发射光谱在环境检测

仪器信息网发射光谱在环境检测专题为您提供2024年最新发射光谱在环境检测价格报价、厂家品牌的相关信息, 包括发射光谱在环境检测参数、型号等,不管是国产,还是进口品牌的发射光谱在环境检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合发射光谱在环境检测相关的耗材配件、试剂标物,还有发射光谱在环境检测相关的最新资讯、资料,以及发射光谱在环境检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

发射光谱在环境检测相关的仪器

  • ZLX-ES系列发射光谱/光源测量系统发射光谱/光源测量系统介绍 发光体,如白炽灯、荧光灯、LED等辐射光谱及发光特性的测试,对研究其特性有很大帮助。系统不仅可测量光源或其他发射光谱分布,而且可在此基础上得到积分辐射通量、光通量、色坐标等。 针对不同辐射光源的特性,可灵活选择测试系统,如:宽带光源和LED通常分辨率要求不高,可使用Omni-&lambda 150系列单色仪系统;激光器、放电灯、等离子体、原子发射光谱等要求分辨率高,可使用Omni-&lambda 300、Omni-&lambda 500、Omni-&lambda 750系列单色仪系统;宽波长范围(UV~IR),建议采用双出口单色仪接两个探测器;测试宽光谱范围的发光体,建议采用SD滤光片轮消多级光谱。系统组成:分光系统+检测系统+数据采集及处理系统+软件系统+计算机系统
    留言咨询
  • E5000发射光谱仪具有全谱多元素同时分析、分析速度快、分析精准、稳定性好等优点,分析性能达到了国际领先水平。作为全球首创粉末样品元素分析的台式全谱直读发射光谱仪,E5000发射光谱仪拥有创新的高功率数控电弧光源、全自动激光对准的光源装置、稳定可靠的帕型-龙格全谱分光系统以及阵列CCD全谱测量技术,同时,E5000发射光谱仪结合时序分析、光谱自动校正等先进技术,采用固体样品直接进样的方法,全面解决了传统技术分析繁琐、效率低下、准确性差等问题,是光谱元素分析领域的重大突破。E5000发射光谱仪产品结构设计  电弧发射光谱技术与全谱直读光谱技术结合,新一代固体粉末分析技术;  Paschen-Runge(帕型-龙格)全谱光学系统,能测定需要分析的所有常规元素;  紧凑的小型台式设计,确保稳定可靠、易用便捷;  防溢出CCD高速数采系统,信噪比高、动态范围大;  高功率数控可编程光源,电流、电压、频率可控,提供更优的分析方法;  多重连锁和监控,确保操作安全可靠;  全自动电极激光对准系统;  粉末样品直接进样,方便迅速;  一键激发,立刻获得分析结果;  内置工作曲线,客户无需手动建线,切实提高工作效率;  软件开放所有高级功能,为客户提供完美的方法开发平台。E5000发射光谱仪全谱测量技术  全谱平台拥有丰富的谱线信息,更易于元素扩展与方法开发;  基于全谱测量的数据,能够正确区分背景和谱线,有效提高测量精度;  - 方便查看谱线及干扰情况  - 支持斜背景、左右背景等不同的扣除方式  强大的自动谱线去干扰算法;  - 通过算法扣除干扰谱线获得干净的待分析谱线  - 基于全谱测量数据的多峰拟合技术可将谱线完全分开,有效消除谱线的干扰  根据元素的含量范围选择不同的分析谱线,大含量范围的测量更准确;  - 多谱线结合,扩展分析范围的同时,有效保证分析精度;  - 避免灵敏线饱和,不需要消释样品,取得更大的分析范围;CCD高速数采系统  防溢出线阵CCD;  采用动态积分,有效扩展CCD的动态范围;Paschen-Runge(帕型-龙格)全谱光学系统  恒温型全固定光学系统;  全反射式光路;  光室结构紧凑;  一体式固定;  光学器件少,性能稳定;  基于CCD的全谱采集和分析;全新一代电弧数控光源  数控光源体积小、效率高;  基于数控可编程技术,光源的电流、电压、频率可调节;  分析不同含量的元素,选择最佳的激发参数,降低元素分析的检出线,改善元素分析的准确度;  可设置及读取不同检测阶段的数据;一键激发及全自动对准电极  样品装载激发一气呵成,方便快捷;  多元素同时分析,直接得到最终结果;  设计精良的电极挟持旋钮;  红外激光对准、先进的电极激光自动对准技术;  水冷电极夹提高检测稳定性;多重连锁和安全保护  可靠的水冷系统,分别对电弧光源和激发电极散热;  实时监控仪器的运行状态,所有的连锁状态如冷却水、排风、炬室门等都通过界面和指示灯等多种形式直接提醒;  界面上有关键温度的显示,第一时间查看仪器的运行情况;  排风监控,消除废气影响;  特殊的风道设计提高稳定性;水冷系统 强大的分析软件  便捷易用的分析软件;  - 操作直观、便捷、层次化的软件界面,非专业人员也能方便操作  - 简单的方法开发过程,各种检测条件都可调节  强大的多元素分析平台;  - 便捷的全谱查看  - 多元素分析及多谱线选择  - 一键激发,直接在软件上得到分析结果  - 丰富的方法库有利于方法的传承、学习和维护可分析元素及多谱线选择  全面智能的软件算法;  - 内置工作曲线,完善的时序分析,能够实现定性、定量分析  - 丰富的处理技术,支持内标法、基底扣除、干扰元素校正等分析方法  - 功能强大的高级处理功能,为客户带来更全面、更精确的分析体验  独创的智能漂移校正技术。
    留言咨询
  • 岛津光电直读光谱仪PDA-8000仪器简介:PDA-8000是岛津公司2010年推出的最新一款光电发射光谱仪,集合了岛津光电发射光谱仪之精华,突出了高灵敏度、高稳定性的特点,尤其在高纯有色金属、钢铁中酸溶铝、夹杂物方面的分析有着独特的技术。性能特点:1)高分辨率分光器最新设计的1米光栅分光室,可以有效减少元素间的分光干扰。同时,为了提高对C、N等元素的分析精度,通过2次或3次等高次线进行分析,分辨率得到有效提高。2)实时能量监控(REM)功能通过增设实时能量监控功能可监视光源能量是否激发成功,激发能量为0.02J-0.6J(可以0.02J为单位步进进行设定)。即时掌握电极和样品间的发光放电是否正常(是否由于样品本身造成放电异常)从而只收集正常放电时的谱峰强度数据。对不正常放电时的脉冲不进行计数,提高分析稳定性。3)定电流放电(CRS)技术为了实现对高纯有色金属微量元素的良好分析,首次使用了定电流放电技术,即电弧放电后段,电流持续保持在10A,放电持续时间最大可达2msec,从而微量元素的灵敏度及稳定性可以得到有效提高。4)强大的软件控制功能(最新设计,操作简单,实现人机对话功能)中/英文分析软件,具有强大的数据处理能力及人性化的对话窗口,简单易懂。软件可以监控仪器各单元运行状态,并在仪器操作界面显示;有自动诊断功能,并提供简单解决方案及操作方法;在线帮助功能,自动校正功能,密码保护功能等。
    留言咨询

