吸收光谱分析仪原理

仪器信息网吸收光谱分析仪原理专题为您提供2024年最新吸收光谱分析仪原理价格报价、厂家品牌的相关信息, 包括吸收光谱分析仪原理参数、型号等,不管是国产,还是进口品牌的吸收光谱分析仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吸收光谱分析仪原理相关的耗材配件、试剂标物,还有吸收光谱分析仪原理相关的最新资讯、资料,以及吸收光谱分析仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

吸收光谱分析仪原理相关的仪器

  • 仪器简介:德国耶拿分析仪器有限公司(Analytik Jena GmbH+Co. KG) 近年不断推出一系列新型号的原子吸收光谱仪和诸多创新的特殊应用技术。Analytik Jena GmbH+Co. KG 公司位于世界光学精密仪器制造中心 ―― 德国耶拿市, 1846年卡尔蔡司在这里创办。1960年卡尔蔡司公司(Carl Zeiss Jena GmbH) 开始设计和制造原子吸收光谱仪, 在Analytik Jena 全面接管其分析仪器业务后于1998年推出全自动微机控制原子吸收光谱仪AAS vario 6, 2002 年推出AAS novAA 400(原为Vario 6) 该仪器首先实现自动固体样品分析, 结合横向加热石墨炉技术、快速火焰/石墨炉原子化器切换技术,从而开辟了原子吸收光谱技术崭新的发展方向。2000年,推出AAS Zeenit 600/650型石墨炉原子吸收光谱仪,除了继续保持横向加热石墨炉这个传统优势之外,该仪器实现了液体/固体石墨炉原子吸收光谱分析,结合3磁场交变塞曼效应背景扣除技术,可变磁场强度为0.1...1T, 交变塞曼调谐频率高达300Hz, 使其成为世界上领先的石墨炉原子吸收光谱仪。2004年,推出了Zeenit 700型顶级火焰-石墨炉联用原子吸收光谱仪,该仪器配置高,拥有多项领先技术,包括了: 横向加热石墨炉技术、三磁场塞曼和氘空心阴极灯双扣背景技术、固体直接进样技术、原装Zeiss光学技术等先进技术。同年,德国耶拿还推出了连续光源原子吸收光谱仪contrAA,不用更换空心阴极灯、不用预热,这是原子吸收光谱历史上划时代的突破!这也意味着德国耶拿站在了全球原子光谱新技术的前沿!技术参数:1. 光度计 :高光通量的单光束/双光束自动切换技术;2. 单色器 :Czemy Turner单色器,1800条刻线/mm;3. 灯 座:全自动8灯座,自动准直;4. 背景校正:电子调谐氘空心阴极灯和三磁场塞曼效应双扣背景;5. 磁场强度:0.1-1.0T 可调,可在2-磁场塞曼和3-磁场塞曼模式间切换;6. 石墨炉:横向加热石墨炉,室温-3000度控温,加热速度最高3000度/秒;7.多达108位自动进样器,保证无人值守,智能自动;8. 外形尺寸:1200x480x600 mm主要特点:1.火焰-石墨炉一体化,紧凑设计,不用机械切换原子化器2.横向加热石墨炉技术3.三磁场塞曼和氘空心阴极灯双扣背景4.三磁场:直接扩展线性范围一个数量级,防止塞曼翻转5.单/双光束自动切换6.固体进样技术,直接测量固体或半固体样品7.智能化稀释:扩展动态范围两个数量级8.自动除残:自动清除上一高浓度样品的残留9.氢化物-石墨炉技术联用等扩展技术
    留言咨询
