二氧化碳激光器原理

仪器信息网二氧化碳激光器原理专题为您提供2024年最新二氧化碳激光器原理价格报价、厂家品牌的相关信息, 包括二氧化碳激光器原理参数、型号等,不管是国产,还是进口品牌的二氧化碳激光器原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二氧化碳激光器原理相关的耗材配件、试剂标物,还有二氧化碳激光器原理相关的最新资讯、资料,以及二氧化碳激光器原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

二氧化碳激光器原理相关的仪器

  • 产品介绍:PL 系列是光栅可调谐二氧化碳激光器,其光谱范围5.2至6.0微米,9.1至10.9微米,具有连续波(CW)输出功率可达180W的型号。具有优异的振幅和频率稳定性,光束质量优良等特点,是能够满足广泛应用需求的高功率稳定光源。 PL2-S/PL2-M型号为二氧化碳气体激光器,输出功率分别最高可达1W和10W。其波长范围9.1至10.9微米可调。 PL3 型号为CO/CO2激光器,是一种多用途的可步进调谐红外激光系统,能够提供良好的频率和振幅稳定性。充入一氧化碳气体时,可输出范围为 5.2μm - 6.0μm。充入二氧化碳气体时,可输出范围为 9.1μm - 10.9μm。 PL5型号为流动型CO2气体激光器。覆盖从9.1 μm 到10.9 μm 范围,可输出的谱线多达80余条。PL 5除CW输出外,还可以配置Q-开关,进行脉冲输出模式。脉冲宽度200ns ,频率1kHz ,峰值功率通常为2kW。 PL6为目前PL系列中输出功率最高可达180W的流动型二氧化碳气体激光器,范围覆盖9.1μm-10.9μm的90多条谱线, 多于60条谱线的功率可达到120W以上。 产品特点:1. 不胀钢框架可最好的保证机械刚度和稳定性2. 通过衍射光栅调节激光波长 3. 压电陶瓷精密控制激光腔长4. 凹凸不平的激光管内壁设计可有效抑制离轴模式,保证最好的激光横模输出5. 单线输出功率最高可达到180W6. 偏振输出 7. 主动频率稳定选项8. 优异的的振幅和频率稳定性 应用领域:分子光谱学非线性光学干涉测量过程控制大气研究气体吸收/气体分析等离子体密度测量生物化学分析固体物理/材料分析
    留言咨询
  • 简介  二氧化碳激光是一种分子激光,主要的物质是二氧化碳分子。它可以表现多种能量状态,这要视其震动和旋转的形态而定。二氧化碳激光器,可称“隐身人”,它发出的激光波长为10.6 微米,但是在9-11μm期间(尤其是9.6μm)还有其它的辐射线。大多数情况下,辐射光的功率在几十瓦到几千瓦之间。功率转化效率能大于10%,即比大多数固态激光器要高,但是比二极管泵浦激光器低。  二氧化碳激光器 “身”处红外区,肉眼不能觉察,它的工作方式有连续、脉冲两种,用于激光切割,焊接,钻孔和表面处理。  连续方式产生的激光功率可达20 千瓦以上。脉冲方式产生波长10.6 微米的激光也是最强大的一种激光。  应用  二氧化碳激光作为商业应用,激光可达数千瓦,这也是目前最强的物质处理激光及种类最多的一种激光器。二氧化碳激光器广泛用于汽车工业、钢铁工业、造船工业、航空及宇航业、电机工业、机械工业、冶金工业、金属加工等领域广泛应用。约占全球工业激光器销售额40%,北美更高达70%。  二氧化碳激光器产品特点及优势  1、输出功率范围较大,国外已用100KW激光焊机进行焊接。闭管二氧化碳激光器可有几十瓦的连续输出功率,这远远超过了其他的气体激光器,横向流动式的电激励二氧化碳激光器则可有几十万瓦的连续输出。此外横向大气压二氧化碳激光器,从脉冲输出的能量和功率上也都达到了较高水平,可与固体激光器媲美。  2、能量转换效率高,二氧化碳激光器的能量转换效率可达30~40%,这也超过了一般的气体激光器。  3、利用CO2分子的振动-转动能级间的跃迁的,有比较丰富的谱线,在10微米附近有几十条谱线的激光输出。近年来发现的高气压二氧化碳激光器,甚至可做到从9~10微米间连续可调谐的输出。  4、它的输出波段正好是大气窗口,即大气对这个波长的透过率较高。并具有输出光束的光学质量高,相干性好,线宽窄,工作稳定。  5、具有较好的方向性、单色性和较好的频率稳定性。而气体的密度小,不易得到高的激起粒子浓度,因而,CO2气体激光器输出的能量密度通常比固体激光器小。  6、能以脉冲方式或连续方式工作,焊接范围广,既能用来焊接微型件,也能焊接较厚的工件。  7、输出波长为10.6m,正落在8--14m的大气窗口之间,在距离传输方面有独特的优点。  8、气体纯度要求低,一般只要工业纯度二氧化碳气体即可。  9、激光器与电源可集成在一套系统中,结构紧凑,设计简单。10、使用寿命长。设备主要技术参数项目参数规格激光器型号F1000/F2000激励方式射频激励射频频率100MHz波长10.6μm平均功率1000W/2000W输出功率稳定性±5%光束椭圆度<1.2偏振性线偏振光冷却方式水冷光束直径2.0±0.3mm光束发散角<7.0mrad波长范围10.6μm±0.2μm调制频率1-100MHz
    留言咨询
  • 高性价比射频二氧化碳激光器 RF88姓名:田工(Tom)电话:(微信同号)邮箱:高性价比射频二氧化碳激光器产品简介: CO2激光器是一种气体激光器,典型波长为10.6μm,属于中红外频段。相比于其他激光器,CO2激光器具有更高的功率和电光转换效率,非常适合用于非金属材料加工。意大利 El.En.公司在射频二氧化碳激光光源制造方面有超过30年的经验,已在各个地区安装超过2500个工业解决方案。对于低功耗的应用,El.En.公司的工程师开发了一款高效的射频CO2激光光源—RF 88,其额定输出功率为80W,有效峰值功率可达200W。El.En.精心设计的密封式二氧化碳激光器保证激光功率长时间稳定和近乎高斯光束的激光输出,是集成到您设备中的“不二之选”。高性价比射频二氧化碳激光器产品特性:-射频激励-密封技术-高光束质量-结构紧凑&易于集成高性价比射频CO2激光器主要应用: -生物刺激 -塑料和皮革切割 -农业嫁接 -激光微穿孔 -激光打标RF 88 技术规格:
    留言咨询

