光谱气体分析仪原理

仪器信息网光谱气体分析仪原理专题为您提供2024年最新光谱气体分析仪原理价格报价、厂家品牌的相关信息, 包括光谱气体分析仪原理参数、型号等,不管是国产,还是进口品牌的光谱气体分析仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光谱气体分析仪原理相关的耗材配件、试剂标物,还有光谱气体分析仪原理相关的最新资讯、资料,以及光谱气体分析仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光谱气体分析仪原理相关的仪器

  • LGATM系列激光气体分析仪是基于半导体激光吸收光谱(DLAS)技术的激光气体分析系统,能够在各种环境(尤其是高温、高压、高粉尘、强腐蚀等恶劣环境下)进行气体浓度等参量的在线测量,并具有准确性高、响应速度快、可靠性高、运行费用低等特点,为生产优化、能源回收、安全控制、环保监测和科研分析带来极大的方便,在钢铁冶金、石油化工、环境保护和能源电力等行业已得到广泛的应用。  2005年,荣获中国仪器仪表学会科学技术奖  2005年,荣获“浙江省科学技术奖一等奖”  2006年,荣获“国家科学技术进步奖二等奖”  2006年,被认定为“国家重点新产品”  2007年,牵头制定“可调谐激光气体分析仪”国家标准  2008年,代表中国牵头制定“可调谐激光气体分析仪”IEC国际标准  2009年,荣获国家知识产权局“第十一届中国专利金奖”  2012年,发布《GB-T25476-2010可调谐激光气体分析仪》国家标准  2013年, 牵头制定并发布《HG/T 4376-2013化工用在线激光微量水分析仪》行业标准  2013年, 发布《IEC 61207-7EXPRESSION OF PERFORMANCE OF GAS ANALYZERS - Part 7:Tunable semiconductor laser gas analyzers》国际标准  2018年,牵头起草并发布《HG/T 5227-2017流态化催化裂化再生烟气激光气体分析仪》行业标准  已授权有效专利74项,其中外观设计1项;已授权13项软件著作权产品分类  原位正压防爆型、原位隔爆型、旁路正压防爆型、旁路隔爆型技术原理  半导体激光吸收光谱技术—利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度。半导体激光器发射出特定波长激光束(仅被被测气体吸收),穿过被测气体时,激光强度的衰减与被测气体浓度成一定函数关系,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。  LGA 系列激光气体分析仪采用以下独特技术,从根本上解决传统采样预处理带来诸如响应滞后、维护频繁、易堵易漏、易损件多和运行费用高等各种问题。原理特点  “单线光谱”技术——不受背景气体交叉干扰的影响  激光频率扫描技术——自动修正粉尘和视窗污染对测量浓度的影响  环境参数变化自动修正技术——消除气体环境参数(温度和压力等)变化对测量的影响测量气体参数气体测量精度测量范围O2100ppm0-1% Vol.,0-100%Vol.CO10 ppm0-1000ppm,0-100%Vol.CO210 ppm0-2000ppm,0-100%Vol.H2O0.3 ppm0-10ppm,0-100%Vol.H2S20 ppm0-200ppm,0-100%Vol.HF0.02 ppm0-1ppm,0-100%Vol.HCl0.1 ppm0-7ppm,0-100%Vol.HCN0.3 ppm0-20ppm,0-1%Vol.NH30.1 ppm0-10ppm,0-100%Vol.CH40.4 ppm0-200ppm,0-100%Vol.C2H20.1 ppm0-10ppm,0-100%Vol.C2H40.6 ppm0-100ppm,0-100%Vol.CH3I0.6 ppm0-100ppm,0-100%Vol.
    留言咨询
  • MIRANSapphIRe 系列环境气体分析仪是今天市场上最灵活多样的气体检测系统。使用独特的红外分光镜在单一的单元里逐一精确地检测众多气体,分析仪波长发生器采用独特的设计,可快速而精确地进行波长的选择。这种功能使MIRAN SapphiRe分析仪从其他的分析中脱颖而出。 特点: 容易使用 分析组分可选 ppm以下级检测灵敏度 灵活多样/可升级 轻巧便携式 应用: 工业卫生监测 应急监测 室内空气研究 医院气体监测 排气罩/痕量气体检测 泄漏检测 MIRAN SapphIRe内置1-120多种气体校正曲线,可分为三种型号: MIRAN SapphIRe XL为需要检测许多气体成分和混合大气气体的高级使用者提供了最佳的检测能力。包含了120种气体分析功能。适用于顾问咨询,工业卫生,管理机构,科学研究和应急检测。 MIRAN SapphIRe SL 提供给需要完成基本日常检测的使用者。制定了50种气体分析功能。适用于室内空气质量检测和麻醉品气体检测。 MIRAN SapphIRe DL 提供给需要检测一组特定气体的使用者。使用便捷快速,适合于管理机构和特定气体检测。 工业卫生适时检测劳动卫生和劳动安全中的挥发气体,MIRAN SapphIRe分析仪的浓度检测范围适合国家法规标准中的规定。 应急监测分析MIRAN SapphIRe帮助应急监测人员有效控制危险有害物质的泄漏和挥发。室内空气质量研究MIRAN SapphIRe能够精确地现场检测如CO2,CO,甲醛和其他有机挥发物质。 废弃麻醉剂气体作为预防维护工作的一部分,通过MIRAN SapphIRe分析仪服务技术人员能够辨别麻醉剂在运送系统中的泄漏。排气罩/痕量气检测在排气罩中进行有毒物质处理时,工作人员的安全可能会受到危害,MIRAN SapphIR能够有效地检测和评估实验室排气罩内气体的污染情况。工艺流程护泄漏检测在MIRAN SapphIRe分析仪上安装泄漏检测探头就能够检查工艺设备周围多种气体泄漏。升级的光谱扫描器能够搜寻未知样光谱图,以便在实验室中更进一步分析和辨认 检测方法:红外光谱法光学部件:7.7-14.1μm线性可调滤光片七个固定带通滤光片1.8, 3.3, 3.6, 4.0, 4.2, 4.5, 4.7μm取样泵流量:15 L/min分析时间:开机后最少20秒/最多3分钟报警: 用户定义读出: 8行×40字符LCD响应时间:18秒到最后读值的90%光径:0.5m样品池体积:2.23L电池内置可充电NiCad电池 正常7.2V;5.7Ah容量 放电时间为4小时;充电时间为4-6小时尺寸/重量:约553mm(宽)×365mm(高)×193mm(长)/ 约10公斤典型测量气体苯、苯乙烯、二硫化碳、丙烯腈、甲醛、苯胺、溴甲烷、光气、一氧化碳、甲苯、二甲苯等
    留言咨询
  • LTGA-200激光痕量气体分析仪是聚光科技(杭州)股份有限公司在多年激光气体分析仪技术积累的基础上推出的用于测量ppb级的专用分析仪器。LTGA-200结合半导体激光吸收光谱技术和长光程低吸附测量气室技术,实现了针对高吸附性痕量气体的稳定检测。产品采用标准机箱式设计,适配标准19英寸机柜,为环境大气、特定区域(如工业园区)大气的有毒有害气体和恶臭气体监测提供了优质的解决方案。检测精度高;稳定、可靠;标定便携、测量可靠;直接测量;
    留言咨询

