控的恶劣环境传感器。2015年美国空军资助美国环境技术公司(Environetix)研发可提供实时监测且可靠的恶劣环境传感器。该项目第一阶段验证了在1000 ℃高温环境中无线声表面波硅酸镧镓(LGS)温度传感器原型的稳定性,第二阶段对无线LGS声表面波传感器技术进行了成熟度TRL 4确认,并在涡轮发动机测试单元中进行了TRL 6验证。在该项目设计的恶劣环境下,无线无源小型传感器能够在1000 ℃以上对涡轮发动机进行监测,可对航空航天工业产生重大影响,其优势有:① 可靠运行数千小时甚至更长时间,并且可在测试单元的热区轻松运行最少4000小时;② 通过在其他传感器技术无法工作的位置无线监测发动机状况来验证发动机的建模和运行状况;③ 小尺寸和无线传感器操作,保证了密封、护罩和其他关键发动机位置的完整性;④ 去除用以提供所需传感信息的电线,节省了大量人力成本(传感器安装在涡轮机),减轻了重量,同时提高性能和可靠性;⑤ 通过更可靠的温度监测,降低发动机运行(或飞行)成本的同时,提高燃油效率和增加功率。除此之外,无线SAW传感器技术也有许多商业应用,如在发电、石油/天然气勘探、制造过程控制和其他高温恶劣环境中的应用。辐射条件下的超声传感技术研发也受到关注。在核工业中,受限的接触和高厚度部件通常限制了无损检测技术的应用。商用超声检测传感器的辐射耐受性局限在1~2 mGy的累积剂量,难以满足应用需求。英国创新署部署了由英国创新技术和科学有限公司承担的“耐辐射超声波传感器”研究。该公司主要致力于探索新型辐射弹性探测器的构建和测试,为核工业提供一个可靠的超声检测解决方案,以延长检测和监测时间。该研究成果有两种应用场景:① 在裂变核反应堆附近进行高辐射检测;② 在核废料处理场进行低辐射检测。在核工业中,超声波换能器在放射性环境下响应减弱,难以正常工作。针对该情况,英国精密声学有限公司开展耐辐射超声传感器的开发,建造和测试新型抗辐射超声换能器以及各种探头的装配技术,为核工业提供一种可靠的超声换能器解决方案。该项目开发了一系列原型超声探头,以满足特定的在役检测需求。日本NEDO先导研究项目——具有流量监控功能的实时超声波多相流量计研制(2019~2020年,北海道大学承担)共分为3个子课题,分别是:结合超声信号和多相流体动力学定律的数据同化流量计的研制;使用超声多普勒测量多相流体的脉动特性;使用超声脉冲回波扫描测量流体界面。JSPS的国际联合研究基金项目——联合开发在线超声多普勒测定技术(2018~2021年,北海道大学、瑞士联邦技术学院承担),重点开展3个主题研究,主题1是流速分布测量技术和流变控制方程的数据同化,主题2是通过超声波和光可视化调节空间分布的流变学,主题3是假定使用机器学习的流变大开发数据构建系统。2018年该项目已经开发了一种根据超声波多普勒流速分布仪获得的流速分布来测量不透明流体压力分布的方法。2019年,项目开发出一种通过水、油和气三相流中的超声波脉冲来测量相分布和流量的技术。日本防卫厅资助了MUT(超声换能器)声学超材料的声阻抗研究(2018年,日立制作所),该项目基于声阻抗匹配的物理模型,研发利用MEMS(微机电系统)技术实现主动控制声学特性的声学超材料。2.4 用于爆炸物和弹药的无损超声实时检测技术含能材料方面取得的最新成果为开发了铅的替代品,替代弹药配方中传统的苯甲酸铅和叠氮铅。然而,这些无铅高能材料可能对传统的弹药筒黄铜和其他弹药部件具有意想不到的腐蚀性。因此,在未来的部署中,从弹药生命周期(即从生产时间到使用时间)的角度,对弹药部件进行实地测试对于确保武器系统的有效性至关重要。2020年,美国陆军资助林泰克公司与美国西南研究院传感器系统和无损检测技术部合作研究了一种基于涡流和超声波检测的手持式设备,用于对小型武器弹药部件进行现场快速无损腐蚀检测。该研究分为3个阶段,第一阶段是在实验室条件下确定对现代爆炸物和弹药外壳进行无损检测的有效性和方法;第二阶段根据第一阶段确定的方法,开发手持式测试单元原型,并根据适当的军事标准、规格要求进行认证,并进行实地测试;第三阶段预期将用于现代爆炸物和弹药壳的无损检测,并推广到民用领域。