二氧化碳激光器原理相关的方案

二氧化碳激光器原理相关的论坛

  • 二氧化碳培养箱二氧化碳的纯度

    今天有个同事问我这个问题,我想在这里和大家共同讨论,这个二氧化碳培养箱的 二氧化碳的 纯度究竟是什么样的就可以了。 其实我觉得这个没必要多 纯,一般性的就成了吧。毕竟 我们用的 二氧化碳的浓度是5%的,就是培养箱的二氧化碳的使用浓度

  • 【资料】二氧化碳及其用途!

    碳在自然界中分布极广,在煤碳、石油、天然气、植物、动物、石灰石、白云石、水和空气中,碳最终几乎全部转化为二氧化碳。地球上所蕴臧的煤炭,石油等矿物约含碳1013吨,可以转化成4×l013吨CO2,而大气中和水中则含有4×1014吨CO2,碳酸盐也可转化成4×l016吨CO2。现在由于工业的发展,大量开来煤炭、石油等资源,它们作为能源而不断被消耗的同时,使大气中CO2的含量与日骤增。每年全世界排出的二氧化碳量高达200亿吨,其中发电厂排出CO2,的量约占27%,由工厂排出的占33%,机动车排出的占23%,一般家庭排出的占17%。这样多的CO2尽管有植物的不断吸收,但大气中的CO2的含量还是不断增加.大气中二氧化碳浓度的不断增加,一是会加剧“温室效应”,二是生态平衡遭到严重破坏,引起一系列生态环境问题,三是大量消耗煤炭、石油、天然气等燃料,引起资源短缺,而且这三方面问题是互相影响互相牵制的。为了彻底解决上述问题,人类开始把“使二氧化碳变害为利”提到议事日程上来。要使CO2变害为益,必须从以下几个方面实现更大的突破。 在现实生活中,人们普遍认识到二氧化碳有害的一面,而忽视了它可利用的一面。其实二氧化碳的应用是相当广泛的。