光谱气体分析仪原理相关的方案

光谱气体分析仪原理相关的论坛

  • 【转】常用气体分析仪的各种分析原理介绍

    测量气体分析仪的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。   1、热导式气体分析仪   一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。   2、电化学式气体分析仪   一种化学类的气体分析仪表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪(图2)的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪(图3)是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。   3、红外线吸收式分析仪   根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。   一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。   与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

  • 【资料】气体检测仪与分析仪的原理和区别

    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式的,相对比较简易。常用的传感器原理有催化燃烧、电化学、PID光离子化、半导体技术。 气体分析仪是测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。

  • 【原创】红外气体分析仪工作原理

    红外气体分析仪是基于不同气体对红外线有选择性吸收这一原理进行设计的。采用国外先进的相关滤波技术(GFC)。仪器内置两路红外线吸收的信号光谱气路,一路作为参比信号,一路为需要测量气体的信号,通过数字逻辑电路使其相减,得到测量气体的光谱信号,此时信号浓度的大小变化就是气体浓度的变化,将信号转换为电压信号,加以增益放大后,并通过8段线性化电路,最终通过显示屏显示气体准确浓度。 仪器光学部件采用特殊光学器材制造,微量级量程时还增加了一套多次反射装置的光学气室,它通过多次反射光学镜片使得光路信号加长,便可精确检测出最小气体的变化量。