军事应用包括小型武器部件(5.56,7.62 mm口径)、爆炸性弹药(M42、M55和M61启动器)、中等口径(20,25,30,40 mm)和潜在大口径(60,81,105,120 mm)弹药。3 结语与展望超声无损检/监测技术在军事领域应用前景广阔,在航天器、飞机、船舶和运输管道等的无损检测、恶劣环境感知、数据融合支持决策等领域发挥重要作用。超声传感技术可进行非破坏性的结构健康监测,能够快速准确检测裂纹、泄漏、腐蚀等缺陷,防止和减少放射性泄漏,促进核安全。超声传感不依赖于照明条件,能够抵抗雾的干扰,在高温高压等恶劣环境下进行实时快速感知,可应用于航空航天以及海上作业等领域。未来超声无损检/监测技术的发展趋势如下:用于无损检测与结构健康监测相融合的无源无线声表面波传感技术成为新的发展方向。传统无损检测技术由于设备笨重、检测速度慢、可检测范围小及自动化程度低等问题,在检测大规模设施中的潜在损伤,特别是在复杂环境下的损伤时,可行性差且花费巨大。大型设施生命周期内多缺陷的智能化检测需要无损检测与结构健康监测相融合的无源无线声表面波传感技术。极端条件下实现物理量的测量仍是未来超声传感技术的发展重点。飞行器在飞行过程中往往伴随着高温、高旋、高压等恶劣环境,因此,恶劣环境下温度、压力等参数的原位实时获取,仍然是超声传感技术在无损检测领域的发展重点。超声传感器向着集成化、微型化、多功能化的方向发展。为满足各种机载、车载、航载的需求,传感器的应用需与机械或电子系统集成使用,推动声表面波传感器系统向着集成化、微型化、多功能化方向发展,因而各种新型材料以及先进制造技术的进步将给超声传感器的发展带来巨大推动力,超声传感器本身无源无线传输的特性,亦将在集成化微型化多功能化方面发挥重要作用。作者:朱相丽1,2,张敬1,2,刘庚冉3,王文4,刘小平1,2工作单位:1.中国科学院 文献情报中心;2.中国科学院大学 经济与管理学院;3.军事科学院 战略评估咨询中心;4.中科院声学研究所第一作者简介:朱相丽,博士,副研究员,主要从事学科战略情报研究、学科态势评估研究和日本科技政策研究工作。
  • 超声无损检测新技术及其在工业领域的应用
    随着社会的发展,超声无损检测技术已经发展了近百年历史。在多种无损检测技术当中,该检测技术具有明显的优势作用,如检测精度以及深度较大、检测成本较低并且在检测过程中不会对设备造成二次伤害。因此,超声无损检测技术在工业领域被广泛应用。近年来,由于工业上对于设备的性能及质量安全提出了更高的要求,超声无损检测技术也在不断地优化和创新。在即将召开的首届无损检测技术进展与应用网络会议,特别邀请了多位专家进行超声检测新技术相关的分享,部分报告预告如下:北京工业大学 刘增华教授《超声导波阵列成像检测技术》(点击报名)刘增华,北京工业大学教授,博士生导师。《无损检测》《北京工业大学学报》编委,《内燃机学报》编委会特邀编委,中国无损检测学会超声检测专业委员会副主任委员,中国仪器仪表学会设备结构健康监测与预警分会理事、副秘书长,全国设备结构健康监测标准化工作组委员兼副秘书长在国内外学术会议及期刊上发表和录用学术论文160余篇,其中SCI、EI收录100余篇;获批国家发明专利30余项,软件著作权10余项。传感器阵列技术日益广泛应用于超声导波监(检)测方法中,可实现结构的大范围、全面和快速检测,已成为超声无损检测和结构健康监测领域的研究热点和难点之一。刘增华教授将在报告中重点介绍全波场成像检测技术、密集阵列成像检测技术、稀疏阵列成像检测技术、智能阵列成像检测技术等。北京航空航天大学 周正干教授《先进超声检测技术及其应用》(点击报名)周正干,北京航空航天大学机械工程及自动化学院教授,兼任中国机械工程学会无损检测分会副理事长、中国金属学会无损检测分会理事、中国声学学会检测声学分会理事、《无损检测》杂志编委等。从事先进超声无损检测技术及系统等方面的研究工作,开展《测试技术基础》和《现代无损检测技术》等课程的教学工作。作为课题负责人主持国家自然科学基金项目9项、工信部两机专项子课题2项、民机专项子课题2项、总装预研项目4项。