二氧化碳激光器原理相关的耗材

  • 二氧化碳高检测浓度VCSEL激光器
    2004-2012nm二氧化碳高检测浓度VCSEL激光器产品描述: 德国Vertilas公司生产的气体传感器用VCSEL产品具有多种波长,满足大多数常用有害气体的探测要求。2004-2012nmVCSEL可以用于二氧化碳的测量。VCSEL激光器用于气体探测具有很高的电流依赖性,通常有4nm可调谐波长范围,因此特别适合用于TDLAS的测量方式。同时VCSEL具有结构简单,批量产品稳定,性价比高的因素。 Vertilas可提供的标准产品波长有:1273nm,1392nm,1512nm,1566nm,1570nm,1580nm,1590nm,1654nm,1742nm,1854nm,2004nm和2012nm。可以用于CO(一氧化碳),NO(一氧化氮),H2O(水汽),NH3(氨气),HCl(氯化氢),H2S(硫化氢),CH4(甲烷),N2O(一氧化氮),CO2(二氧化碳)等气体的探测。也可以提供客户指定的波长的激光器。 产品应用: 可调波长气体吸收光谱测量(TDLAS) 安全 环境监测 汽车以及自动化应用 产品特性: 2004-2012nm VCSEL 工作温度-20~+70°C 宽波长可调范围 快速响应调制信号 提供多种封装形式 低阈值电压和电流
  • 安徽二氧化碳反应瓶二氧化碳反应瓶
    CAR-BON DIOXIDE REACTION、BOTTLES一、概况及用途: 该仪器采用硼硅玻璃由灯工制成。它适用于化肥厂对浓氨水母液中之二氧化碳含量的测定。二、造型及原理: 它是一只三角型瓶,在瓶底内部略偏中心处有一圆槽,分隔成二室,是便于放入二种物质。其原理 : 利用二室放入二种不同物质在仪器中经过混合反应产生所需的气体。然后引入气体量管中测出所需气体的体积。三、使用方法: 先将反应瓶口用具玻璃管的胶塞盖严,然后将试样,如浓氨水母液放入瓶底中心圆槽内蒋试药如硫酸放在圆槽外圈上,再与量气管连接,摇动反应瓶,使两种物质混合,以酸分解氨水中二氧化碳生成气体,通过水准瓶的作用,将气体引入量气管,从量气管的液面记下读数,即可换算。
  • 二氧化碳检测管
    二氧化碳检测管自动完成采样和显色反应,与ZZW测试仪配套使用,可在2-3分钟完成对水样中游离二氧化碳和侵蚀性二氧化碳的定量测定,非专业技术人员即可轻松操作。 包装:30支/盒 单价:196.00元/盒