  • 吸收光谱水质多参数在线分析仪Multiple Aquatic Index Online Analyzer (based on Absorption Spectrum)产品型号(Product Type): BX-UV/Vis-online产品简介该分析仪通过实时快速测定水体的紫外-可见全波长吸收光谱,结合水质模型算法及模型定标参数,可同步快速测量水中COD、BOD、DOC、TOC、硝酸盐氮、色度、浊度、TSS、温度以及UV254 等多个参数,实现多参数一体化以及水质检测的实时化、快速化、自动化、便携化。本产品采用棒状结构和开放型流通池,配备自动高压气体清洗装置,可直接浸入水中实现水质的原位检测。分析过程无需任何化学试剂、且仅需要少量维护工作,使用方便。应用范围从饮用水(DOC 0.1 mg/L)、地表水到生活及工业废水,COD 测量范围从1mg/L 到数千mg/L,可以从单组分的ppm 级测量到多组分的高浓度分析。功能特点● 紫外/可见全光谱测量范围:190-730nm,分辨率2.5nm。● 双光束测试技术,消除光源不稳及测试光窗不清洁带来的测量误差。● 投入式直接测量,不需要试剂、无需取样系统。● 超低待机功率,非测量状态待机功率小于0.8W。● 自动压缩空气吹洗系统,几乎“零”维护。● 最多可测量显示十种参数以及光谱指纹图。● 工业标准Modbus-485 信号输出接口,可方便于系统集成及二次开发。● 水质安全预报警功能;提供水质参数超量程报警及限值报警功能。性能参数1、测量周期最小15 秒(不清洗)、连续可调。2、检测光程1mm,2mm,5mm,30mm 和100mm 可选。3、双光束自动补偿,检测无漂移。4、待机功耗0.8W,测量能耗12W,可使用太阳能电池供电。5、通讯方式:支持RS-485,Modbus 协议。6、不需要任何反应试剂,维护时用户只需高品质蒸馏水。7、尺寸(D×L):Φ41mm×560mm。8、重量:2.5kg。9、防护等级IP68,可浸没式安装。10、适应环境温度:-5oC 至45oC,无冻结。11、检测范围(指标叠加后会有出入):
    留言咨询
  • Canary便携式气体分析仪-DOAS差分吸收光谱 CANARY是一个单气体或多气体分析仪,测量浓度在ppm范围内的气体。CANARY有两种型号,一种NEMA等级的工业箱子,另一种适合野外使用的箱子,分别如图所示。和Cerex其他气体分析仪一样,系统通过红外或紫外差分吸收原理测量气体浓度,和传统的电化学传感器比,不会出现&ldquo 中毒&rdquo 的现象。 NEMA产品 便携式产品 特性: 重 量: 12 lbs (5.4 kg) NEMA 尺寸: 61.0cm x 30.5cm x 15.2cm 便携式尺寸: 21.6in x 17.3in x 4.9in (54.9cm x 43.8cm x 12.4cm) 操作温度 Temperature: 32° F - 113° F (0° C - 45° C) CANARY能够测量二氯乙烷Dichloroethane (EDC)中的水汽、水中的氨气、氨气、氯气、二氧化硫、氟气、氟化氢等。CANARY设计用于工业过程监测,同时也提供便携式的设备,IP67等级防护。 输入电压 100VAC to 240VAC , 47-63HZ 输入电流 5A Max 操作环境温度 0 to +45º C 储存温度 -10 to 60 º C 操作和储存湿度 Below 80% (Non-condensing) 尺寸 610 x 305 x 152mm 光谱范围 185nm to 18&mu m 取样单元材料 316SS, PVDF, or PTFE 取样单元操作温度 0 to 200 º C Sample Line Fittings1 Customer specified 原位探针光谱范围 200nm to 18&mu m 原位探针操作温度 0 to 140 º C 光纤接口2 SMA 材质2 Titanium, Hastelloy, PEEK or 316SS 产地:美国
    留言咨询