光谱气体分析仪原理相关的耗材

  • H3860A型便携式红外气体分析仪
    H3860A型便携式红外气体分析仪张祥峰 15300030867测量范围:单组份气体测量,购买时提出气体要求 一氧化碳:0~50.0、0~100.0、0~500、0~1000PPM 单选 原理:不分光红外线分析法 (符合国家公共卫生环境测量标准) 显示:液晶显示屏(带背光 )、(蓝底白字屏和绿底黑字屏,中英文面板可选) 分辩率:0.1ppm 采样:内置高性能隔膜泵,流量1~1.5L/分 线性误差: &le ± 2%F.S 重复性误差: &le ± 1%F.S 满度响应时间:微量<60秒 常量<15秒 跨度漂移: &le ± 2%F.S/4小时。 使用环境: 温度-10℃~+50℃,湿度&le 85%RH。 尺寸:长180× 宽90× 高245(mm) 电源:12VDC,3200mA 内置高性能无记忆可充电电池 重量:约3kg 附件:仪器箱、携带包、说明书、充电器、(内置校零管和电池组) 选购件:微型打印机、RS232软件及电脑连线。(根据需要可提供4-20mA或0-5V输出) 打印机内容:日月时分,数据,定时打印 软件内容:实时数据显示,曲线图,柱状图,历史记录曲线图,历史数据等.
  • KF 气体分析仪装备 6.7209.010
    KF 气体分析仪装备,用于通过溶剂进行冲洗订货号: 6.7209.010KF 气体分析仪附件,用于通过溶剂冲洗管路。
  • KF 气体分析仪装备 6.7209.000
    KF 气体分析仪装备,用于更换试剂和添加甲醇订货号: 6.7209.000KF 气体分析仪附件,用于自动更换试剂或添加甲醇。