二氧化碳激光器原理相关的资料

二氧化碳激光器原理相关的资讯

  • 我国首台二氧化碳拉曼激光雷达系统研制成功
    新华网合肥12月23日消息 记者从中科院合肥物质研究院了解到,中科院安徽光学精密机械研究所承担的中科院重点装备“二氧化碳拉曼激光雷达”日前研制成功,并顺利通过了中科院相关专家组验收。   中科院合肥物质研究院研究员胡顺星介绍,“二氧化碳拉曼激光雷达系统”是我国第一台具有自主知识产权的全方位探测大气温室气体二氧化碳时空分布的激光雷达系统。该系统探测范围水平方向大于2km,垂直方向大于3km,探测精度1km范围内测量误差小于1%,3km范围内测量误差小于3%。这套系统在国际同类研究中处于领先水平。   验收专家组对激光雷达系统进行了现场测试,测试显示系统各项指标均符合或部分超过实施方案的设计指标。它的研制成功填补了我国大气二氧化碳空间分布探测技术的空白。二氧化碳拉曼激光雷达可以用于大气二氧化碳垂直分布的探测,大面积的近地面大气二氧化碳水平分布,用于二氧化碳排放源的监测等研究。目前,该二氧化碳拉曼激光雷达系统已经投入合肥地区大气二氧化碳垂直分布的常规测量。   近几十年来,人类活动导致大气中温室气体和污染气体的浓度急剧增加,对全球气候的改变产生重要影响。二氧化碳是气候变化预测中非常重要的大气温室气体,但人们对它的了解远远不够。目前国际上二氧化碳垂直分布探测的方法非常少,至今,我国还没有二氧化碳空间分布的数据。   专家介绍说,我国政府积极应对全球气候变化,加强工业二氧化碳减排的计划和工作,还把“监测气候变化的过程和要素”等气候变化监测预测预警作为应对气候变化专项行动的重点任务之一。政府部门计划在“十二五”期间开展有关碳收支和碳循环的研究,离不开对二氧化碳空间分布的精确探测。
  • 创三个世界第一!全球首颗激光二氧化碳探测卫星发射成功
    4月16日2时16分,长征四号丙运载火箭在太原卫星发射中心升空,将世界首颗具备二氧化碳激光探测能力的卫星——大气环境监测卫星送入预定轨道,发射任务取得圆满成功。星箭均由中国航天科技集团有限公司八院抓总研制。,时长00:30摄影:郑逃逃大气环境监测卫星是《国家民用空间基础设施中长期发展规划(2015-2025年)》中的科研卫星,运行705公里的太阳同步轨道,整星发射重量约2.6吨,装载了大气探测激光雷达、高精度偏振扫描仪、多角度偏振成像仪、紫外高光谱大气成分探测仪及宽幅成像光谱仪等五台遥感仪器,是一颗集CO2激光主动探测、细颗粒物立体探测、气态污染物探测和地表环境探测的多要素综合监测卫星。长征四号丙运载火箭发射升空。吴敬博 摄大气环境监测卫星的成功发射和在轨应用标志着我国在大气遥感领域达到国际领先水平,卫星在轨应用后将实现对生态环境、气象和农业等多领域定量遥感服务能力的跨越式提升,为我国实现减污降碳协同增效、建设美丽中国的目标提供有力支撑。首次搭载大气探测激光雷达大气环境监测卫星在CO2探测手段和精度、细颗粒物主被动探测和偏振交火探测体制上,创造了三个世界第一。二氧化碳探测,激光雷达出奇效。大气环境监测卫星实现国际上首次搭载大气探测激光雷达这一主动探测载荷,实现主动激光CO2高精度、全天时、全球探测,探测精度大幅提升至优于1ppm,达到国际最高水平,为我国实现“碳达峰、碳中和”目标提供最精准的遥感数据支撑。同时,大气探测激光雷达通过对大气进行分层“CT”扫描,国内首次实现全球气溶胶光学厚度、形状和尺寸等垂直分布信息的获取。PM2.5监测,综合手段创新高。大气环境监测卫星国际上首次采用了主被动结合、多手段综合的探测体制,通过装载不同类型、不同原理的载荷,将主动发射激光接收的回波信号和被动接收的太阳光反射信号相结合,综合反演多种遥感数据,实现对近地面细颗粒物(PM2.5等)浓度的高精度监测,为大气污染精准防治提供科学数据支撑。中国航天科技集团八院供图偏振交火,信息融合效率高。大气环境监测卫星国际首次采用融合反演级偏振交火探测技术,获取气溶胶光学厚度、粒子尺度等多种参数,通过空间、辐射和偏振维度的信息融合,大幅提升细颗粒物探测精度,达到国际先进水平。此外,紫外高光谱大气成分探测仪及宽幅成像光谱仪也将大幅提升气态污染物以及地表环境监测能力,紫外谱段高光谱大气观测以及宽幅多光谱观测空间分辨率提升一倍。首次创新应用无控制点激光光轴自标定技术大气环境监测卫星每天可绕地球飞14轨,激光雷达不分白天黑夜全天时工作,可谓是一个兢兢业业的“劳模”。除了敬业之外,它还是一个十足的“强迫症”,时刻不忘摆正自己的姿态,以保证极高的指向测量精度,为此还在国内首次创新应用了无控制点激光光轴自标定技术。 中国航天科技集团八院供图这一“神技”顺利施展的前提是要有一把能够实时提供绝对姿态信息的“标尺”,也就是“司机”的“眼睛”——星敏感器。激光雷达自身发射的光源分束后经星敏感器支架上的棱镜反射,建立起激光雷达与星敏感器的在轨标校系统,这样激光雷达就可以借助星敏感器这双“慧眼”实时明确自己“身在何方”。据中国航天科技集团八院控制所卫星姿轨控分系统副主任设计师孙尚介绍,为提供高精度在轨三轴惯性测量精度,姿轨控分系统采用了高精度多头星敏感器。“好比用‘三只眼睛’同时定位,利用一个‘大脑’融合处理出更高精度的姿态测量数据。”据悉,“十四五”期间我国还将发射高精度温室气体综合探测卫星,与大气环境监测卫星组网观测,进一步提升我国天基碳监测能力和水平,为我国生态文明建设,实现“双碳”目标贡献航天力量。