发射光谱在环境检测相关的方案

发射光谱在环境检测相关的论坛

  • 【资料】-用于气相色谱的微波等离子体原子发射光谱检测器的发展

    [size=4][B]用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展[/B][/size][I]袁懋,师宇华[/I]摘要:分别介绍和评价了用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展作了展望。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];微波等离子体;原子发射光谱;检测器自[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法(GC)问世以来,色谱分离分析方法得到了迅速发展,已成为生命科学、石油化工、环境科学等学科必不可少的检测手段和工具。色谱法的发展在很大程度上取决于检测器的发展,每种新型检测器的提出和完善都在一定程度上提高了色谱仪器的性能,促进了色谱法更加广泛和深入的应用。如果没有合乎需要的检测器的诞生,再好的色谱分离方法也难满足社会的需求。迄今为止,已报道过的色谱检测器有100种之多。色谱分析的实践对检测器提出了更高的要求,理想的色谱检测器应具备的特点是灵敏度高、精密度好、线性范围宽、通用性或选择性强、具有形态分析的能力、操作特性优良等。传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已不能满足上述要求。近30年来,由于新型光源和电子技术的发展,等离子体光源部分代替了电弧、火花和火焰等传统光源的主导地位, 为原子发射光谱分析增添了新的活力,且在作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器方面越来越显示出它的优越性。[B]1 概述[/B][I]1. 1 等离子体和微波等离子体[/I]  在物理学上,“等离子体”是指由大量自由电子和离子组成且在整体上表现出近似为电中性的电离气体;在光谱学上,“等离子体”指的是用电学方法获得的类似于火焰的发光气体。因此,微波等离子体(MWP)包括微波诱导等离子体(MIP)、电容耦合微波等离子体(CMP)和微波等离子体炬(MPT) 。[I]1. 2 微波等离子体原子发射光谱检测器的特性[/I]  微波等离子体原子发射光谱检测器(MWP-AED)的检测原理是将微波等离子体作为激发光源,样品进入检测器(激发光源)后被原子化,然后被激发至高能态,再跃迁回到低能态,发射出原子光谱。根据这些发射光谱线的波长和强度即可对待测物进行定性和定量分析。原子发射光谱检测器有许多独特的性能和应用。选用某一特定波长通道时,它只对某一特定元素有响应,此时的检测器为选择性检测器, 并且其选择性比其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如电子俘获检测器(ECD)、火焰光度检测器(FPD)等)更好;如果选择碳或氢的波长作为通道,它就会对一系列含有这两种元素的化合物有响应而成为通用性检测器, 且对某些化合物的灵敏度高于火焰离子化检测器(FID )。  AED 对元素周期表中除了He以外的任何一种元素均可检测,属多元素检测器,并可用于测定未知化合物的经验式和分子式。对未知化合物的鉴定,AED是质谱(MS)、傅里叶变换红外光谱(FT-IR)的有力补充手段。20世纪60年代以来,随着环境科学、生物化学、农业科学、无机和有机化学等领域的发展,越来越多的检测要求得到样品中每个组分每个元素的信息。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有极强的分离能力,恰能满足单组分信息测定的要求。近年来AED与GC联用的应用领域更是不断扩大,成为一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。[B]2 微波诱导等离子体2原子发射光谱检测器的发展[/B]  由于MIP系统简单,操作方便,又是灵敏特效的元素选择性检测器,因而最受欢迎。微波耦合给等离子体工作气体的常用器件是微波谐振腔。它是一种空心的金属容器, 其形状和大小正好使微波可在其中形成一个电磁驻波。等离子体工作气体一般以连续流动方式通过谐振腔,并在谐振腔轴向插入的石英管中形成等离子体。用来获得MIP 的耦合器件的种类很多,常见的有TM010、3/4λ谐振腔和同轴表面波激励器件Surfatron等。[color=#DC143C]全文附件在5楼[/color]

  • 原子吸收光谱与原子发射光谱在分析领域有什么区别?

    由于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]溶解样品比较慢,分析速度较慢,请问[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]与原子发射光谱在分析领域有什么区别?

发射光谱在环境检测相关的耗材

  • 全发射附件 L2250101
    全发射附件这种全发射附件可增强对发射弱的样品的荧光检测灵敏度,建议用于生物冷光和化学冷光试验。该附件使用一种可旋转进入发射光单色仪前面适当位置处的平面镜,以对样品进行全荧光测定。建议使用截止发射滤光器以减少源自其他波长的发射。LS55光谱仪提供5个受软件控制的发射滤光器。订货信息:产品描述部件编号For LS50B/55L2250101本品必须由珀金埃尔默的服务工程师进行安装。
  • 珀金埃尔默NexION双检测器校正溶液N8145059
    珀金埃尔默NexION双检测器校正溶液N8145059珀金埃尔默(PerkinElmer)美国PE公司是世界上的分析仪器,生产制造商,公司由专门致力于产品研制开发的科学家、为客户提供技术支持与销售服务的市场人员和商业专业人士组成。并且提供仪器的耗材配件。自1937年成立至今,在分析化学领域不断为用户提供着仪器、技术与服务。 PERKINELMER公司生产多种化学分析仪器,包括:原子吸收光谱仪、等离子体发射光谱仪、等离子体质谱仪、傅立叶变换红外光谱仪、近红外傅立叶变换 拉曼光谱仪、傅立叶变换近红外光谱仪、紫外/可见/近红外光谱仪、旋光仪、荧光/磷光/发光光谱仪、多空板荧光/紫外高效分析仪、热分析仪、元素分析仪、 超微量电子天平、气相色谱仪、顶空进样器、自动热脱附仪、气相色谱-质谱仪、工程气相色谱仪、便携式和微型气相色谱仪,液相色谱仪等分析仪器,以及GC- FTIR、TGA-FTIR、HGA-ICP-MS、GC-MS等联用仪。N8145059美国PE NexION双检测器校正溶液100mL原装进口铂金埃尔默NexION双检测器校正溶液N8145059
  • 1200 系列蒸发光散射检测器的备件
    1200 系列蒸发光散射检测器的备件订货信息:1200 系列蒸发光散射检测器的备件说明部件号标准流量雾化器G4218-20000半微量流量雾化器G4218-20001大流量雾化器G4218-20002微流雾化器G4218-20003RRLC 雾化器G4218-20004雾化室,玻璃G4218-40000黑塑料螺母,13 mm 直径,玻璃G4218-40010黑塑料螺母,22 mm 直径,玻璃G4218-40011黑色排废管,2.5 mG4218-40110闷头G4218-40130滤芯,0.01 μm,用于气体调节器G4218-40150带不锈钢接头的气体管G4218-40220带不锈钢接头的排放管G4218-40100气体调节阀,带 0.01 μm 过滤器和压力计G4218-60100雾化室的密封工具包G4218-68010咖啡因标样,250 μg/mLG4218-85000?