吸收光谱分析仪原理相关的方案

吸收光谱分析仪原理相关的论坛

  • 【资料】耶拿原子吸收光谱仪基本原理及其分析技术

    耶拿[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]基本原理及其分析技术[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=187512][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]基本原理及其分析技术.pdf[/url]

  • 【资料】原子吸收光谱仪基本原理与分析技术

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]基本原理与分析技术[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=177760][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]基本原理与分析技术.pdf[/url]

吸收光谱分析仪原理相关的耗材

  • 火焰石墨炉原子吸收光谱仪配件
    火焰石墨炉原子吸收光谱仪配件集成了火焰原子吸收光谱仪和石墨炉原子吸收光谱仪双重功能,采用火焰和石墨炉一体化设计,适合测定各种材料中的定量和痕量元素含量。 火焰石墨炉原子吸收光谱仪配件特点 双光源,双原子化器,独特设计方便用于使用 平行火焰和石墨炉原子化器,没有机械移动转换部件,确保长时间稳定性 分时双光源不需要更换灯泡,降低仪器操作和调节难度和时间,提高工作效率。 可选择使用最短光程光路,减少光能损失 双磁场塞曼背景校正技术 采用恒定磁场,横向塞曼背景校正器件用于火焰和石墨炉分析,具有高级双原子化器和强大的背景校正能力 采用增强火焰连续磁场改善分析灵敏度 准双光束设计,以纠正基线漂移,减少预热时间,优化分析精度 石墨炉电源集成一体化设计,多重防护技术降低电磁干扰,缩短电源距离降低能量损失,结构紧凑而方便安装和移动。 火焰石墨炉原子吸收光谱仪配件特色高精度全自动化操作自动8x2转动灯塔,自动调节灯泡电流,优化光束位置自动波长扫描和峰值拾取自动改变光谱带宽自动在火焰和石墨炉之间转换,自动点燃和自动气流控制火焰石墨炉原子吸收光谱仪配件优势全新全自动无焰分析技术具有高可靠性全新设计的石墨炉和电源具有快速加热和超长稳定功能以及超高效率智能全自动采样器,自动生成工作曲线,自动追踪校正样品表面高度,长时间记忆样品探针位置优异的安全防护燃气泄漏,流量异常,气压不足,火焰熄灭时警报和自动安全保护功能监测气压和石墨炉冷却水磁场系统中冷却水监测和保护功能排水管密封和监测功能软件操作用户友好软件方便操作,界面友好软件快速设置,自动调节优化仪器参数安全监测,自动保护智能分析,标准样品检查 广泛用于测量如下样品中的金属元素:土壤,肥料,微量营养素,植物,农药,食品,水,生物物质,冶金,煤炭,电镀,石化,玻璃,水泥,钢铁等。 火焰石墨炉原子吸收光谱仪配件参数 光谱范围:190-900nm 波长精度:+/-0.5nm 光谱分辨率:优于0.3nm 基线稳定性: 0.005A/30分钟 光源:zcvcc 光谱带宽:0.1-2.5nm (8次自动选择) 光度值:0-2Abs 光源:空心阴极灯 Hollow cathode lamp 背景校正:氘灯 D2 lamp背景校正 燃烧炉:层流钛燃烧炉 燃料: C2H2 乙炔 氧化剂:空气/N2O 流量控制:具有控制系统带有流量计 单色仪: Czerny-Turner 1800线/mm 全息衍射光栅 探测器: 广角光电倍增管
  • 双光束原子吸收光谱仪配件
    双光束原子吸收光谱仪配件是进口的真正双光束的高精度原子吸收光谱仪,内置计算机,采用触摸屏控制操作,适合测定各种材料中的定量和痕量元素含量。 双光束原子吸收光谱仪配件特点 7' ' 高分辨率触摸屏LCD显示 内置计算机控制, 具有高能双光束光学系统 D2灯背景校正功能 燃烧炉高度优化,最大ABS调节 自动火焰控制 双光束原子吸收光谱仪配件应用双光束原子吸收光谱仪广泛用于测量如下样品中的金属元素:土壤,肥料,微量营养素,植物,农药,食品,水,生物物质,冶金,煤炭,电镀,石化,玻璃,水泥,钢铁等。双光束原子吸收光谱仪配件参数光谱范围:185-900nm光谱带宽:0.1-2.5nm (8次自动选择)光度值:0-2Abs光源:空心阴极灯 Hollow cathode lamp背景校正:氘灯 D2 lamp背景校正
  • 适用于国内外各原子吸收光谱分析仪器石墨炉系统石墨锥
    适用于国内外各型号原子吸收光谱仪石墨原子化器石墨锥,特殊型号的石墨锥可来图定制。