曾获航天工业总公司科技进步二等奖1次,在国内外公开发表学术论文200余篇。近年来,随着我国重大科技专项的开展,新材料、新工艺及新结构的开发和应用在先进制造领域不断出现,对超声检测技术提出了新的需求。周正干教授将结合目前国内高科技领域复合材料及钛合金的应用技术特点,介绍超声检测仿真技术、空气耦合超声检测技术、多轴联动超声检测技术及其应用案例。天津大学 刘洋教授《超声导波智能成像技术及应用》(点击报名)刘洋,天津大学精仪学院教授,中国仪器仪表学会地学仪器分会理事、中国声学学会检测分会副主任。主要研究方向为复杂结构声场理论、超声传感器及超高分辨率超声成像技术。美国宾夕法尼亚州立大学工程科学与力学博士。曾任美国斯伦贝谢道尔研究所资深研究员,怀俄明大学副教授、超声实验室主任。主持多项超声传感器、超高分辨率超声成像项目,部分成果已完成产业转化;目前已在国际权威期刊和会刊上发表论文50余篇,申请获批专利20余项;多次担任声学检测相关国际学术会议主席,长期担任20余个国际期刊审稿人。超声导波成像技术在无损检测、结构健康监测及油气勘探中具有广泛而重要得应用。刘洋教授将以墨西哥湾漏油这一重大社会事件为引子,介绍本课题组近年来在超声传感器与多尺度超声成像方面的研究进展。北京科技大学 黎敏教授《高品质钢内部质量高精度检测与三维全息表征》(点击报名)黎敏,北京科技大学钢铁协同创新中心,教授,博导。主要开展先进检测技术、工业大数据分析等研究工作。独立负责7项国家自然科学基金等国家和省部级课题,参与鞍钢、首钢、核动力研究院等10余项科研项目,共发表论文50余篇,专著2本,专利8项,转件著作权3项,获省部级科技奖励2项,2013年入选北京市青年英才计划。报告内容包括利用高频超声显微技术对高品质钢内部质量进行三维扫描检测,并通过超声信号特征提取、深度聚类、点云重构等现代信号处理方法,对高品质钢内部的夹杂、缩孔和裂纹等微观缺陷及凝固组织实现高通量表征等。广东工业大学 袁懋诞副教授《材料力学性能的超声无损评价研究及应用进展》(点击报名)袁懋诞,广东工业大学机电工程学院副教授,硕士生导师。主要从事超声无损检测、超声导波技术、残余应力测量等方面研究。主持国家自然科学基金青年科学基金1项、主持国家重点研发计划子任务1项、主持企业横向项目6项,作为核心成员入选广东省“珠江人才计划”创新创业团队和佛山“蓝海人才计划”创新创业团队,作为技术骨干参与国家自然科学基金面上项目2项、企业横向项目4项。发表论文30余篇,申请发明专利10余项。材料的力学性能是保证结构稳定和服役安全的重要指标。超声检测技术由于其无损、高穿透、设备便携等优势被越来越广泛应用于残余应力、弹性常数、强度等力学性能表征。袁懋诞副教授将重点介绍研究团队近年来在超声力学性能无损评价方面的研究进展,主要包括超声兰姆波应力测量、增材制件弹性常数测量、涂层界面结合强度定量表征等三方面内容。首届无损检测技术进展与应用网络会议为了推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2022年10月13-14日组织召开首届无损检测技术进展与应用网络会议。会议开设射线检测技术、超声检测技术、自动及智能检测技术、无损检测新技术四大专场,邀请无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开报告,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学、钢研纳克三、参会指南:1、点击会议官方页面(https://www.instrument.com.cn/webinar/meetings/NDT)进行报名。2、报名开放时间为即日起至2022年10月14日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)

激光超声无损检测相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制