  • 盘点!二氧化碳有哪些测量方法标准?
    (1)国家标准 《温室气体 二氧化碳测量 离轴积分腔输出光谱法》(GB/T 34286-2017)由气象部门提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体二氧化碳浓度的方法,适用于开展温室气体二氧化碳浓度的测量,在非污染大气下,其测量精度应小于0.1×10-6mol/mol。 《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)由气象部门提出,规定了本底大气二氧化碳浓度气相色谱在线观测方法。 《气体中一氧化碳、二氧化碳和碳氢化合物的测定 气相色谱法》(GB/T 8984-2008)由中国石油和化学工业协会提出,规定了气体中二氧化碳的气相色谱测定方法,适用于氢、氧、氦、氖、氩、氪和氙等气体中一氧化碳、二氧化碳和甲烷的分项测定,以及一氧化碳、二氧化碳和碳氢化合物的总量(总碳)测定。 《固定污染源排气汇总颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)由环境保护部门提出,规定了使用奥氏气体分析仪法测定固定污染源排气中二氧化碳的方法,其原理为用不同的吸收液分别对排气中的二氧化碳进行吸收,根据吸收前、后排气体积的变化,计算出该成分在排气中所占的体积分数。(2)行业标准 《温室气体 二氧化碳和甲烷观测规范 离轴积分腔输出光谱法》(QX/T 429-2018)是气象行业标准,除规定了利用离轴积分腔输出光谱法观测二氧化碳方法外,还对观测系统、安装要求、检漏与测试要求、运行和维护要求、溯源及数据处理要求等做了规定,适用于温室气体二氧化碳离轴积分腔输出光谱法的在线观测和资料处理分析。 《固定污染源废气 二氧化碳的测定 非分散红外吸收法》(HJ 870-2017)是国家环境保护标准,规定了测定固定污染源废气中二氧化碳的非分散红外吸收法,适用于固定污染源废气中二氧化碳的测定,方法检出限为0.03%(0.6g/m3),测定下限为0.12%(2.4g/m3)。 《环境空气 无机有害气体的应急监测 便携式傅里叶红外仪法》(HJ 920-2017)是国家环境保护标准,规定了测定环境空气中无机有害气体的便携式傅里叶红外仪法,为定性半定量方法,适用于环境空气中二氧化碳的现场应急监测,以及筛选、普查等先期调查工作,方法检出限1mg/m3,测定下限4mg/m3。 《沼气中甲烷和二氧化碳的测定 气相色谱法》(NY/T 1700-2009)是农业行业标准,规定了沼气中二氧化碳的气相色谱实验方法,适用于沼气中二氧化碳的测定。 《本底大气二氧化碳浓度瓶采样测定方法-非色散红外法》(QX/T 67-2007)是气象行业标准,规定了本底大气中二氧化碳浓度的非色散红外测定方法,适用于本底大气瓶采样样品二氧化碳浓度的测定。 《工作场所空气有毒物质测定 第37部分 一氧化碳和二氧化碳》(GBZ/T 300.37-2017)为国家职业卫生标准,规定了工作场所空气中二氧化碳的不分光红外线气体分析仪法,适用于工作场所空气中二氧化碳浓度的检测,方法检出限为0.001%。 综上,我国气象、生态环境、农业、职业卫生及石化工业等部门均提出了二氧化碳测量方法标准,涉及到的方法原理有离轴积分腔输出光谱法、非分散(不分光、非色散)红外光谱法、傅里叶红外光谱法、气相色谱法及奥氏气体分析仪法等。这些方法根据原理、采样方式、样品基质及特性不同,适用于各类应用场景。 其中农业、职业卫生及石化工业的二氧化碳测量方法主要是为了解决产品组分、职业防护等特定领域问题,从温室气体测量角度出发,在环境大气方面,气象部门提出了较为完善的测量方法体系,以离轴积分腔输出光谱法(GB/T 34286-2017和QX/T 429-2018)和气相色谱法(GB/T 31705-2015)为主,生态环境部门提出的便携式傅里叶红外仪法(HJ920-2017)仅适用于应急监测;在污染源废气方面,生态环境部门提出了非分散红外法(HJ870-2017),而奥氏气体分析仪法(GB/T 16157-1996),由于测试精度以及现场工作便利性的原因,在实际工作中应用不多。 在温室气体(二氧化碳)测量领域,与环境大气二氧化碳测量方法体系相比,污染源废气仅有一个手工测量方法,无在线监测技术规范,而“碳源监测”是实现碳中和的重要保障。国际上对于温室气体排放测算有“排放因子法”与“直接测量法”两种方法,直接测量法在精确度上优势较为明显,也是排放因子法中“排放因子”的基础来源。下一步,可以现有方法标准为依托,进一步优化完善方法体系,构建二氧化碳以及其他温室气体源、汇观测网络,为碳达峰、碳中和提供有效测量支撑与保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制