吸收光谱分析仪原理相关的资料

吸收光谱分析仪原理相关的资讯

  • 把气相分子吸收光谱技术“吃透”——访朱良漪分析仪器青年创新奖获得者郝俊
    p    strong 仪器信息网讯 /strong 2018年8月8日,由中国仪器仪表学会分析仪器分会、长三角科学仪器产业技术创新战略联盟主办的“第五届中国分析仪器学术年会”(ACAIC 2018)在苏州召开。主办方于当晚颁发2018年“朱良漪分析仪器创新奖”, 上海安杰环保科技股份有限公司董事长郝俊荣获“青年创新奖”。仪器信息网编辑于次日采访了郝俊,请他聊聊气相分子吸收光谱及安杰环保的未来发展。 /p p   “朱良漪分析仪器青年创新奖”评审组认为:郝俊作为“基于气相分子吸收光谱法的水质分析仪器”的总负责人,该仪器创新了水质中无机分析检测方法,填补了无机物气相检测的空白,降低了相关试剂的使用量及废液排放量,产生了显著的社会效益和经济效益。 /p p   在郝俊的带领下,安杰环保从最初的3万营业额,增长到现在的近2000万,用户覆盖环境监测站、第三方检测机构、水质监测中心及石油石化领域的大型企业等。郝俊表示:“站在公司的角度,还是希望把气相分子吸收光谱做好,包括纵向的便携、应急、在线设备,以及横向的与气相分子吸收光谱相关的前处理设备,提供研发、生产、销售、服务、工程等全套解决方案。” /p p   更多信息,点击视频查看: /p script src=" https://p.bokecc.com/player?vid=5D1886C02DC0695D9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" type=" text/javascript" /script p br/ /p
  • 气相分子吸收光谱仪的计量校准方法
    p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 建立一种科学合理且可操作性强的气相分子吸收光谱仪校准方法。从仪器的工作原理及结构入手,对该类仪器提出了检出限、线性相关系数、定量重复性等性能评价参数。利用国家相关标准物质对其检出限的测量不确定度进行了评定,统一了校准方法,有力地保证了测量数据的准确性、溯源性。对计量技术机构开展该类仪器的校准工作规范的制定有一定的指导意义。 /span /p p   气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段,利用基态的气体分子吸收特定紫外光谱进行定量的一种测量方法。在水质监测领域中,主要是对水中亚硝酸盐氮、硝酸盐氮、总氮、硫化物、氨氮等物质的测量,通过在特定的分析条件下,将待测成分转变成气体分子载入测量系统,测定其特征光谱吸收[1–3]。这种分析技术在国内发展逐渐成熟,已有不少报道和国家标准的发布[4–7]。 /p p   气相分子吸收光谱仪的技术性能优劣直接影响测量的准确性,但是至今国家还没有气相分子吸收光谱仪的校准规范。笔者通过开展对气相分子吸收光谱仪校准方法的研究,将测量数据进行量值溯源,并对仪器检出限进行不确定度的评定,保证测量数据的量值溯源与传递的唯一性,为各类标准和方法的制定提供技术保障。 /p p   1.气相分子吸收光谱仪工作原理及特点 /p p   气相分子吸收光谱仪是基于被测成分转变成气体分子对特定波长的辐射光具有选择性吸收,且光的吸收强度与被测成分浓度的关系遵守朗伯–比耳定律从而实现对待测成分进行定量分析的仪器。气相分子吸收光谱仪主要由光学系统、进样系统、在线加热及反应分离器系统、检测系统组成,具有分析速度快、抗干扰能力强、自动化程度高、测量范围宽等特点。 /p p   2.校准用主要仪器与试剂 /p p   气相分子吸收光谱仪:GMA3202C,上海北裕分析仪器有限公司 /p p   盐酸溶液:4.5mol/L,取81mL盐酸,注入200mL水中,摇匀 /p p   柠檬酸溶液:0.3mol/L,称取64g柠檬酸,溶解于水,转移至1000mL容量瓶中定容,摇匀 /p p   磷酸:10%水溶液 /p p   过氧化氢:30% /p p   实验所用试剂均为分析纯 /p p   实验用水为高纯水 /p p   校准物质:选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,各标准物质信息见表1。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 01.png" src=" http://img1.17img.cn/17img/images/201807/insimg/01ea0712-b51b-4afa-a85d-f49f59c1a166.jpg" / & nbsp /p p   3.校准条件 /p p   3.1环境条件 /p p   环境温度:15~35℃ 环境相对湿度:≤85%。 /p p   室内不得存放与实验无关的易燃、易爆和强腐蚀性的物质,无强烈的机械振动和电磁干扰。 /p p   3.2仪器安装及工作条件 /p p   仪器:气相分子吸收光谱仪应平稳而牢固地安置在工作台上,电缆线接插件紧密配合,接地良好。 /p p   工作条件:针对3种不同的标准物质及不同系列的仪器,按照国家相关标准[8–10]和仪器操作手册进行优化设定,参考工作条件如表2所示。