发射光谱在环境检测相关的资料

发射光谱在环境检测相关的资讯

  • 创想仪器GLMY联合发布CSTM 标准《材料实验数据 火花放电原子发射光谱数据要求》
    2022年8月11日,中国材料与试验团体标准委员会(CSTM 标准委员会)批准发布中国材料与试验团体标准《材料实验数据 火花放电原子发射光谱数据要求》。无锡创想分析仪器有限公司与多家单位共同起草了此份文件。无锡创想分析仪器有限公司受邀与多家联合起草此份标准文件。单位有钢铁研究总院有限公司、国家市场监督管理总局认证认可技术研究中心、北京中实国金国际实验室能力验证研究有限公司、北京科技大学、上海交通大学、杭州谱育科技发展有限公司、哈尔滨威尔焊接有限责任公司、日立分析仪器(上海)有限公司、意大利 GNR 公司、岛津企业管理(中国)有限公司、赛默飞世尔科技(中国)有限公司、钢研纳克检测技术股份有限公司、中关村材料试验技术联盟。火花放电原子发射光谱在冶金、地质、机械、化工、农业、环保、食品、医药等领域应用广泛,特别是在钢铁及有色金属的冶炼中控制冶炼工艺具有极其重要的地位。火花放电原子发射光谱可直接输出数值型结果,简单便捷。目前火花放电原子发射光谱行业内已累积大量实验数据,但关于火花放电原子发射光谱数据存储无统一模板,存储形式多样,现有数据难以汇总。本文件按《材料数据标准体系》的结构框架总体要求,以T/CSTM 00796《材料实验数据 通用要求》为准则,制定的火花放电原子发射光谱材料实验数据标准。规范了火花放电原子发射光谱数值类实验数据存储的一般要求以及其他实验参数数据信息,包括样品信息、仪器参数、工作参数、分析结果、解析数据。文件的实施,有助于实现火花放电原子发射光谱数值类实验数据的规范化管理和质量保证,将数据库技术与大数据技术研究密切融合,推进材料高质量地发展。
  • 共振X射线发射光谱下发现稀土金属价态转变新进展
    稀土元素是现代科技中不可或缺的元素,在磁性激光、光纤通信、新能源、超导、航天航空、军事国防等领域有着不可替代的作用,是21世纪重要的战略元素。6月27日,北京高压科学研究中心研究员丁阳带领的国际研究团队在高压稀土金属价态转变研究领域获突破性进展。相关研究以《80 GPa左右单质金属铕(Eu)的新价态转变》为题发表于《物理评论快报》(Physical Review Letters)。 价态转变—价电子数的变化,是稀土金属及其化合物中普遍存在的物理现象,反映了局域4f电子在外界(比如压力、掺杂、温度)作用下向非局域化转化的过程,而这种非局域化转化标志着材料中大规模电子关联的开始。在此过程中,由于局域电子和非局域价电子之间的竞争等相互作用,稀土元素会衍生出许多奇异的量子现象,如价态转变、金属到绝缘体的转变、超导等,而这些都会极大影响稀土元素的磁、光、电等物理性质。因此揭示这些变化机制,将为设计研制面向国家战略需求的量子演生新材料,促进新型功能器件诞生及推动新能源产业升级提供巨大机遇。 在该研究中,研究人员使用同步辐射X射线共振发射光谱和X射线衍射技术,探测了Eu在高压下的电子和晶体结构变化,压力高达160万大气压。他们发现,在约80万大气压的压缩下,Eu中也发生了明显的价态变化,而且价态转变恰好与Eu在相同压力下的晶体结构变化相吻合;并提出Eu中这种电子重构归因于所谓的Promotional模型—4f轨道的电子向5d导带的跃迁导致的结果,为研究稀土元素的价态变化提供了重要的实验依据和理论模型。 “共振X射线发射光谱(RXES)是迄今为止在高压下研究稀土元素价态变化的最强大的实验技术,它可以提供可靠的电子结构测量,从而使我们能够检测到Eu在高压下电子结构的变化。”丁阳说。 据了解,目前该实验成果也是国内首次利用共振X射线发射光谱在如此高的压力下研究稀土元素4f 的电子结构,极大推进了高压调控4f电子研究的发展,同时也为我国同步辐射谱学技术的发展提供了重要参考。 据悉,北京高压科学研究中心博士后陈碧娟博士为该文第一作者,北京高压科学研究中心研究员丁阳和陕西师范大学的昌峻研究员为通讯作者,合作单位包括流体物理研究所、北京应用物理与计算数学研究所、吉林大学、美国阿贡国家实验室、中国科学院物理研究所等。 相关工作得到了国家自然科学基金项目、挑战者计划、国家重点研发计划项目、美国DOE-NNSA’s Office of Experimental Sciences等联合资助。
  • 上海光机所在单层WSe2-Si超快太赫兹发射光谱研究方面取得进展
    近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与国科大杭州高等研究院和中国科学院空天信息研究院合作,在二维WSe2-Si的混合维度异质结中瞬态电流太赫兹发射动力学以及谷自由度探测方面取得研究进展。相关研究成果以 “Ultrafast Drift Current Terahertz Emission Amplification in the Monolayer WSe2/Si Heterostructure”为题发表于The Journal of Physical Chemistry Letters上。基于单层过渡金属硫族化合物(TMDs)的范德瓦尔斯异质结作为同时具有强的自旋动量锁定效应与能带可调等丰富的光电性质的二维半导体,在片上集成光源、新型光电探测和谷电子学技术中具有重要的应用潜力。图1 (a)太赫兹发射光谱系统示意图;(b) 太赫兹脉冲时域波形;(c) 异质结中耗尽电流辐射太赫兹示意图。本工作首次利用非接触的超快太赫兹发射光谱技术探测了TMDs-Si异质结中耗尽场放大的瞬态光电流,并利用其探测了其中单层二维材料放大的谷自由度并实现了全光操控。本工作为基于二维-三维混合维度异质结的谷电子学探索提供了新思路。在这项工作中,研究人员使用时间分辨太赫兹发射光谱系统,研究了单层WSe2-Si异质结经飞秒激光泵浦后的超快太赫兹发射动力学过程。通过对太赫兹发射机理的分析,发现并验证了WSe2-Si异质结中增强的耗尽电场加速载流子迁移,从而导致更大的瞬态电流与对应10倍增强的太赫兹辐射的作用过程。图2 (a) 光学选择定则示意图;(b) 单层WSe2与异质结中的泵浦光手性依赖现象。同时,利用时间分辨太赫兹发射光谱系统可在无需特殊环境(低温、磁场、应力)的室温条件下探测到单层WSe2与WSe2-Si异质结中泵浦光手性依赖的谷光电流,证实了二维-三维异质结中自旋动量锁定效应的存在,同时也发现单层WSe2材料的谷-动量锁定的光电流手性在异质结中得到了保留。由此利用谷光电流偏振依赖特性,也可以实现对半导体材料发射太赫兹的有效调控。硅基二维-三维材料异质结中实现太赫兹辐射放大的方法拓展了基于超快光学方法的太赫兹辐射源提升效率方式,对于新型片上可集成的太赫兹芯片研究具有重要的意义。此外,超快太赫兹发射光谱在室温条件下对于TMDs材料中谷光电流的无接触探测拓宽了探测自旋动量锁定效应的方法路径,为基于此类异质结的谷电子学的研究提供了新的思路。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制