光谱气体分析仪原理相关的资料

光谱气体分析仪原理相关的资讯

  • “激光拉曼光谱气体分析仪的研发与应用”获国家重大科学仪器设备开发专项立项
    近日,公司收到由国家科技部发布的《科技部关于激光拉曼光谱气体分析仪的研发与应用等3个国家重大科学仪器设备开发专项项目立项的通知》(国科发财【2012】1023号),公司牵头承担的“激光拉曼光谱气体分析仪的研发与应用”项目获得立项,并获批专项资金2114万元。 该项目研究开发的激光拉曼光谱气体分析仪,可用于石油、石化、煤化工等高端行业,以及电力变压器油溶解气分析、手术室麻醉气分析、发动机引擎诊断控制、生化试剂监测、环境监测等领域,应用范围十分广泛。配合我国在红外、热导、顺磁等原理的中低端气体分析仪器的产业基础,激光拉曼光谱气体分析仪的研制将有望形成我国自有自主知识产权的高、中、低端完整的气体分析仪器应用解决方案。对于替代进口、做大做强我国气体分析仪器产业、提高工业流程自动化以及科学研究的水平具有重要意义。 科学仪器设备是引领和支撑自主创新的利器,是助推经济社会发展和民生改善的重要技术支撑。2009年以来,科技部科研条件与财务司、财政部教科文司深入一批重点科研机构、高校和企业,对科学仪器设备自主创新现状和需求进行了广泛调研,并借鉴国际创新型国家科学仪器设备发展经验,对制约我国科学仪器设备自主创新的深层次问题进行了剖析。在此基础上,科技部和财政部总结中科院国家重大科研装备自主创新试点经验,提出了设立“国家重大科学仪器设备开发专项”的设想,起草了《国家重大科学仪器设备开发专项管理办法》,并于2011年开始实施国家重大科学仪器设备开发专项的立项工作。
  • 聚焦I四方光电激光光谱技术的十年布局,助推高端气体分析仪器国产化提速
    在第一台激光器诞生60多年后的今天, 随着激光光源、探测技术、实验装置和数据处理等各方面技术的飞跃发展, 激光光谱技术作为微观感知领域的核心技术, 已经成为物理、化学、生物、环境以及天文学等领域中研究光与物质相互作用的重要手段, 从实验室基础研究到各领域应用第一线都扮演着无可替代的角色。拉曼光谱技术早有布局,突破工业过程气体分析技术瓶颈在工业过程气体监测领域,傅里叶红外(FITR)、质谱(MS)、气相色谱(GC)等原理的气体分析仪各有优点。傅里叶红外技术一个气室很难适合不同的量程,也无法分析H2、02、N2甚至不同的碳氢化合物;质谱分析技术对于同质量的气体分子识别度很低;气相色谱分析需要载气,对于不同类型气体需要切换不同的分离柱。而得益于激光技术的普及以及各种高精度光谱分析模块的出现,激光拉曼光谱气体分析技术发展迅速。该产品主要定位于石油天然气、页岩气、石化、大型煤化工等工业过程高端市场。四方光电副总经理、高级工程师石平静向记者介绍:随着我国对大型能源装备国产化要求的提高,针对高端气体分析仪器领域进口替代需求,为加快解决激光拉曼光谱气体分析仪在不同行业的应用问题,公司早在2012年就开始着手激光拉曼光谱气体分析仪的研究,并作为牵头单位实施国家重大科学仪器设备开发专项“激光拉曼光谱气体分析仪器的研发与应用”项目。通过开发专项的研发,四方光电形成了包括光路及光谱分析、拉曼信号增强、拉曼分析测控软件、智能算法等技术,解决了激光器功率、温度、压力等外部因素的波动对测量精度的影响问题,共获授10项发明专利。通过拉曼信号增强的技术突破及自主研制宽光谱范围的拉曼光谱分析模块,四方光电激光拉曼光谱气体分析仪可以满足天然气多组分快速同步分析。分析时间由原先行业的100秒至几十分钟缩短为10秒,提高了10倍以上;可快速测量CH4、C2H6、C2H4、C2H2、C3H8、C3H6、C4+、CO、CO2、H2、O2、N2、H2S、H2O、CH3OH、CH3-NO、NO等十余种气体,用一台激光拉曼光谱气体分析仪,配套采用不同应用场景的行业应用软件,就可以解决天然气页岩气成分、煤气化、高炉转炉焦炉、石油炼化等工业流程多组分气体在线监测的行业难点。图1:四方光电激光拉曼光谱气体分析仪(左:实验室台式分析仪 右:在线防爆型分析系统)深耕TDLAS技术,筑就气体分析产业高地近红外和中红外光谱区域新激光器的可用性又推动了气体测量传感器的发展,这些传感器现在广泛应用于工业过程。基于可调谐二极管激光吸收光谱 (TDLAS) 分子,如 O2、CH4、H2O、CO、CO2、NH3、HCI和HF,可以在连续、实时操作中以高选择性和灵敏度进行原位检测。使用波长调制光谱 (WMS) 等灵敏的检测技术,通常可以在1秒的积分时间内进行低 ppb和ppm浓度测量。检测限值可以通过使用抽取式采样和长的多通道池来提高。当前TDLAS 已成为工业过程中用于困难测量任务的公认技术,因为它与高温、高压、粉尘水平和腐蚀性介质兼容,可以确定气体浓度、温度、速度和压力。石平静表示,基于四方光电气体传感技术平台,打造高端气体分析科学仪器是公司重要的长期战略。公司深耕激光TDLAS技术研究多年,旨在提升基于激光光谱测量技术的专业能力,进一步聚焦实验室和过程分析领域,实现业务可持续性发展,为工业客户提供从产品研发和工艺流程设计,到生产制造和质量控制的全方位专业支持。基于对TDLAS技术及激光器的自主研发,公司推出了GasTDL-3100高性能原位激光过程气体分析仪,采用对射式设计,响应时间快速,在原位式测量中以秒计算,可在线及时反应被测气体O2、CO、CO2或者CH4浓度,避免了采样式测量带来的时间延迟;在高温、高粉尘、高水分、高腐蚀性、高流速等恶劣测量环境下具有良好的适应性;气体浓度不易失真,测量精度高。