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 02.png" src=" http://img1.17img.cn/17img/images/201807/noimg/13cf2d6f-2ccc-4f44-ae6b-1ebda5617034.jpg" / /p p   4.校准项目和校准方法 /p p   每次测定之前,将反应瓶盖插入装有约5mL水的清洗瓶中,通入载气,净化测量系统,调整仪器零点。测定后,水洗反应瓶盖和砂芯。 /p p   参考国家标准及测量仪器特性评定方法[8–11],根据仪器的基本性能及以往的校准经验,选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,初定被校仪器的主要计量性能应满足表3的推荐值。 /p p & nbsp /p p & nbsp /p p style=" TEXT-ALIGN: center" img title=" 03.png" src=" http://img1.17img.cn/17img/images/201807/noimg/34d662bd-2657-4cff-bd09-b38fed491846.jpg" / /p p   4.1检出限 /p p   将仪器各参数调至最佳工作状态,并把标准溶液配制成0,0.5,1,2,5mg/L系列标准使用液。对每一浓度点分别进行3次重复测定,取3次测定的平均值,按线性回归法求出工作曲线的斜率。连续做11次空白样,并计算所得值的实验标准偏差。 /p p   检出限按式(1)计算: /p p   cL=3s/b(1) /p p   式中:b——工作曲线的斜率 /p p   s——空白样测定值的标准偏差,mg/L /p p   cL——测量检出限,mg/L。 /p p   4.2校准曲线绘制 /p p   4.2.1亚硝酸盐氮的测定 /p p   用微量移液器逐个移取0,12.5,25,50,125μL亚硝酸盐氮标准溶液于样品反应瓶中,加水至2.5mL,再加2.5mL柠檬酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的亚硝酸盐氮的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。 /p p   4.2.2硫化物的测定 /p p   用微量移液器逐个移取0,25,50,100,250μL硫化物标准溶液于样品反应瓶中,加水至5mL,加2滴过氧化氢。将反应瓶盖与样品反应瓶密闭,再加入5mL磷酸,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的硫化物的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。 /p p   4.2.3氨氮的测定 /p p   用微量移液器逐个移取0,10,20,40,100μL氨氮标准溶液置于样品反应瓶中,加水至2mL,再加3mL盐酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的氨氮的质量浓度 /p p   x(mg/L)绘制校准曲线y=a+bx,并计算相关系数。 /p p   4.3定量重复性 /p p   将仪器参数调至最佳工作状态,选取分析物的工作曲线中2mg/L的浓度点,重复测量6次。按式(2)计算测得值的相对标准偏差(RSD),即为该物质的仪器定量重复性。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 04.png" src=" http://img1.17img.cn/17img/images/201807/noimg/189ec940-56dc-40fa-8903-39f43c437e82.jpg" / & nbsp /p p   5.不确定度评定 /p p   气相分子吸收光谱仪性能的重要指标为检出限,但是其针对其检出限的测量结果不确定度评定84化学分析计量2014年,第23卷,第3期却鲜有报道。笔者依据《实用测量不确定度评定》要求,利用国家相关标准物质,对仪器检出限并进行了不确定度评定,为从事仪器检出限性能比对的技术人员提供参考。 /p p   5.1实验数据 /p p   3种标准物质的实验数据列于表4、表5。 /p p style=" TEXT-ALIGN: center" img title=" 05.png" src=" http://img1.17img.cn/17img/images/201807/noimg/f613da10-63cb-41ce-9ece-30dcc8392398.jpg" / /p p   5.2不确定度评定 /p p   仪器检出限的测量不确定度uc主要由重复性测量、标准曲线引入的不确定度分量构成。下面以测量亚硝酸盐氮检出限为例来进行不确定度评定。 /p p   5.2.1重复性测量引入的标准不确定度u(s) /p p   输入量s为亚硝酸盐氮11次空白溶液的标准偏差,故测量平均值的不确定度: /p p    /p p style=" TEXT-ALIGN: center" img title=" 06.png" src=" http://img1.17img.cn/17img/images/201807/noimg/e0a734fb-d213-47ef-b70d-aed76db1a14c.jpg" / /p p & nbsp /p p & nbsp /p p   5.2.2校准曲线引入的标准不确定度u(b) /p p   校准曲线引入的标准不确定度主要来自标准溶液质量浓度定值引入的标准不确定度u1、校准曲线斜率引入的标准不确定度u2。