可以广泛用于冶金、石化、水泥、电力、环保等行业。图2:四方光电TDLAS原位激光过程气体分析仪依托激光核心技术积累,发力环境气体监测正当时在环境监测烟气排放领域,基于TDLAS可调谐半导体激光吸收光谱技术,公司开发了GasTDL-3000激光氨逃逸气体分析仪,适用于在线监测脱硝工艺出口NH3的浓度,采用高温伴热抽取技术,可以有效降低气体冷凝损耗,实时准确地反应逃逸氨的变化,为环保监测提供可靠数据支持。图3:四方光电TDLAS激光氨逃逸气体分析仪“近年来,TDLAS激光气体检测技术以其高效、方便和卓越的通用性也正成为目前解决煤矿瓦斯、燃气报警等环境问题的研究热点”,石平静还告诉记者,在工业领域和日常生活中甲烷一直被广泛应用 ,是典型的易燃易爆气体,及时精准检测,对工矿安全运行、人身安全及环境保护有着十分重要的作用。TDLAS全光学设计、灵敏度高、电绝缘性好、不受电磁干扰、易于微机连接、能实现远距离传输,在易燃易爆物集散地、高温等极端环境中具有不可比拟的独特优势,是目前最有前景的一种甲烷监测传感技术。目前国内外市场上的甲烷传感器种类繁多,TDLAS调谐激光式方法相比于催化燃烧和氧化物半导体三种方法,是一种比较高端的甲烷测量方法,具有精度高、范围大、响应速度快、抗干扰、稳定性好,环境适应性高。近日,四方光电研发推出的一款激光甲烷气体传感器,按管廊标准要求进行设计,可应用于地下管廊(网)、地下井室石油化工、燃气生产运输等有甲烷气体的环境。图4:四方光电TDLAS激光甲烷传感器十年厚积,以激光光谱技术夯实高端医疗呼吸机用氧气传感器领导力地位四方光电坚持“1+3”发展战略,医疗健康气体传感器领域成果转化能力进一步提高,目前有制氧机超声波氧气传感器(取代传统的氧化锆氧气传感器)、激光氧气传感器(取代电化学和顺磁氧气传感器)、超声波肺功能检查仪等。氧气传感器是呼吸机、麻醉机的重要关键部件,开发高性能的医用氧气传感器,打破国外主流呼吸机企业和国外传感器供应商的技术垄断非常必要,是实现高端医疗呼吸机、麻醉机真正国产化的必要条件。呼吸机用氧气传感器国内目前主要采取电化学与顺磁测量氧气浓度,前者使用寿命短,通常使用一年就需要更换,且用一段时间会有偏差,需要不定期校准;后者价格昂贵,对气体压力比较敏感,需要进行压力补偿。针对目前呼吸机用氧气传感器存在的缺陷和技术难点,四方光电基于TDLAS可调谐激光光谱技术原理,就激光器选型与封装技术、氧气传感器控温及驱动电路设计、快速响应微小型气室设计以及信号解调及算法处理等多个方面进行研究,研制出具有较高精度、高稳定性、快速响应的激光氧气传感器,该产品替代同类进口产品,加快补齐我国高端医疗装备的短板,实现自主可控。 图5:四方光电快速激光氧气传感器写在结尾四方光电长期专注于气体传感器以及高端气体分析仪器的研发和产业化,依托省级技术中心、湖北省气体仪器仪表工程中心两个技术平台,四方光电积极融入国家技术创新体系,先后获得国家科技部创新基金重点项目、国家重大科学仪器专项、工信部物联网发展专项、湖北省重大技术创新项目、武汉市重大科技成果转化项目等多个项目的支持,逐步建立了包括红外、紫外、热导、激光拉曼、TDLAS、超声波、电化学、MEMS金属氧化物半导体等原理的气体传感器技术平台,这个平台为四方光电的高端气体分析仪器国产化提供了强有力的动力。最新发展的激光拉曼光谱、可调谐半导体激光吸收光谱TDLAS 等气体分析技术,配合公司常年发展积累的红外、热导、顺磁等原理的气体分析仪器技术,四方光电已经形成我国自有自主知识产权的高、中端完整的气体分析仪器应用解决方案,将大力推动钢铁冶金、煤化工、石油炼化、天然气等国家战略产业以及医疗健康等领域高端装备的国产化。
  • 激光拉曼光谱气体分析仪器专项启动
    1月18日,国家重大科学仪器设备开发专项“激光拉曼光谱气体分析仪项目的研发与应用”在武汉正式启动,省科技厅副巡视员方国强及东湖高新区科技创新局、项目承担单位、合作单位、项目监理组相关领导和专家出席启动会。   方国强副巡视员指出,国家重大科学仪器设备开发专项是科技部财政部在科学仪器研发领域的重大战略决策,是提升我国仪器设备自我装备水平和自主创新能力的重要举措。项目牵头单位与合作单位要站在国家战略的高度,加强组织管理,强化项目质量管理。注重知识产权的保护和利用,规范使用国家经费,加强协作,共同努力,把项目实施好,为提升国产科学仪器的质量和水平贡献智慧和力量。   激光拉曼光谱气体分析仪研发与应用项目是科技部2012年立项的重大科学仪器设备开发项目之一,国家专项经费2114万元,由武汉四方光电有限公司作为牵头单位承担,合作单位囊括了中科院广州能源所、中石化北京化工研究院、中石油天然气研究院、华中科技大学、重庆大学等拉曼气体分析与应用领域实力较强的高校、科研机构,属典型的产、学、研、用相结合的项目。该项目的启动和实施,将为我国石油、化工、电力、环境监测等领域提供重要的分析设备,对于替代进口,做大做强我国气体分析仪器产业具有重要意义。   相关新闻:PM2.5监测设备重大专项在京启动        便携多功能荧光分析仪器专项通过验收
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制