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 07.png" src=" http://img1.17img.cn/17img/images/201807/noimg/e38c30d1-0393-4f5a-8928-94cec66d0e19.jpg" / /p p & nbsp /p p & nbsp /p p   式中2%为标准物质的定值不确定度。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 08.png" src=" http://img1.17img.cn/17img/images/201807/noimg/65345203-b8e4-4538-a1ef-8560756db3d9.jpg" / & nbsp /p p   5.2.3合成标准不确定度的评定 /p p   由式(2)求得s的灵敏度系数: /p p   c1=3/b=3/0.0625=48(mg/L) /p p   同样斜率b的灵敏度系数: /p p   c2=–3s/b2=–0.0819(mg/L) /p p   根据式(2)求得检出限测量的不确定度: /p p style=" TEXT-ALIGN: center" img title=" 09.png" src=" http://img1.17img.cn/17img/images/201807/noimg/4afd3e68-846d-4d49-beae-fbc37134e19c.jpg" / /p p   5.2.4扩展不确定度的评定 /p p   取k=2,从而求得测量亚硝酸盐氮检出限的扩展不确定度: /p p   U=kuc=2× 0.0032=0.0064(mg/L) /p p   参照测量亚硝酸盐氮检出限的不确定度评定,求得测量硫化物、氨氮二种标物检出限的测量结果不确定度,结果见表6。 /p p style=" TEXT-ALIGN: center" img title=" 10.png" src=" http://img1.17img.cn/17img/images/201807/noimg/2a35f1b7-cc9a-4ce5-a653-ff41734cb469.jpg" / /p p   6结语 /p p   结合仪器的工作原理,提出了仪器的校准方法,并通过建立数学模型对仪器检出限进行了合理的不确定度评定,为今后气相分子吸收光谱仪的校准提供了技术参考。建议气相分子吸收光谱仪的校准周期为1年,首次使用前和维修后均应进行校准,以确保水质监测数据的准确、可靠。 /p p   参考文献 /p p   [1]方肇伦.流动注射分析法[M].北京:科学出版社,1999. /p p   [2]臧平安.气相分子吸收光谱法简介[J].光谱仪器与分析,2000(1):1–4. /p p   [3]孙成业.气相分子吸收光谱分析法及仪器的应用[J].现代仪器,2002(3):17–20. /p p   [4]严静芬.水样中氨氮测定方法比较[J].广州化工,2008,36(2):55–57. /p p   [5]臧平安.气相分子吸收光谱分析法测定亚硝酸根离子的研究[J].分析化学,1991,19(2):1364–1367. /p p   [6]臧平安.气相分子吸收光谱分析法测定水中硫化物[J].宝钢检测,1997(4):33. /p p   [7]国家环境保护总局.《水和废水监测分析方法》[M].4版.北京:中国环境科学出版社,2002. /p p   [8]HJ/T195–2005水质氨氮的测定气相分子吸收光谱法[S]. /p p   [9]HJ/T197–2005水质亚硝酸盐氮的测定气相分子吸收光谱法[S]. /p p   [10]HJ/T200–2005水质硫化物的测定气相分子吸收光谱法[S]. /p p   [11]JJF1094–2002测量仪器特性评定[S]. /p p style=" TEXT-ALIGN: right"   施江焕,李蓓蓓 /p p style=" TEXT-ALIGN: right"   (宁波市计量测试研究院,浙江宁波315103) /p
  • 德国耶拿3月28日将在上海举办原子吸收光谱仪用户培训班
    德国耶拿分析仪器股份公司定于2006年3月28日-31日在上海举办ZEEnit700原子吸收光谱仪EPA用户培训班。本次培训的主要内容包括: 1、原子吸收光谱仪的基本原理、仪器结构等基础知识的介绍。 2、ZEEnit700原子吸收光谱仪的软件操作及应用技巧介绍。 3、ZEEnit700原子吸收光谱仪日常维护保养计划和常见故障分析及排除的介绍。 4、ZEEnit700原子吸收光谱仪在环保监测领域中的具体应用及独特优势介绍。 4、上机操作培训。 电话: 010-65543849、021-54261978 传 真: 010-65543265、021-54261976 电子信箱: info@analytik-jena.com.cn

吸收光谱分析仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制